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Abstract

Many spectral clustering algorithms have been proposed

and successfully applied to image data analysis such as

content based image retrieval, image annotation, and im-

age indexing. Conventional spectral clustering algorithms

usually involve a two-stage process: eigendecomposition of

similarity matrix and clustering assignments from eigenvec-

tors by k-means or spectral rotation. However, the final

clustering assignments obtained by the two-stage process

may deviate from the assignments by directly optimize the

original objective function. Moreover, most of these meth-

ods usually have very high computational complexities. In

this paper, we propose a new min-cut algorithm for image

clustering, which scales linearly to the data size. In the new

method, a self-balanced min-cut model is proposed in which

the Exclusive Lasso is implicitly introduced as a balance

regularizer in order to produce balanced partition. We pro-

pose an iterative algorithm to solve the new model, which

has a time complexity of O(n) where n is the number of

samples. Theoretical analysis reveals that the new method

can simultaneously minimize the graph cut and balance the

partition across all clusters. A series of experiments were

conducted on both synthetic and benchmark data sets and

the experimental results show the superior performance of

the new method.

1. Introduction

Over the past decades, many clustering algorithms have

been proposed for cluster analysis of high-dimensional data,

such as spectral clustering [21], subspace clustering [13, 8],

multi-view clustering [4, 7], etc. Among them, spectral

clustering is a popular method because it often shows good

clustering performance due to the use of manifold informa-

tion. Various spectral clustering algorithms have been pro-

posed, such as Ratio Cut [12], k-way Ratio Cut [5], Normal-

ized Cut [15], Spectral Embedded Clustering [19] and Con-

strained Laplacian Rank [18]. They have been successfully

applied to image clustering in applications such as content

based image retrieval, image annotation, and image index-

ing [10, 23, 3].

Spectral clustering methods usually transform the data

into a weighted, undirected graph based on pairwise sim-

ilarities. To obtain the final discrete clustering assign-

ments, they often perform eigendecomposition on the sim-

ilarity matrix first, and then carry out the final clustering

assignments from eigenvectors by k-means or spectral ro-

tation [24]. However, the final clustering assignments ob-

tained by a two-stage process may deviate from the assign-

ments by directly optimize the original objective function.

Moreover, since both graph construction and spectral

analysis are time consuming, spectral clustering usually has

a time complexity of O(n3) where n is the number of sam-

ples. In recent years, much effort has been devoted to ac-

celerating the spectral clustering process. There are mainly

three ways to handle the scalability issue of spectral clus-
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tering. One way is to reduce the computational cost of the

eigendecomposition step [11, 14], the second way is to sam-

ple the original data and perform clustering on the reduced

data [22, 20], and the last way is to construct a small approx-

imate affinity matrix and perform clustering on the small

affinity matrix [2]. However, these methods are mainly

based on sampling, and a lot of information of the data will

be lost in the sampling step.

In this paper, we propose a novel Self-Balanced Min-Cut

(SBMC) algorithm for image clustering. The main contri-

butions of our work include:

1. We have proved that the Exclusive Lasso proposed

in [25] can be used as a balance regularizer to produce

balanced partition and avoid recovering a lot of small

clusters.

2. We have proposed a new graph cut model, named the

self-balanced min-cut model, in which the Exclusive

Lasso is implicitly introduced as a balance regularizer.

The regularization parameter, named the balance pa-

rameter, can be learnt.

3. We have proposed an iterative algorithm SBMC to

solve the new model, in which the balance parameter

is updated in each iteration. SBMC has a time com-

plexity of O(n) where n is the number of samples.

Theoretical analysis reveals that the new method can

simultaneously minimize the graph cut and balance the

partition across all clusters. We also show that the con-

ventional min-cut model can be considered as a special

case of the new model.

4. Comprehensive experiments on both synthetic and

benchmark data sets show the efficiency and effective-

ness of the proposed method.

The rest of this paper is organized as follows. Notations

and preliminaries are given in Section 2. We review the

related work in Section 3 and the background in Section 4.

The Self-Balanced Min-Cut algorithm is given in Section 5.

We present experimental results and analysis in Section 6.

Conclusions and future work are given in Section 7.

2. Notations and Definitions

We summarize the notations and the definition of norms

used in this paper. Matrices are written as boldface upper-

case letters. Vectors are written as boldface lowercase let-

ters. For matrix M = (mij), its i-th row is denoted as

mi, and its j-th column is denoted by mj . The Frobenius

norm of the matrix M ∈ Rn×m is defined as ∥M∥F =
√

∑n
i=1

∑m
j=1m

2
ij .

3. Related Work

Given a data set X = {x1, . . . ,xn}, we can construct

an affinity matrix A. A can be considered as a weighted

undirected graph. Let Y ∈ Bn×c be the cluster indicator

matrix, in which c is the number of clusters and yil = 1
indicates that xi is assigned to the l-th cluster. The classical

Ratio Cut can be written as [12]

min
YTY=I

Tr(YTLAY) (1)

and the Normalized Cut can be represented by [15]

min
YTDY=I

Tr(YTLAY) (2)

where LA = DA − A is Laplacian matrix, and DA is

the corresponding degree matrix which is a diagonal matrix

with the i-th diagonal element as dii =
∑n
j=1 aij .

Problems (1) and (2) can be solved by a two-stage pro-

cess: performing eigendecomposition on LA first, and ob-

taining the final clustering assignments from eigenvectors

by k-means or spectral rotation [24].

In 2011, Nie et al. proposed a spectral embedded cluster-

ing (SEC), which introduces a linearity regularization into

the objective function to control the mismatch between the

cluster assignment matrix and the low-dimensional embed-

ding of the data [19]. To cluster X into c clusters, the ob-

jective function of SEC is as follows

min
Y,W,b

Y
T
Y=I

Tr(YT
LAY)+µ

(

∥

∥

∥
X

T
W + 1b

T
−Y

∥

∥

∥

2

+ γgTr(WT
W)

)

(3)

where W ∈ Rn×c is the projection matrix, b ∈ Rn×1 is

the bias vector, µ and γg are two regularization parameters.

The above problem can be solved in a similar way as prob-

lems (1) and (2).

In 2014, Nie et al. proposed a clustering method CAN

(Clustering with Adaptive Neighbors)[17]. CAN learns a

probability matrix S ∈ Rn×n, in which sij is the connected

probability between xi and xj . The objective function of

CAN is as follows

min
S

n
∑

i,j=1

(

∥xi − xj∥
2
2 sij + γs2ji

)

∀ i, si1 = 1, sij ∈ [0, 1], rank(LS) = n− c

(4)

where a rank constraint rank(LS) = n − c is imposed to

the Laplacian matrix of S such that the connected compo-

nents in S are exactly equal to c. The above problem can be

solved with an iterative method. In each iteration, we have

to perform eigendecomposion on LS .

In 2016, Nie et al. further improved CAN for a given

affinity matrix to propose the Constrained Laplacian Rank
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(CLR) method [18]. CLR learns S ∈ Rn×n that best ap-

proximates the initial affinity matrix A. Two versions of

CLR were proposed, one is with the ℓ2 norm

min
S

n
∑

i,j=1

(

∥S−A∥
2
2

)

∀ i, si1 = 1, sij ∈ [0, 1], rank(LS) = n− c

(5)

and the other one is with the ℓ1 norm

min
S

n
∑

i,j=1

(∥S−A∥1)

∀ i, si1 = 1, sij ∈ [0, 1], rank(LS) = n− c

(6)

The above two problems can be solved with iterative meth-

ods, in which eigendecomposion is performed on LS in

each iteration.

To accelerate the spectral clustering process, Cai et

al. proposed a landmarks-based spectral clustering (LSC)

method [2]. Given a data set with n samples, LSC gen-

erates m (m ≪ n) representative data points to compute

a representative similarity matrix and the eigendecomposi-

tion can be performed on the low-size representative simi-

larity matrix. The final discrete clustering result is obtained

by performing k-means clustering on the eigenvectors. The

overall time of LSC isO(ndmt+nm2) where t is the num-

ber of iterations of k-means for anchor generation, which is

significant reduction from O(n3) considering m≪ n.

4. Background

In this section, we introduce the Exclusive Lasso and

Augmented Lagrangian multiplier optimization method

which will be used in the next section. We also rewrite the

min-cut problem for the following analysis.

4.1. Exclusive Lasso

Given a matrix M ∈ Rn×m, Zhou et al. proposed the

exclusive lasso for multi-task feature selection, which is de-

fined as [25]

∥M∥e =
m
∑

j=1

(
n
∑

i=1

|mij |)
2 (7)

The exclusive lasso was originally used for feature se-

lection across multiple tasks. It models the scenario when

variables in the same group compete with each other. With

exclusive lasso, if one feature in a group is given a large

weight, it tends to assign small or even zero weights to other

features in the same group. From another point of view, the

exclusive lasso can be considered as a combination of a ℓ1-

norm on the elements in the same row and a ℓ2-norm on

the ℓ1-norm of each row. Since ℓ1-norm tends to achieve a

sparse solution, the construction in the exclusive lasso es-

sentially introduces a competition among different columns

for the same rows. In the following, we prove that the most

balanced clustering can be obtained by minimizing the ex-

clusive lasso.

Theorem 1. Suppose Y ∈ Bn×c is a cluster indicator ma-

trix, ∥Y∥e arrives its minimum when
∑n
i=1 yij equals to n

c

if n
c

is an integer, or {⌊n
c
⌋, ⌈n

c
⌉} otherwise (j ∈ [1, c]).

Proof. Let u ∈ Rc×1 be a column vector where uj =
∑n
i=1 yij and

∑c
j=1 uj = n. Let v ∈ R×1 be a constant

column vector where vj = 1
c
. According to the Cauchy-

Schwarz inequality, we have | < u,v > |2 ≤ ∥u∥
2
∥v∥

2

which indicates that

c
∑

j=1

u2j ≥
n2

c
(8)

and the inequality holds when uj = n
c

for ∀j ∈ [1, c].
Therefore, ∥Y∥e arrives its minimum when

∑n
i=1 yij =

n
c

(j ∈ [1, c]). If n
c

is not an integer, we can verify that

∥Y∥e arrives its minimum when
∑n
i=1 yij = {⌊n

c
⌋, ⌈n

c
⌉}

(j ∈ [1, c]).

According to the above theorem, we can use the exclu-

sive lasso as a balance constraint to obtain balanced cluster-

ing result.

4.2. Augmented Lagrangian multiplier (ALM)

Consider the constrained optimization problem

min
g(M)=0

f(M) (9)

where M ∈ Rn×m. The algorithm using the augmented

Lagrangian multiplier (ALM) method to solve problem (9)

is described in Algorithm 1 [1].

Algorithm 1 Algorithm to solve problem (9)

1: Input: X, ρ ∈ (1, 2).
2: Initialize µ > 0, Λ.

3: repeat

4: Update M by solving

minM

(

f(M) + µ
2

∥

∥

∥
g(M) + Λ

µ

∥

∥

∥

2

F

)

5: Update Λ by Λ = Λ+ µg(M)
6: Update µ by µ = ρµ

7: until problem (9) converges

8: Output: the optimal solution of M.

It has been proved that under some rather general con-

ditions, Algorithm 1 converges Q-linearly to the optimal

solution [1]. This property makes the ALM method very

attractive.
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4.3. Min­Cut revisited

In this section, we rewrite the min-cut problem which

partitions the vertices in the affinity matrix A into c disjoint

sets so that the total weight of the set of edges with end-

points in different sets is minimized. Let Y ∈ Bn×c be

the cluster indicator matrix, in which yil = 1 indicates that

xi is assigned to the l-th cluster. The objective function of

min-cut clustering is formulated as follows

min
Y∈Ind

1TA1− Tr(YTAY) (10)

Note that 1TA1 = 1TDA1 = Tr(YTDAY), the

above problem can be rewritten as

min
Y∈Ind

Tr(YTLAY) (11)

Problem (11) is difficult to solve. A well known method

is to relax Y from the discrete values to the continuous ones,

and add different constraints to form the Ratio Cut problem

in Eq. (1) and the Normalized Cut problem in Eq. (2).

In this paper, we want to directly obtain discrete solution

Y. Obviously, problem (10) can be rewritten as

max
Y∈Ind

Tr(YTAY) (12)

However, directly solving the above problem results in

a degenerated solution in which all objects belong to one

cluster. In the next section, we will propose a new min-cut

algorithm.

5. Self-Balanced Min-Cut Algorithm

Given a data set X = {x1, . . . ,xn}, we can construct

an affinity matrix A. Suppose we want to cluster X into

c clusters. Let Y ∈ Bn×c be the cluster indicator matrix,

in which yil = 1 indicates that xi is assigned to the l-th

cluster. Denoting B = YYT , we know that bij = 1 if

yi = yj , and bij = 0 otherwise. To obtain a good partition

Y, we hope that bij = 0 if aij is small and bij = 1 if aij is

big. Intuitively, we can obtain the clustering assignments by

minimizing the difference between A and YYT . A natural

way is to obtain the clustering assignments by solving the

following problem

min
Y∈Ind

∥A−YYT ∥2F (13)

However, the above problem may only work for data

with perfect cluster structure which rarely exists in real life

data. We will discuss the disadvantage of problem (13) later.

In this paper, we propose to solve the following objective

function

min
Y∈Ind,s

∥A− sYYT ∥2F (14)

where s > 0 is a balance parameter.

Problem (14) seems difficult to solve. Fortunately, we

can rewrite problem (14) as a new problem which is much

easier to solve according to the following theorem

Theorem 2. Solving problem (14) is equivalent to solving

the following problem

max
Y∈Ind,s>0

2sTr(YTAY)− s2∥Y∥e (15)

where ∥Y∥e = Tr(YT11TY) is the exclusive lasso [25].

Proof. Since Y ∈ Ind, it can be verified that

Tr(YYTYYT ) =
∑c
j=1(

∑n
i=1 yij)

2. Then we know

Tr(YYTYYT ) = Tr(YT11TY) = ∥Y∥e.
Problem (14) can be rewritten as follows

min
Y∈Ind,s>0

∥A− sYYT ∥2F

⇔ max
Y∈Ind,s

2sTr(YTAY)− s2Tr(YYTYYT )

⇔ max
Y∈Ind,s

2sTr(YTAY)− s2Tr(YT11TY)

⇔ max
Y∈Ind,s

2sTr(YTAY)− s2∥Y∥e

(16)

which completes the proof.

According to the above theorem, we know that problem

(13) is equivalent to the following problem

max
Y∈Ind

Tr(YTAY)−
1

2
∥Y∥e (17)

According to the analysis in Sections 4.1 and 4.3, we

know that problem (17) can be considered as a balanced

min-cut problem, in which the exclusive lasso is used as a

balance regularizer. However, the regularization parameter

in problem (17) is fixed as 1
2 and can not be adjusted accord-

ing to the data. In Section 5.4, we will discuss how problem

(15) automatically adjusts the balance parameter s.

Problem (15) can be solved with an alternative optimiza-

tion approach. In the next two subsections, we show how to

update Y and s.

5.1. Solving Y with s fixed

If s > 0 is fixed, we can obtain Y by solving the follow-

ing problem

min
Y∈Ind,G=Y

Tr(YTΘG) (18)

where Θ = s
211

T −A.

The above problem is non-smooth and difficult to opti-

mize. In this paper, we use the ALM algorithm described

in Algorithm 1 to solve problem (18). According to Algo-

rithm 1, we need to solve the following problem

min
Y∈Ind,G

Tr(YTΘG) +
µ

2
∥Y −G+

1

µ
Λ∥2F (19)
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An accurate, joint minimization with respect to both Y

and G is difficult and costly. In this paper, we use the al-

ternating direction method of multipliers (ADMM) to solve

this problem. Specifically, we optimize problem (19) with

respect to one variable when fixing the other variable, which

result in the following two subproblems.

When Y is fixed, the Lagrangian function of problem

(19) is

L(G) = Tr(YTΘG) +
µ

2
∥Y −G+

1

µ
Λ∥2F (20)

Taking the derivative of L(G) with respect to G and set-

ting it to zero, we have

ΘTY − (µ(Y −G) + Λ) = 0 (21)

which leads to

G = Y −
1

µ
(ΘTY − Λ) (22)

When G is fixed, problem (19) becomes

min
Y∈Ind

Tr(YTΘG) +
µ

2
∥Y −G+

1

µ
Λ∥2F (23)

Note that problem (23) is independent between different

i, so we can solve the following problem individually for

each yi by solving the following problem

min
yi∈Ind

yi(ωi)T +
µ

2
∥yi − gi +

1

µ
λi∥22 (24)

where ωi is the i-th row of Ω = ΘG. Problem (24) can be

further rewritten as

min
Y∈Ind

∥yi − (gi −
ωi + λi

µ
)∥22 (25)

Then the optimal solution of yi is

yij =< j = arg max
j′∈[1,c]

tij′ > (26)

where < . > is 1 if the argument is true or 0 otherwise, and

tij is defined as

tij = Gij −
Ωij + Λij

µ
(27)

5.2. Solving s with Y fixed

If Y is fixed, we can obtain s by solving the following

problem

min
s>0

(

s−
Tr(YTAY)

∥Y∥e

)2

(28)

The optimal solution of s is

s =
Tr(YTAY)

∥Y∥e
(29)

5.3. The optimization algorithm

The detailed algorithm to solve problem (15), named the

Self-Balanced Min-Cut (SBMC), is summarized in Algo-

rithm 2. The balance parameter s and cluster indicator ma-

trix Y are iteratively updated until convergence. In the new

algorithm, we need O(r1(nc
2 + r2nc

2)) time to iteratively

solve s and Y where r1 is the number of iterations to up-

date s and r2 is the average number of iterations to update

Y. Here, the discrete solution Y converges very fast due to

its limited solution space so r2 is usually very small. There-

fore, the SBMC has a time complexity of O(n), which is

same as the computational complexity of k-means. Com-

pared to the conventional spectral clustering methods which

have a time complexity of O(n3), the new algorithm has a

significant reduction in computation.

Algorithm 2 Self-Balanced Min-Cut Algorithm to solve

problem (15)

1: Input: An affinity matrix A, parameter ρ ∈ (1, 2).
2: Randomly initialize Y.

3: repeat

4: Update s = Tr(YTAY)
Tr(YT 11TY)

.

5: Update Θ = s
211

T −A.

6: Initialize µ > 0 and Λ ∈ Rn×c.

7: Randomly initialize Y.

8: repeat

9: Update G = Y − 1
µ
(ΘTY − Λ).

10: Update Y according to Eq. (26).

11: Update Λ = Λ+ µ(Y −G) and µ = ρµ.

12: until problem (19) converges

13: until problem (15) converges

14: Output: The clustering result Y.

5.4. Connection to conventional min­cut algorithms

Problem (15) can be rewritten as

max
Y∈Ind,s

s(Tr(YTAY)−
s

2
∥Y∥e) (30)

According to the analysis in Sections 4.1 and 4.3, we know

that maxY∈Ind(Tr(Y
TAY)− s

2 ∥Y∥e) can be considered

as balanced min-cut model, which tends to produce more

balanced clustering results with bigger balance parameter

s. According to Eq. (29), s is inversely proportional to

∥Y∥e. The more balanced the cluster structure that the data

contains, the smaller the ∥Y∥e is and the bigger the s is.

Then solving maxY∈Ind(Tr(Y
TAY) − s

2 ∥Y∥e) results

in more balanced clusters. Therefore, the new model can

automatically adjust the balance parameter according to the

learnt cluster indicator matrix Y. On the other hand, maxi-

mizing s will maximize Tr(YTAY) which is the objective
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function of min-cut. Therefore, the new model can simul-

taneously minimize the graph cut and balance the partition

across all clusters.

According to Eq. (29), it can be verified that s ∈ (0, 1].
If X consists of balanced and significant cluster structure

(with big Tr(YTAY)), problem (15) will learn a big s. If

a data set X consists of imbalanced and insignificant cluster

structure (with small Tr(YTAY)), problem (15) will learn

a small s. In such case, s → 0 and solving problem (15)

will be approximately equivalent to solving the following

problem

max
Y∈Ind

Tr(YTAY) (31)

which is exactly the min-cut problem in Eq. (12).

6. Experimental Results and Analysis

In this section, we present the experiments conducted on

both synthetic and benchmark data sets to demonstrate the

efficiency and effectiveness of the proposed method.

6.1. Experiments on synthetic data

(a) Original graph D1. (b) Original graph D2.

Figure 1. The similarity matrices of two synthetic data sets D1,

D2.

We generated two synthetic data sets, i.e., D1 and D2,

which are both 100 × 100 matrices for this experiment.

D1 contains four balanced clusters which are diagonally

arranged, each of which is a 25 × 25 block matrix. D2

contains four imbalanced clusters which are also diagonally

arranged, with the sizes of 10 × 10, 30 × 30, 20 × 20 and

40×40. The data within each block are the affinities of two

corresponding points in one cluster, while the data outside

all blocks are noises. The affinity data within each block

is randomly generated with values in [0, 1], while the noise

data is randomly generated with values in [0, ψ] where the

noise level ψ is a given parameter. Moreover, to make this

clustering task more challenging, we randomly pick up 25
noise data points and set their values to be 1. Figure 1(a)

and 1(b) show the similarity matrices of both D1 and D2

(with ψ = 0).

We compared SBMC with Normalized Cut (NCut) [15],

Ratio Cut (RCut) [12], Multiclass Spectral Clustering

Table 1. Average accuracies of six clustering algorithms on D1

and D2 (with different noise level).

Data sets ψ NCut RCut MSC CLR2 CLR1 SBMC

D1

0.5 0.25 0.5 1 1 1 1

0.55 0.75 0.25 1 1 1 1

0.6 1 0.5 1 1 1 1

0.65 1 1 1 1 1 1

0.7 1 0.5 0.99 1 1 0.99

0.75 0.72 0.49 0.95 0.98 0.98 0.96

0.8 0.71 0.7 0.87 0.89 0.89 0.87

0.85 0.51 0.25 0.53 0.48 0.58 0.49

0.9 0.25 0.37 0.4 0.36 0.36 0.41

0.95 0.31 0.25 0.35 0.32 0.32 0.35

D2

0.5 0.4 1 1 1 1 1

0.55 1 0.7 1 1 1 1

0.6 0.9 0.7 1 1 1 1

0.65 0.9 0.9 1 0.99 0.99 1

0.7 0.9 0.7 0.96 1 1 1

0.75 0.96 0.99 0.9 0.97 0.97 0.99

0.8 0.4 0.88 0.7 0.94 0.94 0.85

0.85 0.68 0.61 0.54 0.73 0.71 0.63

0.9 0.51 0.43 0.4 0.48 0.48 0.36

0.95 0.39 0.38 0.35 0.38 0.38 0.39

(MSC) [24], Spectral Embedded Clustering (SEC) [19] and

Constrained Laplacian Rank (CLR2-Constrained Laplacian

Rank with ℓ2 norm, and CLR1-Constrained Laplacian Rank

with ℓ1 norm ) [18]. By setting a set of 10 parameters

ψ = {0.5, 0.55, . . . , 0.95}, we can generate 10 data sets

from D1 and D2, respectively. For each data set, we set

the neighborhood parameter k = 10 to construct a sparse

k nearest neighbors affinity matrix with the similarity ma-

trix construction method in[18], and used the affinity matrix

to run the six methods in order to perform fair compari-

son. The regularization parameter in SEC was set to seven

values {10−3, . . . , 103}. Since CLR2, CLR1 and SBMC

are parameter free 1, we ran each of them on each data set

100 times and selected the best clustering result according

to their objective function. For NCut and RCut, we se-

lected the clustering result with the minimal objective func-

tion from 100 k-means clustering results on each data set.

For each parameter in SEC, we selected the clustering re-

sult with the minimal objective function from 100 k-means

clustering results on each data set, then the average cluster-

ing results across multiple parameters were computed. The

clustering results in terms of accuracy are shown in Table 1.

From this table, we can see that SBMC produced nearly

similar results as CLR2 and CLR2 on both data sets, and

significantly outperforms other clustering algorithms. We

also observe that the clustering results of NCut and RCut

are instable due to the affection of noise data.

To show the relationship between the learnt balance pa-

rameter s and the cluster structure, we generated four syn-

thetic data sets D3, D4, D5 and D6 in the same way as we

1The parameter ρ in SBMC can be randomly initialized in (1, 2).
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(a) D3 with learnt s = 0.206. (b) D4 with learnt s = 0.245. (c) D5 with learnt s = 0.269. (d) D6 with learnt s = 0.279.

Figure 2. The heat maps of four synthetic data sets and the learnt balance parameters s by SBMC.
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Figure 3. Time costs of 10 algorithms on 8 synthetic data sets, in

which we use logarithmic scales on both the horizontal and vertical

axes.

generated D2 except that the numbers of samples in each

cluster were different. Figure 2 shows the similarity ma-

trices of the four data sets. We can see that D6 consists

of balanced clusters and the other three data sets consist of

imbalanced clusters. We ran SBMC 100 times on the four

data sets and selected the clustering result with the mini-

mal objective function. The learnt s on D3, D4, D5 and

D6 are 0.206, 0.245, 0.269 and 0.279 respectively. This

indicates that SBMC learns bigger s for data with more bal-

anced clusters. This experimental result is consistent with

the analysis in Section 5.4.

The last experiment was conducted to study the time

cost of SBMC. We generated a set of 8 synthetic data

sets with the number of samples as {50, 100, . . . , 6400},

each containing 10 features. We compared the execu-

tion time of one run of 10 clustering algorithms, i.e.,

Normalized Cut (NCut) [15], Ratio Cut (RCut) [12],

Multiclass Spectral Clustering (MSC) [24], Spectral Em-

bedded Clustering (SEC) [19] and Constrained Lapla-

cian Rank (CLR2-Constrained Laplacian Rank with ℓ2
norm, and CLR1-Constrained Laplacian Rank with ℓ1 norm

) [18], KASP (k-means-based Approximate Spectral Clus-

tering) [22], Nyström [6], LSC (Landmark-based Spec-

tral Clustering) [2] and our method SBMC. Here, KASP,

Nyström and LSC are three approximate spectral clustering

methods. The results are shown in Figure 3. From this fig-

ure, we can see that SMBC converged very fast and showed

nearly linear relationship with the increase of data size.

SMBC even spent less time than the approximate spectral

clustering algorithms LSC. Due to multiple eigendecompo-

sitions, CLR2 and CLR1 showed the highest time costs and

their time costs increased rapidly with the increase of data

size. This experiment result indicates that the new method

SMBC is scalable to large scale data.

6.2. Experiments on benchmark image data sets

In this experiment, we compared SMBC with 9 cluster-

ing algorithms which were used in the last experiment of

Section 6.1. Seven benchmark image data sets were se-

lected for this experiment:

• Corel-5k image data set was downloaded from Feip-

ing Nie’s page 2. This data set contains 5000 images

from 50 classes.

• MnistData-05 digit data set was downloaded from

Feiping Nie’s page. This data set contains 3495 hand-

written digits sampled from the original Mnist dataset.

• MSRA25 face data set was downloaded from Feiping

Nie’s page. This data set contains 1799 images from

12 individuals.

• Yale-32x32 and Yale-64x64 face data sets were down-

loaded from Deng Cai’s page 3. The two data set con-

tain 165 grayscale images from 15 individuals.

• YaleB-32x32 face data set was downloaded from Deng

Cai’s page. This data set contains 2414 images from 38
individuals.

• NUS-WIDE data set is used in [16]. In this data set,

12 categories about animal concept are selected from

the NUS data set [9].

2http://www.escience.cn/people/fpnie/index.html#
3http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html
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Table 2. Performance comparison of the average clustering accuracies ( Accuracy ± StandardDeviation).

Data Corel-5k MnistData-05 MSRA25 Yale-32x32 Yale-64x64 YaleB-32x32 NUS-WIDE

NCut 0.142± 0.03 0.294± 0.20 0.261± 0.15 0.215± 0.18 0.365± 0.19 0.104± 0.06 0.178± 0.06

RCut 0.100± 0.05 0.484± 0.23 0.497± 0.07 0.336± 0.05 0.294± 0.17 0.123± 0.08 0.188± 0.11

MSC 0.185 ± 0.00 0.656 ± 0.03 0.484± 0.22 0.428 ± 0.02 0.583 ± 0.04 0.196± 0.06 0.221 ± 0.02

SEC 0.129± 0.01 0.359± 0.10 0.428± 0.08 0.351± 0.02 0.312± 0.05 0.163± 0.04 0.168± 0.02

CLR2 0.097± 0.02 0.529± 0.05 0.554 ± 0.01 0.418± 0.03 0.550± 0.04 0.200 ± 0.03 0.145± 0.02

CLR1 0.067± 0.00 0.422± 0.06 0.561 ± 0.01 0.383± 0.03 0.538± 0.05 0.161± 0.05 0.126± 0.01

KASP 0.142± 0.05 0.250± 0.08 0.294± 0.07 0.248± 0.06 0.282± 0.08 0.103± 0.02 0.147± 0.03

Nyström 0.211 ± 0.05 0.332± 0.08 0.268± 0.10 0.261± 0.05 0.303± 0.08 0.281± 0.09 0.087± 0.01

LSC 0.169± 0.04 0.508± 0.08 0.530± 0.07 0.407± 0.04 0.489± 0.06 0.116± 0.04 0.206± 0.02

SBNC 0.134± 0.01 0.541 ± 0.11 0.506± 0.05 0.435 ± 0.03 0.559 ± 0.07 0.214 ± 0.04 0.240 ± 0.01

* The best 2 methods for each data set are highlighted in bold.

We used the similarity construction method in [18] to

construct an affinity matrix for each data set to run seven

algorithms excluding KASP, Nyström and LSC, where the

neighborhood parameters were set to {5, 10, . . . , 25} for

two small size data sets D4 and D5, and {10, 20, . . . , 100}
for the other five data sets. Since CLR2, CLR1 and SBMC

are parameter free 4, we ran each of them on each data set

100 times and selected the best clustering result according

to their objective function. For NCut and RCut, we se-

lected the clustering result with the minimal objective func-

tion value from 100 k-means clustering results on each data

set. The regularization parameter in SEC was set to seven

values {10−3, . . . , 103}. For each parameter in SEC, we se-

lected the clustering result with the minimal objective func-

tion value from 100 k-means clustering results on each data

set, then the average clustering results across multiple pa-

rameters were computed. We set the number of centers in

KASP, the number of samples in Nyström and the number

of landmarks in LSC as the same values on each data set,

i.e., {10, 20, . . . , 50} for two small size data sets D4 and

D5 and {100, 200, . . . , 500} for the other five data sets. For

each parameter in the three algorithms, we selected the clus-

tering result with the minimal objective function value from

100 k-means clustering results on each data set, then the

average clustering results across multiple parameters were

computed.

We show the average accuracies and the standard devia-

tions of 10 clustering algorithms on 7 data sets in Table 2.

From this table, we can see that SBMC outperformed other

methods on most data sets. Specifically, SBMC produced

the best results on D4, D6 and D7, and the second best re-

sults on D2 and D5. This indicates that SBMC can produce

good results on real-life data sets.

4The parameter ρ in SBMC can be randomly initialized in (1, 2).

7. Conclusions

In this paper, we have proposed a self-balanced min-cut

(SBMC) method for image clustering. The new method im-

plicitly introduces the Exclusive Lasso as a balance regu-

larizer in order to produce balanced partition. The regu-

larization parameter, named the balance parameter in the

new method, can be automatically learnt during the clus-

tering process. To solve the new model, we have proposed

an iterative algorithm SBMC which has a time complexity

of O(n) where n is the number of samples. In compari-

son with the conventional spectral clustering methods with

high time complexities of O(n3), the new method has great

computational advantage especially on large scale data sets.

Above all, compared to the sampling based spectral clus-

tering methods such as KASP, Nyström and LSC, the new

method uses all data without sampling. Extensive experi-

ments on both synthetic data sets and benchmark image data

sets show the efficiency and effectiveness of our method

compared to the state-of-the-art methods.

Several questions remain to be investigated in our future

work:

1. It is still a challenge work to effectively optimize dis-

crete variables in our method, especially for large scale

image data. In the future, we will study more efficient

optimization methods for our model.

2. In our model, the cluster indicator matrix consists of

discrete values and each object only belongs to one

cluster. In the future work, we will try to relax the

discrete cluster indicator matrix and introduce fuzzy

technique to obtain more feasible partition.
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