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Abstract

This paper addresses the problem of line pattern noise

removal from a single image, such as rain streak, hyper-

spectral stripe and so on. Most of the previous methods

model the line pattern noise in original image domain,

which fail to explicitly exploit the directional characteristic,

thus resulting in a redundant subspace with poor represen-

tation ability for those line pattern noise. To achieve a com-

pact subspace for the line pattern structure, in this work, we

incorporate a transformation into the image decomposition

model so that maps the input image to a domain where the

line pattern appearance has an extremely distinct low-rank

structure, which naturally allows us to enforce a low-rank

prior to extract the line pattern streak/stripe from the noisy

image. Moreover, the random noise is usually mixed up with

the line pattern noise, which makes the challenging prob-

lem much more difficult. While previous methods resort to

the spectral or temporal correlation of the multi-images, we

give a detailed analysis between the noisy and clean image

in both local gradient and nonlocal domain, and propose

a compositional directional total variational and low-rank

prior for the image layer, thus to simultaneously accommo-

date both types of noise. The proposed method has been

evaluated on two different tasks, including remote sensing

image mixed random-stripe noise removal and rain streak

removal, all of which obtain very impressive performances.

1. Introduction

The random noise removal problem has attracted much

of the attention and progressed rapidly during the past

decades [1, 26, 10, 39, 2, 15, 29, 9, 33, 38, 7]. By contrast,

the field of line pattern structural noise removal problem

has received less attention as of today despite their abun-

dant application in the real world, such as the stripe noise

in remote sensing images [27, 5, 37, 4, 32], the rain streak

in natural images [14, 19, 8, 23, 21], the nonuniformity in

images acquired by focal plane arrays [25], ringing artifact

Figure 1. An example on the challenging issue: line pattern noise

with random noise removal via a single image. The left is the

degraded image, the right shows the proposed result with noise-

free background and clear texture.

in medical images [11, 17], to name a few. Unfortunately,

these different communities have seldom exchanged ideas

with each other. In this work, we summarise them as the

line pattern noise removal problem, and make an attempt to

settle this problem as well as the random noise. Figure 1

shows one example of a georeference MODIS image con-

taminated with mixed stripe and random noise, where our

method is able to recover the clean background and texture

in single image.

Given a single line pattern noisy image, traditional meth-

ods solve this issue via the image denoising strategy by en-

forcing various prior knowledge on the image, ignoring to

model the line pattern noise in a principal manner [18, 20].

Consequently, the resulting image is either over-smooth or

containing residual line pattern noise. Another research

direction utilizes the image decomposition framework by

treating the image component and line pattern structural

noise component equally [19, 23, 21, 6]. Such a simple

improvement gives this problem a meaningful interpreta-
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Figure 2. Overview of the proposed method. In the second row, the

input rain image is transformed to the domain where the rain streak

has strictly vertical appearance. In the transformed domain, the

image layer and rain streak layer has distinct properties(third row)

and can be projected to different subspaces (fourth row). Thus, the

rain and image background are separated from each other, and the

result of proposed method is visual pleasure (first row, right part).

tion. The intuition behind these state-of-the-art methods

is to make the two components lie on two different sub-

spaces. Thus, the key of the problem is transferred to how

to construct two reasonable measurements to differ the im-

age component from the line pattern component.

The pioneer work [19] utilizes the widely used sparse

coding based on morphological component analysis and

learns two dictionaries: “rain” dictionary and “non-rain”

dictionary. Further, the sophisticated Gaussian mixture

models (GMMs) is introduced by Li et al. [21] for both

the rain layer and image layer with impressive performance,

which can be regarded as a fine-grained multi-dictionaries

version of [19]. The authors [23] go further by borrowing

the concept of discriminative sparse coding to additionally

regularize the two learned dictionaries with mutual exclu-

sivity property, thus making estimated rain and image layer

distinguishable. However, an inevitable difficulty in previ-

ous methods is that the ambiguity between rain and image

dictionary. Even learning with a more compact dictionary

[23], the problem still remains due to inherent ambiguity

between line pattern noise and image structures in original

image domain. Moreover, they fail to explicitly exploit the

directional characteristic of line pattern noise, resulting in a

redundant subspace with weak representation ability.

To avoid these limitations, we offer a new perspective to

model the line pattern structural noise in the transformed

domain with the low-rank subspace constraint, not the orig-

inal image domain. The advantage of our method is two-

folds. First, in the transformed domain, the line pattern

noise show significantly vertical appearance, which facili-

tate us to differ it from the image content more easily. Sec-

ond, in the transformed domain, the subspace belong to the

rain layer is usually very compact. For example, we can

see that in Fig. 2, the rotated rain image can be approx-

imately equal to a rank 1 matrix1. Motivated by this ob-

servation, a simple yet effective transformed image decom-

position model is proposed to explicitly accommodate the

structural and directional line pattern with low-rank prior in

compact and representative manner.

In addition, we also take the random noise into consider-

ation, which is usually associated with the line pattern noise

in real situation [4, 27]. Previous works resort to the addi-

tional multispectral of temporal information to solve this

challenging problem [25, 34, 5, 4, 16, 32]. To distinguish

the image background from the line pattern and random

noise, our start point is from the single image. To this end,

we analyse both the influence of random noise and line pat-

tern noise on the clean image. In the transformed domain,

we discover that the line pattern noise change the statistical

distribution of horizontal gradient obviously, while the ver-

tical gradient are less changed. This inspires us to utilize

the directional total variational to capture this discrepancy

in the image gradient domain, so as to separate the line pat-

tern noise from the clean image in the transformed domain.

Also, the non-local self-similarity based low-rank prior is

employed to remove the random noise as well known. We

show that the compositional directional total variational and

low-rank prior is complementary to each other and very ef-

fective for mixed noise removal.

The contributions of this work are as follows: 1) We

explicitly utilize the directional characteristic of the line

pattern, and model it via the rotated image decomposition

framework, which benefits us to reveal the low-rank sub-

space of the line pattern noise in the transformation domain

with a more compact manner; 2) We exploit both the local

and nonlocal sparsity of the image layer to accommodate

the mixed noise case, and a compositional directional to-

tal variational and low-rank prior is proposed to separate

the image layer from the noise; 3) The proposed method

has been applied on rain streak removal and hyperspectral

stripe removal tasks with impressive performance. Our sin-

gle image based method is even superior to the state-of-the-

art multispectral image based methods in some cases.

1Our method is applied in local patch way, not on the whole image, so

that the low-rank assumption of the transformed rain patch can be satisfied.

We perform the SVD on the constructed low-rank matrix. The horizontal

axis represents the index of its singular value, and the vertical axis stands

for the corresponding magnitude of the singular value.
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Figure 3. Illustration of the effectiveness of the proposed transformed low-rank prior for rain streak and low-rank modeling comparison

between our and two representative methods. The first and second rows illustrate the image layer transformed [30] and rain streak non-local

self-similarity based low-rank models [8], respectively. The third row shows our rain streak layer transformed based low-rank model. Our

method preserves the image texture better (lines of image layer in zoom region) and the rain layer contains only the streak component.

2. Related work

Rotated degradation model: It has been shown that an

image patch has more distinct low-rank property in the

transformed domain than that of the original space [36],

which has been widely used in image alignment [28], super-

resolution [12], and non-pointwise noise removal [30]. Our

starting point to capture the low-rank property in trans-

formed domain is in line with them, while we take a step

from the opposite direction by regularizing the line pattern

layer with the low-rank, not on the background image layer.

That is because the low-rankness of line pattern layer is

much stronger than that of background layer (section 3.2).

To our knowledge, this is the first method to use rotated

degradation model for line pattern noise removal.

Line pattern modeling: The existing methods differ in the

regularization they used, in which the dictionary learning

[19, 23], GMM [21], and low-rank [8, 6] have been intro-

duced for line pattern noise modeling. However, the line

pattern noise has distinctly directional property with simple

structure in a local appearance, while previous methods fail

to capture its intrinsic compact subspace. In this work, we

argue that the low-rank property of the transformed domain

is much more superior to that of the others for compact rep-

resentation of the line pattern noise (section 3.2).

Image layer modeling: For most of existing single image

based methods [19, 23, 21], the philosophy is to treat the im-

age layer and line pattern layer equally with the same con-

straint. However, we hold the viewpoint of common but dif-

ferentiated importance between the two layers. The main

reason is that although the line pattern noise has structural

appearance, the image background has much more abun-

dant structural information with various direction and scale.

In this work, by giving a detailed analysis of the local and

non-local discrepancy between original and degraded im-

age layer, we propose a compositional directional total vari-

ational and low-rank prior for better modeling the image

structure (section 3.3).

Mixed noise removal: In real applications, such as the hy-

perspectral image, the random noise and stripe noise always

coexist [27, 34, 29, 25, 5, 4, 16, 32]. For this challeng-

ing problem, existing methods mainly rely on the spectral

or temporal information with strong assumption that image

sequences are aligned. Previous single image de-raining

methods [19, 23, 21] also cannot solve this issue well. They

model the image layer inadequately and are sensitive to the

random noise. In our work, we sidestep the requirement and

settle the problem in single image via modeling the image

layer more elaborately (section 3.3).

3. Our method

3.1. Rotated degradation model

Most of the existing line pattern noise removal methods

model the degradation procedure as a linear additive com-

position [19, 8, 27, 30, 34, 4, 37, 6, 21, 16], assuming that

the degraded image I ∈ R
M×N is composited by two layers,

image layer X and line pattern noise layer R, as follows:
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I = X+R. Thus, this ill-posed problem can be transferred to

estimate clean X and R from degraded image I with proper

constraints. However, the significant features may not be

captured in the original image domain [36, 12], especially

for the line pattern noise with distinct direction character-

istic. To explicitly utilize this most important information,

we propose to model the line pattern noise degradation pro-

cedure with a rotation operator:

I ◦ τ = X + R + N, (1)

where τ is an affine transform to align the line pattern noise

vertically (Fig. 2), and N is the random noise. And we

differ from previous transformed models, in which previous

works seldom consider the random noise factor.

3.2. Line pattern modeling

In this section, we explain why low-rank property in

transformed domain for the line pattern noise is more su-

perior to that of previous methods. To illustrate this, in Fig.

3, we provide three representative examples in which the

constructed low-rank matrixes differ from each other. Three

representative ways to form the low-rank matrix are shown

from the first row to the third row: rotate the image patch,

redundancy in rain patch, rotate the rain patch. It is clearly

observed that singular values of the constructed low-rank

matrix exhibit significant sparsity with different degrees.

Compared with the rotated rain layer, the intrinsic sub-

space of the rotated image layer (First row in Fig. 3, ap-

proximately rank 30) is much more redundant. This can be

naturally understood that the image layer has much com-

plex structural information than that of rain layer. Also, the

redundancy relationship (Second row in Fig. 3, approxi-

mately rank 8) can hardly capture the precise directional

properties of the rain streak, thus cannot reflect the under-

lying subspace of the rain streak. In contrast, the low-rank

subspace of our rotated rain layer (Third row in Fig. 3, ap-

proximately rank 1) is most compact and representative.

Consequently, we can observe that the corresponding es-

timated image layer and rain streak layer strongly associate

with their low-rank properties. All these results highlight

the fact the low-rank constraint for the rotated line pattern

noise is the most compact manner to represent its directional

and structural properties, and motivate us to leverage the

low-rank prior for the line pattern noise.

3.3. Image layer modeling

Developing sophisticated image priors has been the fo-

cus of much image processing in the past decades, with

many significant successes. However, previous methods

utilize the conventional total variational [8, 6, 21], GMM

[21] prior as the line pattern noise equally. On one hand,

they overemphasize the importance of the line pattern layer

and employ the same constraints for both the image layer

and the line pattern layer, overlooking the fact that image

−80 −60 −40 −20 0 20 40 60 80
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

P
ro

b
ab

il
it

y

 

 

Clean

Striped

Laplacian 

Clean

Striped

Laplacian 

−80 −60 −40 −20 0 20 40 60 80
0

0.05

0.1

0.15

0.2

0.25

P
ro

p
ab

il
it

y

 

 

0 5 10 15 20 25 30 35 40 45
0

50

100

150

200

250

300

M
a
g
n
it

u
d
e

 

 

Noisy

Groundtruth

(a) Clean image (b) Stripe image (c) Noisy image

(d) Horizontral gradient (e) Vertical gradient (f) Horizontral gradient (g) Vertical gradient

DissimilarDissimilar

(h) Nonlocal patches stacking

(d)(d) (f)(f)
SimilarSimilar

(e)(e) (g)(g)

D
if

fe
re

n
t 

im
ag

es
S

ta
ti

ti
ca

l 
ch

ar
ac

te
ri

st
ic

T
ra

n
sf

o
rm

ed
 d

o
m

ai
n

C
o

rr
es

p
o

n
d

in
g

 r
es

u
lt

s

(i) Histogram of horizontral gradient (j) Histogram of vertical gradient (k) Singular values sparsity

(l) Proposed without low-rank (m)  Proposed without DTV (n)  Proposed

Figure 4. Effectiveness of local based directional total variational

for stripe noise and non-local based low-rank for random noise.

We analyze the gradient and low-rank property between the clean

and both noise degraded image in transformed domain (second

row and third row). Please refer to section 3.3 for detail.

layer has much more abundant structures; On the other

hand, they do not figure out how the line pattern and ran-

dom noise influence the statistical characteristic of the im-

age layer exactly, which may result in poor removal results.

To overcome these limitations, we firstly analyze the gra-

dient statistical distribution before and after stripe noise de-

graded. As shown in Fig. 4, we can observe that in the

rotated image domain, the horizontal gradient map between

Fig. 4(d) and 4(f) changes a lot, while the vertical gradi-

ent map between Fig. 4(e) and 4(g) is similar. Further, we

plot their corresponding gradient histograms in Fig. 4(i) and

4(j). We observe that the gradient distribution of Fig. 4(e)

and Fig. 4(g) is almost the same [shown in Fig. 4(j)], and

the gradient distribution of Fig. 4(e) and 4(g) is absolutely

different [shown in Fig. 4(i)].

Such an observation is not surprising, since the stripe

line has significantly directional feature. That is to say it

increases the gradient variation across the stripe line direc-

tion (the horizontal direction) while has less influence along

the stripe line. This motivate us to introduce the directional

total variational [5], so as to smooth the horizontal gradient

and preserve the vertical gradient.
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As for the random noise, in Fig. 4(k), we can see that

the random noise influences the low-rank property of the

non-local stacked matrix. It is natural for us to introduce

the low-rank prior to our image modeling. Thus, the local

gradient and nonlocal low-rank prior are proposed to jointly

represent the image structure.

Further, we demonstrate that the compositional direc-

tional total variational and low-rank prior is complementary

to each other and very effective for mixed noise problem, in

Fig. 4(l) to 4(n). We can see that directional total variational

is particularly effective to suppress the stripe noise [Fig.

4(l)], while low-rank is particularly effective to the random

noise [Fig. 4(m)]. By combining both constraints into the

rotated image decomposition framework, our method iter-

atively restores the clear image and line noise component

[Fig. 4(n)]. Note that, the contribution of this work is

not about the conventional low-rank or TV priors for im-

age modeling but why we combine them for mixed noise

removal and how it differs from the line pattern modeling.

3.4. Transformed low­rank recovery model

Putting all terms together leads to the transformed low-

rank (TLR) image recovery model:

min
X,R,Ai,τ

||R||∗ + λ1 (||∇xX||1 + ρ||∇y(I ◦ τ − X)||1)

+λ2

∑

i

(

||Ai||∗ + µ||P̂iVec(X)− Ai||
2
F

)

s.t. I ◦ τ = X + R,
(2)

where λ1, λ2, ρ, µ are the tradeoff parameters, || • ||∗ repre-

sents the nuclear norm for the convex surrogate functional

of low-rank constraint, ∇x and ∇y denote the horizontal

and vertical derivative operator, respectively, Ai ∈ Rp2
×m

in (2) is the clear low-rank matrix, where p is the size of the

small key patch, m is the total number of the similar patches,

and P̂i contains m matrixes (p2 ×MN ) that extracts the

small patch from the larger image patch Vec(X) ∈ RMN×1.

Our model unifies the image transformation, image de-

noising, and line pattern noise removal in a framework. The

basic idea of the model is that in the transformed image do-

main, the image subspace could be effectively regularized

by the compositional directional total variational and low-

rank prior, and meanwhile the low-rank prior identifies the

line pattern noise subspace. On one hand, a less line pattern

noise image has positive impact on the non-local similar

patch searching, thus facilitating the random noise removal;

on the other hand, a less random noise image would un-

doubtedly boost the line pattern extraction.

3.5. Optimization

Due to the nonlinear property of the measurement con-

straint in (2), a common technique to overcome this diffi-

culty is to linearize the constraint around the current esti-

mate and iterate as follows: I ◦ τ + ∇I∆τ = X + R [36],

where ∇I is the Jacobian (derivatives of the image with

respect to the transformation parameters). Thus, our final

linearized problem is a convex program with respective to

four variables ∆τ,X,R,Ai, can be converted into four sim-

pler sub-problems via alternating minimization with distinct

physical meanings.

1) Update for R: Line pattern noise estimation. In this

subproblem, we fix the other variables and optimize R:

R̂ = argmin
R

||R||∗+
α

2
||I◦τ+∇I∆τ−X−R−

J

α
||
2

F , (3)

where J and α is the Lagrangian multiplier and constant

value, respectively, so as to convert the constrained prob-

lem (2) into its unconstrained subproblem (3). Equation (3)

is a typical low-rank matrix approximation problem which

has a closed-form solution and can be easily solved by the

singular values thresholding algorithm [3].

2) Update for Ai: Image denoising. By ignoring terms

independent of Ai, we obtain following subproblem:

Âi = argmin
Ai

||Ai||∗ + µ||P̂iVec(X)− Ai||
2
F , (4)

which also can be solved by conventional singular values

thresholding algorithm [3]. Instead of the conventional

nuclear norm, we introduce the weighted nuclear norm

from [15] to improve the denoising performance, since this

reweighting strategy can adaptively accommodate to the

varying noise level.

3) Update for X: Image restoration. Similarly, dropping

out the irrelevant variables, we can recover the desired im-

age by solving the following subproblem:

X̂ = argmin
X

λ1 (||∇xX||1 + ρ||∇y(I ◦ τ − X)||1)

+λ2µ
∑

i ||P̂iVec(X)− Ai||
2
F + α

2
||I ◦ τ − X − R − J

α
||
2

F .

(5)

Due to the non-differentiability of the L1 norm in (5), we

apply the ADMM [22] by introducing auxiliary variables

so as to split the original complex problem into several easy

sub-problems with closed-form solutions. Thus, the L1-

related subproblem can be solved via the soft shrinkage op-

erator [22], and the L2-related subproblem can be computed

in Fourier domain. The difference operator can be handled

in fast Fourier transform (FFT) efficiently. The details can

be found in the supplementary material.

It is worth noting, in our implementation, we replace the

||∇y(I◦τ−X)||1 with ||∇y(Xt−X)||1 where Xt is the inter-

mediate result formed by the transformed image denoising

result [Equation (4)]. The main reason is that the random

noise free image follow our vertical gradient preserving ob-

servation more precisely. This also gives a physical mean-

ing expression that the random noise and line pattern noise

removal results are mutually reinforcing.

4) Update for ∆τ : Image transformation. The transfor-

mation can be obtained by solving following subproblem:

∆τ̂ = argmin
∆τ

||I ◦ τ +∇I∆τ − X − R −
J

α
||
2

F . (6)

The closed-form solution of (6) involves with computing

the Moore-Penrose pseudoinverse of ∇I. And the initial-
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(a) Original (SSIM, ILNIQE) (b) Noisy (0.57, 38.65) (c) SR (0.73, 49.18) (d) NINR (0.67, 44.90)

(e) DSC(0.60, 40.87) (f) GLRAM(0.72, 28.86) (g) GMM(0.77, 26.03) (h) TLR(0.73, 25.12)

Figure 5. Simulated rain streak removal results of the dataset [19]. The rain streak here is light but dense.

(a) Original (SSIM, ILNIQE) (b) Noisy (0.83, 19.96) (c) SR (0.75, 30.76) (d) NINR (0.77, 28.31)

(e) DSC(0.85, 20.08) (f) GLRAM(0.89, 21.79) (g) GMM( 0.92, 19.26) (h) TLR(0.89, 18.72)

Figure 6. Simulated rain streak removal results of the dataset [21]. The rain streak here is sparse but bright.

ization of τ can be obtained by the TILT [36] in line pattern

noise region with smoothing background. Thus, we have

τk+1=τk + ∆τ . The algorithm procedure can be found in

the supplementary material.

4. Experimental results

4.1. Experimental setting

The line pattern noise is ubiquitous in the real world. In

this work, we choose two representative applications: rain

streak and hyperspectral image stripe noise removal task to

validate the effectiveness of our method. The configuration

of the platform is on MATLAB 2014a, Intel i7 CPU at 3.6

GHz, and 32-GB memory. The Matlab code of proposed

method can be downloaded at the author’s homepage2.

2http://www.escience.cn/people/changyi/index.html

4.2. Rain streak removal

Compared methods The state-of-the-art single image rain

streak removal methods are selected for a full comparison,

including the dictionary learning based SR [19], DSC[23],

GLRAM [8], NINR [30], and the GMM [21]. All the pa-

rameters are fine-tuned by default or following the rules

in their papers to achieve the best performance. Due to

the space limitation, more results including the comparison

with CNN [13] are included in the supplementary material.

Dataset and evaluation We evaluate the competing meth-

ods on three representative single image rain streak datasets

[19, 23, 21], in which different kinds of rain streak appear-

ance are considered. Both the full-reference assessment

SSIM [31] (larger is better) and no-reference assessment IL-

NIQE [35] (smaller is better) are employed to give an over-

all evaluation. We believe the no-reference assessment is
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(a) Rain image (b) SR (c) NINR (f) GMM (g) TLR(e) GLRAM(d) DSC

Figure 7. Real rain streak removal results of the dataset [23].

more appropriate, since it is closely associated with human

subjective scores and features for subsequent application.

Results comparison Figure 5 and 6 show the simulated

rain streak removal results, and Fig. 7 presents the real rain

streak removal result. Note that the rain streak from differ-

ent datasets have different appearance. We have the follow-

ing observations. First, the proposed method achieves the

best results with respect to both the visual appearance and

the blind assessment ILNIQE. Second, The robustness of

our method for different rain streak is superior to the com-

peting methods. Our method obtains a better balance be-

tween rain streak removal and background texture preserv-

ing in all cases, while some other methods oversmooth the

image background heavily [19, 31] or have obvious residual

rain streak in the image background [23, 31, 8]. Third, com-

pared with the most recent and competitive method [21], our

result also shows slightly better rain streak removal (Fig. 5

and 6) and detail preserving (Fig. 7) performance. This

demonstrates explicit utilization of directional property via

both transformed low-rank and directional total variational

plays a key role in line pattern modeling.

4.3. Hyperspetral stripe removal

Compared methods In hyperspectral image, the stripe al-

ways coexists with the random noise. However there is

few single image base hyperspectral mixed noise removal

method. We compare our method with the state-of-the-art

multiple bands based hyperspectral image restoration meth-

ods, including 2-D low-rank methods LRMR [34], LRTV

[16], MoG [27] and tensor-based methods BM4D [24],

TDL [29], ISTReg [32], ASSTV (only vertical stripe) [5].

Dataset and evaluation The original size of Pavia Uni-

versity dataset3 is 610*340*103. Here, we select an

300*300*40 clean subcubic for simulation. Each band

is degraded with the same level random and stripe noise.

3http://www.ehu.eus/ccwintco/index.php?title=

Hyperspectral_Remote_Sensing_Scenes

The conventional PSNR and SSIM assessments are em-

ployed. For the real hyperspectral image, the size of dataset

CHRIS FY4 is 766*748*18. We select an 590*590*18 sub-

cubic without the black boundary for test.

Results comparison Figure 8 and 9 show the simulated and

real stripe removal results, respectively. We have the fol-

lowing observations. First, most of the previous methods

are effective for the random noise, but fail to remove stripes

satisfactorily. On the contrary, our method is capable of

handling the real complex noise scenarios. Second, our sin-

gle image based method is even superior to the state-of-the-

art multiple based hyperspectral image restoration methods,

both in terms of quantitative assessments and qualitative vi-

sual appearance. This strongly demonstrates that the im-

portance of the reasonable modeling for the image layers in

spatial domain, while previous methods pay much attention

to the spectral correlation. Our work may provide a new

perspective for hyperspectral image mixed noise removal.

4.4. Limitation

The rotation operator and directional property are both

double-edged sword for the line pattern modeling. Once

the rotation operator is called, the high-frequency informa-

tion reduction cased by the interpolation will be unavoid-

able. This is an inherent flaw of our method. For the direc-

tional property, it not only facilitates to remove the line pat-

tern noise, but also takes away the image structure with the

same direction as the line pattern noise unexpectedly (As

shown in Fig. 3, the estimated rain streak layer contains the

texture with same direction as rain streak, though the other

texture have been affected a little). This problem is deeply

rooted in all single image decomposition based line pattern

noise removal methods, since it is hard to completely distin-

guish the line pattern noise and the similar image edges in

an unsupervised manner or without any additional informa-

4http://www.brockmann-consult.de/beam/data/

products/

43271732

http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes
http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes
http://www.brockmann-consult.de/beam/data/products/
http://www.brockmann-consult.de/beam/data/products/


(a) Original (PSNR, SSIM) (b) Noisy (22.27, 0.48) (c) BM4D (23.56, 0.54) (d) LRMR (24.07, 0.54) (e) LRTV (18.93, 0.70)

(f) TDL (23.98, 0.57) (g) ISTReg (23.83, 0.57) (h) ASSTV (24.07, 0.79) (j) TLR (30.52, 0.89)(i) MoG (30.78, 0.85)

Figure 8. Simulated mixed random and stripe noise removal results of hyperspectral dataset. Note that all the competing methods need

multiple image bands, while our method is single image based.

(a) Noisy (b) BM4D

(g) MoG(f) ISTReg

(d) LRTV

(h) TLR

(c) LRMR

(e) TDL

(a)-(d) Zoom results

(e)-(h) Zoom results

Figure 9. Real mixed random and stripe noise removal results of the hyperspectral dataset.

tion. To remedy this, incorporating the additional spectral

of temporal information to the decomposition-based frame-

work or learning the rain streak specific based CNN may

facilitate to advance this issue.

5. Conclusion

In this work, we propose a novel transformed low-rank

image decomposition framework for line pattern noise re-

moval. We explicitly utilize the directional property of the

line pattern in the transformed domain, where the subspace

is more compact than that of the original image domain.

This contributes to better separation between the line pat-

tern layer and image layer. Moreover, we analyze the de-

tailed discrepancy between the mixed noise degraded im-

age and clean image, in which both the local directional

gradient and nonlocal self-similarity information has been

involved. With present prevalent of spectral or temporal

correlation modeling, we offer an new perspective from the

spatial transformed domain. Compared to the recent sin-

gle image based methods, this compositional prior suggests

that better modeling for the image layer may have more im-

pact on mixed random and line pattern noise issue. The

proposed method has been tested on rain streak and hyper-

spectral stripe removal, and it consistently achieves state-

of-the-art performance.
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