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Abstract

Training a feed-forward network for the fast neural style

transfer of images has proven successful, but the naive ex-

tension of processing videos frame by frame is prone to

producing flickering results. We propose the first end-to-

end network for online video style transfer, which generates

temporally coherent stylized video sequences in near real-

time. Two key ideas include an efficient network by incor-

porating short-term coherence, and propagating short-term

coherence to long-term, which ensures consistency over a

longer period of time. Our network can incorporate dif-

ferent image stylization networks and clearly outperforms

the per-frame baseline both qualitatively and quantitatively.

Moreover, it can achieve visually comparable coherence to

optimization-based video style transfer, but is three orders

of magnitude faster.

1. Introduction

Inspired by the success of work from Gatys et al. [18]

on neural style transfer, there has been a number of re-

cent works [38, 29, 9, 19] addressing the problem of style

transfer using deep neural networks. In their approaches,

style transfer is formulated as an optimization problem, i.e.

searching for a new image presenting similar neural activa-

tions as the content image and similar feature correlations as

the style image. Notwithstanding their impressive results,

these methods are very slow in runtime. To mitigate this

issue, many recent works[25, 40, 30, 10, 12, 31] train feed-

forward networks to speed up the transfer process. Such

techniques have been successfully applied to a number of

popular apps such as Prisma, Pikazo, and DeepArt.

Extending neural style transfer from image to video

may produce new and impressive effects, whose appeal

is especially strong in short video sharing, live-view ef-

fects, and entertainment video. The approaches discussed
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above, when naively extended to process each frame in-

dependently, often lead to flickering and false discontinu-

ities. This is because the solution of the style transfer task

is not stable. For optimization-based methods (e.g., [18]),

the instability stems from the random initialization and lo-

cal minima of the loss function. For feed-forward methods

(e.g., [25]), small perturbations in the content images, e.g.,

lighting, noises and motions may cause large variations in

stylized results ( Figure 1). Consequently, it is essential to

explore temporal consistency in videos for stable outputs.

Anderson et al. [1] and Ruder et al. [37] address the prob-

lem of flickers in the optimization-based method by intro-

ducing optical flow to constrain both the initialization and

the loss function. Although very impressive and smooth-

ing stylized video sequences are obtained, their runtime is

quite slow (usually several minutes per frame), making it

less practical in real-world applications.

In this paper, we present the first feed-forward network

leveraging temporal information for video style transfer,

which follows a recurrent formulation. By incorporating

a flow sub-network and a mask sub-network into a cer-

tain intermediate layer of a pre-trained stylization network

(e.g., [25, 10]), our method is able to produce consistent and

stable stylized video sequences in near real-time.

The flow sub-network, motivated by [45], estimates

dense feature correspondences between consecutive frames.

It helps all consistent points along the motion trajectory

align in the feature domain. The mask sub-network iden-

tifies the occlusion or motion discontinuity regions. It helps

adaptively blend feature maps from previous frames and the

current frame to avoid ghosting artifacts. The entire ar-

chitecture is trained end-to-end with a new loss function,

jointly considering stylization and temporal coherence.

To obtain stable video stylization results, long-term con-

sistency should be considered and was enforced by addi-

tional loss terms with distant frames [37]. Instead, our feed-

forward network adopts a new Recurrent Neural Network

(RNN) architecture [15]. In contrast to traditional RNNs,

we only consider short-term consistency (e.g., two frames)
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Figure 1. The image stylization network (e.g., [25]), will amplify some unnoticeable changes in inputs. The top row shows the four inputs:

(a) the original one, (b) 5% lighter than (a), (c) Gaussian noises (µ = 0, σ = 1e− 4) added to (a); and (d) the next frame of (a) with subtle

motions. The middle rows show the absolute difference between (a) and other three inputs. For better visualization, these differences are

boosted by 3×. The bottom row shows the corresponding stylization results. (e) shows close-up views of some flickering regions.

in the training stage, which can effectively circumvent the

vanishing and exploding gradient problems of RNNs [2]. In

the inference stage, the short-term consistency can approx-

imate long-term consistency by propagation. By this way,

once one point can be traced along motion trajectories, its

stylization result will keep consistent until the track ends.

In summary, our video style transfer network is unique

in the following aspects:

• Our network is the first network leveraging temporal

information that is trained end-to-end for video style

transfer, which successfully generates stable results.

• Our feed-forward network is thousands of times

faster compared to optimization-based style transfer in

videos [1, 37], reaching 15 fps on modern GPUs.

• Our method enables online processing, and is cheap in

both learning and inference, since we achieve good ap-

proximation of long-term temporal coherence by prop-

agating short-term ones.

• Our network is general, and successfully applied to

several existing image stylization networks, including

per-style-per-net [25] and multiple-style-per-net [10].

2. Related Work

2.1. Style Transfer for Images and Videos

Traditional image stylization works mainly focus on tex-

ture synthesis based on low-level features, which use non-

parametric sampling of pixels or patches in given source

texture images [14, 22, 13] or stroke databases [32, 21].

Their extension to video mostly uses optical flow to con-

strain the temporal coherence of sampling [5, 20, 33]. A

comprehensive survey can be found in [27].

Recently, with the development of deep learning, using

neural networks for stylization has become an active topic.

Gatys et al. [18] first propose using pre-trained Deep Con-

volutional Neural Networks (CNN) for image stylization. It

generates more impressive results compared to traditional

methods because CNN provides more semantic representa-

tions of styles. To further improve transfer quality, differ-

ent complementary schemes have been proposed, includ-

ing face constraints [38], Markov Random Field (MRF)

prior [29], user guidance [9] and controls [19]. Unfortu-

nately, these methods based on an iterative optimization are

computationally expensive in run-time, which imposes a big

limitation in real applications. To make the run-time more

efficient, some work directly learn a feed-forward gener-

ative network for a specific style [25, 40, 30] or multiple

styles [10, 12, 31] which are hundreds of times faster than

optimization-based methods.

Another direction of neural style transfer [18] is to ex-

tend it to videos. Naive solutions that independently pro-

cess each frame tend to produce flickers and false discon-

tinuities. To preserve temporal consistency, Alexander et

al. [1] use optical flow to constrain optimization initializa-

tion, and incorporate flow explicitly into the loss function.
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To further reduce ghosting artifacts at the boundaries and

occluded regions, Ruder et al. [37] introduce masks to fil-

ter out the flow with low confidences in the loss function.

This allows them to generate consistent and stable stylized

video sequences, even in cases with large motion and strong

occlusions. Notwithstanding their demonstrated success in

video style transfer, it is very slow due to iterative optimiza-

tion. Feed-forward networks [25, 40, 30, 10, 12, 31] have

proven efficient in image style transfer. However, we are

not aware of any work that trains a feed-forward network

that explicitly takes temporal coherence into consideration

in video style transfer.

2.2. Temporal Coherence in Video Filter

Video style transfer can be viewed as applying one kind

of artistic filter on videos. How to preserve the temporal

coherence is essential and has been considered in previous

video filtering work. One popular solution is to temporally

smooth filter parameters. For instance, Bonneel et al. [3]

and Wang et al. [41] transfer the color grade of one video to

another by temporally filtering the color transfer functions.

Another solution is to extend 2D filter to 3D. Paris et

al. [34] extend the Gaussian kernel in bilateral filtering and

mean-shift clustering to the temporal domain for video ap-

plications. Lang et al. [28] also extend the notion of smooth-

ing to the temporal domain by exploiting optical flow and

revisit optimization-based techniques such as motion esti-

mation and colorization. These temporal smoothing and

3D extension methods are specific to their applications, and

cannot generalize to other applications, such as stylization.

A more general solution considering temporal coher-

ence is to incorporate a post-processing step which is blind

to filters. Dong et al. [11] segment each frame into sev-

eral regions and spatiotemporally adjust the enhancement

(produced by unknown image filters) of regions of differ-

ent frames; Bonneel et al. [4] filter videos along motion

paths using a temporal edge-preserving filter. Unfortu-

nately, these post-processing methods fracture texture pat-

terns, or introduce ghosting artifacts when applied to the

stylization results due to high demand of optical flow.

As for stylization, previous methods (including tradi-

tional ones [5, 20, 33, 44] and neural ones [1, 37]) rely on

optical flow to track motions and keep coherence in color

and texture patterns along motion trajectories. Neverthe-

less, how to add flow constraints to feed-forward stylization

networks has not been investigated before.

2.3. Flow Estimation

Optical flow is known as an essential component in many

video tasks. It has been studied for decades and numer-

ous approaches have been proposed [23, 6, 42, 7, 43, 36]).

These methods are all hand-crafted, and are therefore diffi-

cult to integrate and jointly train in our end-to-end network.

Recently, deep learning has been explored to solve op-

tical flow. FlowNet [17] is the first deep CNN designed to

directly estimate optical flow and achieve good results. Its

successors have focused either on accelerating the flow esti-

mation [35] or achieving better quality [24]. Zhu et al. [45]

recently integrate the FlowNet [17] with image recognition

networks and train the network end-to-end for fast video

recognition. Our work is inspired by their idea of applying

FlowNet to existing networks. However, stylization, unlike

recognition, requires some new factors to be considered in

the design of network, such as the loss function, and feature

composition.

3. Method

3.1. Motivation

When applying stylization networks (e.g., [25]) for con-

secutive frames independently, subtle changes in appear-

ance (e.g., lighting, noise, motion) often result in strong

flickering, as shown in Figure 1. By contrast, in still-image

style transfer, such small changes in the content image, es-

pecially on flat regions, may be necessary to generate spa-

tially rich and varied stylized patterns, making the result

more impressive. Thus, how to simultaneously preserve

such rich textures and the temporal consistency in videos

is worthy of more careful study.

For simplicity, we start by exploring temporal coherence

between two frames. Our intuition is to warp the stylized

result from the previous frame to the current one, and adap-

tively fuse both together. In other words, we want trace-

able points/regions to remain unchanged, while untraceable

points/regions use new results at the current frame. Such an

intuitive strategy not only makes stylized results along the

motion paths as stable as possible, but also avoids ghost-

ing artifacts for occlusions or motion discontinuities. The

intuitive idea is shown in Figure 2.

In fact, the strategy outlined above consists of two sub-

problems: propagation and composition. Since propagation

relies on good and robust motion estimation, instead of opti-

cal flow, we are more inclined to estimate flow on deep fea-

tures [45], which may neglect noise and small appearance

variations. To further avoid seam artifacts, composition is

also considered in the feature domain.

In our system (shown in Figure 3), we adopt a recurrent

neural network (RNN) architecture to obtain long-term con-

sistency. By propagation in the RNN structure, the above

temporal coherence between two frames can be further ex-

tended to long-term consistency. By doing so, we expect all

traceable points to be propagated as far as possible in the

entire video. Once the points are occluded or the tracking is

lost, the composite features will keep values independently

computed at the current frame.
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Figure 2. Visualization of two-frame temporal consistency. Two

inputs It−1, It pass the stylization network [25] to obtain feature

maps Ft−1, Ft, and stylized results St−1, St. We may notice dis-

continuities between St−1 and St in the red and green rectangles.

The third row shows the warped feature map F ′

t and stylized result

S′

t through flow Wt. We can see texture patterns (red rectangles)

are successfully traced from t − 1 to t, but ghosting occurs at the

occluded regions (green rectangles) of S′

t. The occlusion mask is

shown as M . In these false regions, F ′

t (also S′

t) is replaced with

Ft (also St) to get the composite features F o

t and result Ot.

3.2. Network Architecture

In this section, we explain the details of our proposed

end-to-end network for video style transfer. Given the in-

put video sequence {It|t = 1...n}, the task is to obtain the

stylized video sequence {Ot|t = 1...n}. The overall system

pipeline is shown in Figure 3. At the first frame I1, it uses

an existing stylization network (e.g., [25]) denoted as Net0
to produce the stylized result. Meanwhile, it also generates

the encoded features F1 as the input of our proposed net-

work Net1 at the second frame I2. This process is iterated

over the entire video sequence. Starting from the second

frame I2, we use Net1 rather than Net0 for style transfer.

Such a propagation structure follows a RNN structure.

Since training traditional RNNs often suffers vanishing and

exploding gradient problems [2], we instead only consider

two-frame temporal consistency, presented in the network

structure Net1 (shown in Figure 4). It consists of three main

components: the style sub-network, the flow sub-network,

and the mask sub-network. At each time t, we always feed

two input frames It−1, It to train the above sub-networks.

The inference can achieve long-term consistency by propa-

gating two-frame consistency. Specifically, at each time t,
the composite feature maps F o

t reuses F o
t−1

and combines

…�1 �ଶ ���1�1 �ଶ �ଶ� ��
…ܰ��1 ܰ��1ܰ��଴

…

…��−1� ���ܰ��
�t

��−1���
=

Figure 3. The overall system follows a RNN structure.

new information from It. To sum up, our RNN structure

has two key differences compare to traditional RNNs. First,

the hidden state F o
t (composite feature maps) is defined by

an explicit motion equation. Second, our training only con-

siders two frames instead of more frames to reduce the dif-

ficulty of training.

Style Sub-network. We adopt the pre-trained image style

transfer network of Johnson et al. [25] as our default style

sub-network, since it is often adopted as the basic network

structure for many follow-up works (e.g., [12, 10]). This

kind of network looks like auto-encoder architecture, with

some strided convolution layers as the encoder and fraction-

ally strided convolution layers as the decoder, respectively.

Such architectures allow us to insert the flow sub-network

and the mask sub-network between the encoder and the de-

coder. In Section 4.4, we provide a detailed analysis on

which layer is better for the integration of our sub-networks.

Flow Sub-network. As a part of temporal coherence, the

flow sub-network is designed to estimate the correspon-

dences between two consecutive frames It−1 and It, and

then warp the convolutional features. We adopt FlowNet

(the ”Simple” version) [17] as our flow sub-network by

default. It is pre-trained on the synthetic Flying Chairs

dataset [17] for optical flow, and should be fine-tuned to

produce feature flow suitable for our task.

The process is similar to [45], which uses it for video

recognition. Two consecutive frames It−1, It are first en-

coded into feature maps Ft−1, Ft respectively by the en-

coder. Wt is the feature flow generated by the flow sub-

network and bilinearly resized to the same spatial resolution

as Ft−1. As the values of Wt are in general fractional, we

warp Ft−1 to F ′

t via bilinear interpolation:

F ′

t = Wt
t−1

(Ft−1) (1)

where Wt
t−1

(·) denotes the function that warps features

from t − 1 to t using the estimated flow field Wt, namely

F ′

t (p) = Ft−1(p+Wt(p)), where p denotes spatial location

in feature map and flow.

Mask Sub-network. Given the warped feature F ′

t and the

original feature Ft, the mask sub-network is employed to

regress the composition mask M , which is then adopted to

compose both features F ′

t and Ft. The value of M varies
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Figure 4. Our network architecture consists of three m components: the pretrained style sub-network, which is split into an encoder and a

decoder; the flow sub-network to predict intermediate feature flow; and the mask sub-network to regress the composition mask.

from 0 to 1. For traceable points/regions by the flow (e.g.,

static background), the value in the mask M tends to be 1. It

suggests that the warped feature F ′

t should be reused so as to

keep coherence. On the contrary, at occlusion or false flow

points/regions, the value in the mask M is 0, which suggests

that Ft should be adopted. The mask sub-network architec-

ture consists of three convolutional layers with stride one.

Its input is the absolute difference of two feature maps

∆Ft = |Ft − F ′

t |, (2)

and the output is a single channel mask M , which means all

feature channels share the same mask in the later composi-

tion. Here, we obtain the composite features F o
t by linear

combination of Ft and F ′

t :

F o
t = (1−M)⊙ Ft +M ⊙ F ′

t (3)

where ⊙ represents element-wise multiplication.

Summary of Net1. Figure 4 summarizes our network

Net1 designed for two frames. Given two input frames

It−1, It, they are fed into the encoder of a fixed style sub-

network, generating convolutional feature maps Ft−1, Ft.

This first step is different in inference, where Ft−1 will not

be computed from It−1, and instead borrowed from the ob-

tained composite features F o
t−1

at t − 1. It is illustrated

by the dotted lines in Figure 4. On the other branch, both

frames It−1, It are fed into the flow sub-network to com-

pute feature flow Wt, which warps the features Ft−1 (F o
t−1

used in inference instead) to F ′

t . Next, the difference ∆Ft

between Ft and F ′

t is fed into the mask sub-network, gener-

ating the mask M . New features F o
t are achieved by linear

combination of Ft and F ′

t weighted by mask M . Finally,

F o
t is fed into the decoder of the style sub-network, gener-

ating stylized result Ot at frame t. For inference, F o
t is also

the input for the next frame t+1. Since both flow and mask

sub-networks only learn relative flow Wt and mask Mt be-

tween any two frames, it is not necessary for our training to

incorporate historic information (e.g., F o
t−1

) as well as the

inference,,making our training quite simple.

3.3. The Loss Function

To train both the flow and mask sub-networks, we de-

fine the loss function by enforcing three terms: the coher-

ence term Lcohe, the occlusion term Locc, and the flow term

Lflow. The coherence term Lcohe penalizes the inconsis-

tencies between stylized results of two consecutive frames.

Lcohe(Ot, St−1) = Mg ⊙ ||Ot −Wt
t−1

(St−1)||
2, (4)

where St−1 is the stylized result produced independently at

t− 1. The warping function Wt
t−1

(·) uses the ground-truth

flow W g
t . Mg is the ground-truth mask, where 1 represents

consistent points/regions and 0 represents untraceable ones.

It encourages the stylized result Ot to be consistent with

St−1 in traceable points/regions.

On the contrary, in the untraceable regions (e.g. occlu-

sions), the occlusion term Locc enforces Ot to be close to

the independently stylized result St at frame It:

Locc(Ot, St) = (1−Mg)⊙ ||Ot − St||
2. (5)

We add an additional term to constrain the feature flow:

Lflow = ||Wt −W g
t ↓ ||2. (6)

Here we use the down-scaled version of the ground-truth

optical flow W g
t ↓, which is re-scaled to the same size of

Wt, to serve as the guidance for feature flow estimation.

In summary, our loss function to train flow and mask

sub-networks is the weighted average of three terms.

L = αLcohe + βLocc + λLflow, (7)

where α = 1e5, β = 2e4 and λ = 20 by default.

Note that our loss function discards the content and style

loss for training the original style network, because the pre-

trained style sub-network is fixed during training. We be-

lieve that St (or St−1) itself can provide sufficient style su-

pervision. One extra benefit is that we can directly leverage

other trained still-image style models and apply it to videos

directly. In this sense, our proposed framework is general.
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4. Experiments

4.1. Dataset Set­up

Our task requires a big video dataset with varied types

of motions and ground-truth optical flow. However, exist-

ing datasets are quite small, e.g., the synthetic MPI Sintel

dataset [8] (which only has 1,064 frames in total). Instead,

we collect ten short videos (eight animated Ice Age movies,

and two real videos from YouTube), around 28, 000 frames

together as our training dataset.

To obtain approximated ground-truth flow W g between

every two consecutive frames in these videos, we use Deep-

Flow2 [43] to compute the bidirectional optical flow and use

the backward flow as the ground-truth.

For the ground-truth of the composition mask Mg , we

adopt the methods used in [37, 39] to detect occlusions and

motion boundaries. We mask out two types of pixels, being

set to 0 in Mg: 1) the occlusion pixels achieved by cross-

checking the forward and backward flows; 2) the pixels at

motion boundaries with large gradients of flow, which are

often less accurate and may result in ghosting artifacts in

composition. All other pixels in Mg are set to 1.

We use the MPI Sintel [8] as the test dataset, which is

widely adopted for optical flow evaluation. It contains 23

short videos and is labeled with ground-truth flow and an

occlusion mask. The dataset covers various types of real

scenarios, such as large motions and motion blurs.

4.2. Implementation details

In our experiments, we adopt two types of pre-trained

style networks (per-style-per-net [25]1, multiple-style-per-

net [10]2) as our fixed style sub-network. We train the flow

sub-network and mask sub-network on the video dataset de-

scribed in Section 4.1. All videos have an image resolution

of 640 × 360. The network is trained with a batch size of

1 (frame pair) for 100k iterations. The Adam optimization

method [26] is adopted with an initial learning rate of 1e−4
and decayed by 0.8 at every 5k iterations.

4.3. Quantitative and Qualitative Comparison

For video style transfer, runtime and temporal consis-

tency are two key criteria. Runtime uses the frame rate of

inference. The temporal consistency is measured by

estab(Ot, Ot−1) = Mg ⊙ ||Ot −Wt
t−1

(Ot−1)||
2, (8)

where the stability error estab(Ot, Ot−1) measures the co-

herence loss (in Equation (4)) between two results Ot and

Ot−1. Here, we only evaluate the stability of results on

1In our experiment, we adopt the released model of [25], but the chan-

nel number of all convolution layers is half of [25].
2We slightly modify the StyleBank model [10], whose encoder and de-

coder sub-networks adopt the same structures as [25], but the stylebank

layer is inserted after the third residual block.

Methods
stability error estab runtime

Muse Candy Scream Udnie (fps)

Johnson et al. [25] 0.0199 0.0240 0.0048 0.0108 38.17

[25]+Ours 0.0121 0.0105 0.0034 0.0076 15.07

[25]+Ours†† 0.0135 0.0120 0.0036 0.0079 15.07

Dong et al. [10] 0.0159 0.0181 0.0035 0.0059 20.6

[10] + Ours 0.0126 0.0131 0.0030 0.0048 7.35

Manuel et al. [37] 0.0063 0.0067 0.0019 0.0035 0.0089

Table 1. Comparison of different methods on stability error and

runtime (GPU Titan X). Compared to the per-frame processing

baseline [25] or [10], our method can obtain much lower stabil-

ity loss while only 2.5 ∼ 2.8× slower. Compared to fixed flow

sub-network (indicated by ††), our fine-tuned flow sub-network

achieves better coherence. [35] is more stable but much slower.

Figure 5. Left: Curve of estab over time of one example video in

Sintel dataset. Right: The distribution of estab ratio between our

method and baseline [25]

traceable regions. Lower stability error indicates more sta-

ble result. For the entire video, we use the average error

instead.

Quantitative Results. To validate the effectiveness of

our method, we test and compare using two existing styl-

ization networks [25, 10]. The baseline for comparison is to

apply their networks to process each frame independently.

As shown in Table 1, for all the four styles, our method ob-

tains much lower stability error than the baseline [25, 10].

As for the runtime, our method is around 2.5 ∼ 2.8× slower

than the baseline, due to our network requiring extra com-

putation in both flow and mask sub-networks. Nevertheless,

our method is still near real-time (15 fps in Titan X).

As a reference, we also compare our method with the op-

timization method [37]. Ours has larger temporal coherence

errors compared to theirs, because our network is trained for

all videos while theirs is optimized for just one. However,

our method is thousands of times faster.

We further plot the curve of estab over time for

each video sequence in the MPI Sintel dataset. Though

these curves vary with the motions in different video se-

quences, ours is almost consistently better than the baseline

[25](Figure 5 left). To prove it, we compute the estab ra-

tio ((ebaselinestab − eourstab)/e
baseline
stab ) over all video frame pairs

for the above 4 styles. Figure 5 right is the distribution per-

centages over four intervals, which shows our estab is better

than the baseline for 99.6% frame pairs.

1110



(a) (b) (c)
Figure 6. Comparison of our results (b) and results of [4] (c) on the

same inputs (a). Their post-processing scheme results in ghosting

and blurring artifacts for video style transfer.

For visual quality, especially faithfulness to the original

style, we conduct two user studies. We compare our method

( [25] as the style sub-network) with the baseline [25] and

optimization method [37] respectively. In each user study,

we randomly select 5 videos for each of the 4 styles, then

ask 20 participants to answer ”Which is more faithful or

equal in quality?”. In the first user study, our method wins

23.1% of the time while baseline [25] wins 13.5% of the

time, the remaining 63.4% results are equal. It indicates that

our method can keep the faithfulness of the baseline in most

cases. In the second user study, our method wins 49.2% of

the time while [37] wins 34.6% of the time, the remaining

16.2% results are equal. The reason is that a few more users

think our results retain more rich texture patterns from the

input styles than [37].

Qualitative Results. In Figure 7, we show three exam-

ples with different kinds of representative motions to visu-

ally compare our results with per-frame processing mod-

els [10, 25]. These results clearly show that our methods

successfully reduce temporal inconsistency artifacts which

appear in these per-frame models. In the nearly static scene

(First Row), ours can keep the scene unchanged after styl-

ization while the per-frame models fail. As for scenes with

motion, including both camera motions (Second Row) and

object motions (Third Row), our method keeps the coher-

ence between two frames except for occluded regions. More

video results can be found on Youtube3).

We further compare our method with a post-processing

method [4], which is applied to the per-frame stylized re-

sults of [25]. As shown in Figure 6, the results produced

from the post-processing method [4] look blurry, and pro-

duce ghosting artifacts. This is because optimizing tempo-

ral coherence after stylization may not be able to obtain the

global optima for both temporal coherence and stylization.

4.4. Ablation Study

Layer Choice for Feature Composition. To study

which layer of the style sub-network is the best for our fea-

ture propagation and composition, we try different layers

for integration. For the basic style network [25], we find

5 intermediate feature layers from input to output (respec-

tively with 1,1/2,1/4,1/2,1 times the original resolution),

3https://www.youtube.com/watch?v=vMyMUNvsGfQ

A + B with [25] estab A + B with [10] estab
Scream + Scream 0.0034 Scream + Scream 0.0031

Scream + Candy 0.0042 Scream + multiple 0.0032

Candy + Scream 0.0137 Candy + Candy 0.0121

Candy + Candy 0.0105 Candy + multiple 0.0123

Table 2. Cross comparison of transferring flow and mask sub-

networks of A to B. A represents the style of pretrained style sub-

network, and B is the style which flow and mask sub-networks are

trained for. In [10], B can be multiple styles.

which allow our flow and mask sub-networks to be inte-

grated. The five settings are trained and tested on the same

database and with the same style.

In this experiment, we measure the sharpness of

their stylization results by Perceptual Sharpness Index

(PSI) [16], in addition to the stability error ( Equation (8)).

Table 3 clearly shows that stability improves from input to

output layers, while sharpness decreases. This may result

from the stylization networks (e.g., [25]) amplifying image

variances as shown in Figure 1. When feature flow estima-

tion and composition happen closer to the input layer, small

inconsistencies in composite features would also be ampli-

fied, causing incoherent results. When closer to the out-

put layer, blending already amplified differences becomes

more difficult and may introduce strong ghosting artifacts.

To strike for a balance between stability and image sharp-

ness, we recommend integrating our sub-networks into the

middle layer of stylization networks, i.e., r1/4(E). In this

layer, the image content is compressed as much as possi-

ble, which may be beneficial for robust flow estimation and

feature composition.

Fixed Flow Sub-network. In our experiment,

FlowNet [17] is adopted as our flow sub-network. Origi-

nal Flownet is trained in the image domain for optical flow.

It needs to be fine-tuned for our task, since the flow would

be further improved by jointly learning stylization and tem-

poral coherence. Here, we compare fixed and fine-tuned

flow sub-networks. As shown in Table 1, the fixed flow

sub-network obtains less temporally coherent results than

the fine-tuned one.

Transferability. To know whether our trained flow and

mask sub-networks can be used for a new style (not appear-

ing in training), we conduct two experiments on per-style-

per-net [25] and multiple-style-per-net [10]. In per-style-

per-net [25], we use two different styles, called A and B for

cross experiments. One combination is a style sub-network

learned from A, and our flow and mask sub-networks

learned from B. The other combination is reversed. As

shown in Table 2 (First Column), it is hard to preserve

the original stability when our sub-networks trained on one

style are applied to another. By contrast, in multiple-style-

per-net [10], our trained sub-networks can be directly used

to two new styles without re-training, while preserving the
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(a) (b) (c) (d) (e)
Figure 7. Qualitative comparison results: (a) Consecutive frames pair (top: frame t, bottom: frame t + 1); (b) Stylization result of frame

t; (c) Stylization result of frame t+ 1 from baseline; (d) Stylization result of frame t+ 1 from our method; (e) Top down: dilated marked

regions corresponding to (b),(c),(d) respectively. The top row is with [10] for a nearly static scene, and the bottom two rows are with [25]

for a scene with camera motion or object motion. Compared to baseline of [25, 10], our results are all more temporally coherent.

Baseline r1(E) r1/2(E) r1/4(E) r1/2(D) r1(D)

estab 0.0199 0.0187 0.0180 0.0121 0.0058 0.0038

PSI 0.4851 0.4846 0.4839 0.4825 0.4187 0.4086

Table 3. Layer choice for feature composition. r1, r1/2, r1/4 represent different layers whose feature map resolution is 1, 1/2, 1/4× of the

original image, and E and D represent encoder and decoder respectively. The top table shows stability error estab and PSI for different

settings. One visual example is shown on the bottom row.

original stability, as shown in Table 2 (Second Column).

This suggests that our sub-networks learned with multiple-

style-per-net [10] can be independent of styles, which is

beneficial to real applications.

5. Conclusion and Discussion

In this paper, we propose the first video style transfer

network by leveraging temporal information. It achieves

near real-time speed on modern GPUs, which is thousands

of times faster than optimization-based methods ([1, 37]).

Moreover, our network achieves long-term temporal coher-

ence through the propagation of short-term ones, which en-

ables our model for online processing. It can be employed

in existing stylization networks [25, 10], and even be di-

rectly used for new styles without re-training.

There are still some limitations in our method. For in-

stance, limited by the accuracy of ground-truth optical flow

(by DeepFlow2 [43]), our results may suffer from some in-

coherence where the motion is too large to track. And after

propagation over a long period, small flow errors may accu-

mulate, causing blurriness and inconsistencyenen. These

open questions will require further exploration in future

work.
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