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Abstract

Recently, CNN-based models have achieved remarkable

success in image-based salient object detection (SOD). In

these models, a key issue is to find a proper network

architecture that best fits for the task of SOD. Toward

this end, this paper proposes two-stream fixation-semantic

CNNs, whose architecture is inspired by the fact that salient

objects in complex images can be unambiguously annotated

by selecting the pre-segmented semantic objects that receive

the highest fixation density in eye-tracking experiments. In

the two-stream CNNs, a fixation stream is pre-trained on

eye-tracking data whose architecture well fits for the task

of fixation prediction, and a semantic stream is pre-trained

on images with semantic tags that has a proper architecture

for semantic perception. By fusing these two streams into

an inception-segmentation module and jointly fine-tuning

them on images with manually annotated salient objects,

the proposed networks show impressive performance in

segmenting salient objects. Experimental results show that

our approach outperforms 10 state-of-the-art models (5

deep, 5 non-deep) on 4 datasets.

1. Introduction

Salient object detection (SOD) in images and videos

is one of the key steps in many vision tasks like robot

navigation [5] and object recognition [34]. For image-

based SOD, there are two major tasks that need to be

addressed, including popping-out salient objects as a whole

and suppressing all probable distractors. Actually, the two

tasks are somehow complementary that inherently lead to

the trade-off between recall and precision in image-based

SOD. Considering that salient objects may be sometimes

embedded in cluttered background and share some visual

attributes with certain distractors, SOD remains a challeng-

ing task especially in such complex scenes.

Towards image-based SOD, hundreds of models have
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Figure 1. Salient objects can be accurately detected by our two-

stream fixation-semantic CNNs, which simulate the process that

salient objects are unambiguously annotated by combining human

fixation density maps with semantic segmentation results [23].

been proposed in the past decade, among which the frame-

works gradually evolve from heuristic [1, 4, 33] to learning-

based [27, 15, 38]. Compared with the heuristic models,

the learning-based models can make better use of complex

features and thus often demonstrate better performance. In

particular, with the presence of large-scale datasets [28, 44,

20] for image-based SOD, high-dimensional features and

complex feature-saliency mapping functions can be directly

learned from data by utilizing Convolutional Neural Net-

works (CNNs). For example, Kuen et al. [19] adopted an

end-to-end convolution-deconvolution framework to obtain

an initial saliency map and then iteratively refined it by re-

current attentional networks. He et al. [9] learned heuristic

contrast features from two superpixel sequences by using

CNNs, and such features were then fused to infer the final

saliency map. Lee et al. [7] extracted a 26, 675d descriptor

for each superpixel and fed it into several cascaded fully-

connected (FC) layers so as to identify whether a superpixel

is salient or not. With the powerful features and complex

mapping functions learned from data, deep models [7, 21,

41, 24, 47, 18] often significantly outperform heuristic

models that adopt hand-crafted features (e.g., local/global

contrast [26], Gabor response [15] and dissimilarity from

image boundary [46]) and classic learning algorithms (e.g.,

random forest [15], multi-instance learning [42], bootstrap

learning [39]).
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By analyzing the pros and cons of existing deep SOD

models, we find that one of the most important issues is

to find a proper network architecture that best fits for the

SOD task. Toward this end, this paper proposes two-stream

fixation-semantic CNNs for image-based SOD (as shown

in Fig. 1). The architecture of the proposed networks is

mainly inspired by the work of [23], which demonstrates

that salient objects can be annotated (and detected) by the

human-being (and the classic random forest model) through

the fusion of fixation and semantic cues.

In the proposed networks, a fixation stream is pre-

trained on eye-tracking data whose architecture is suitable

for the task of human fixation estimation. The other stream,

denoted as the semantic stream, is pre-trained on image

recognition dataset [6] so that it can extract semantic cues

from the input visual stimuli. These two streams are then

merged into an inception-segmentation module that can

detect salient visual content through an inception-like block

followed by convolution and deconvolution layers. In this

manner, complex salient objects can be detected as a whole,

while distractors can be well suppressed (see Fig. 1). Note

that the two-stream networks can be directly trained in

an end-to-end manner, which avoids the explicit superpix-

el segmentation process adopted by many existing deep

models [21, 20, 9, 7] that often leads to unexpected noise

and consumes a large portion of computational resources.

Extensive experiments on four benchmark datasets show

that the two-stream fixation-semantic networks outperform

10 state-of-the-art deep and non-deep models.

The main contributions of this paper include: 1) We

propose novel two-stream fixation-semantic CNNs that can

effectively detect salient objects in images; 2) we conduct

a comprehensive analysis of state-of-the-art deep SOD

models and compare them with the proposed networks,

which can be helpful for designing new deep SOD models.

2. Related Work

Hundreds of image-based SOD models have been pro-

posed in the past decade that explore saliency cues such as

local/global contrast [17, 4], sparsity and low-rank proper-

ties [35, 31, 32] and boundary priors [14, 40]. Recently,

Deep Convolutional Neural Networks have been widely

used for learning high dimensional representations as well

as the complex feature-saliency mapping functions. In

many scenarios, such deep models have achieved state-of-

the-art performance in salient object detection. Considering

that there already exist several comprehensive surveys on

non-deep SOD models (e.g., [2, 3]), we only focus on the

latest deep models in reviewing related work.

DRR [8] is an early “deep” model that adopts multiple

streams of stacked denoising autoencoders to represent

multi-scale boundary priors. Salient regions are detected

by measuring the reconstruction residuals that reflect the

distinctness between background and salient regions.

SuperCNN [9] first segments an image into superpixels

at multiple scales. The color uniqueness and distribution

sequences extracted from each superpixel are then fed into

CNNs to obtain hierarchical features. Finally, multi-scale

saliency maps are inferred from such features, which are

then fused together to form the final saliency map.

DHSNet [25] has a cascaded architecture that adopts VG-

G16 [36] to extract a global descriptor for the input image.

After that, the descriptor is reshaped to form an initial

saliency map, and hierarchical recurrent CNNs are adopted

to progressively refine the details in saliency maps so as to

highlight the boundaries of salient objects.

SUNet [18] simultaneously carries out the tasks of fixation

prediction and SOD within a unified network. The former

half of SUNet is initialized by the parameters from VGG16,

while two branches in the latter half of SUNet are separately

used for fixation prediction and SOD. Considering that

salient objects are tightly correlated with human fixations,

the two branches can make full use of two types of training

data by enforcing certain weights sharing in SUNet, leading

to impressive performance.

RACDNN [19] is a recurrent model which initializes a

coarse saliency map via a convolution-deconvolution net-

work. After that, the coarse map is refined by iteratively

attending to selected image sub-regions and enhancing the

detection results. In this manner, the boundaries of salient

objects gradually become more clear.

ELD [7] adopts a two-stream architecture, in which the

first stream adopts VGG16 to calculate a high dimensional

global descriptor for each image, and the second stream

divides images into superpixels and characterizes them

with heuristic features like color histograms and Gabor

responses. After that, the second stream computes several

grid-based distance maps and encodes them into compact

superpixel descriptors, which are then combined with the

global descriptor extracted by the first stream to determine

whether a superpixel is salient via FC layers.

MDF [20] first divides images into superpixels at 15 scales.

After that, single-stream CNNs are adopted for multi-

scale feature extraction from the nested and increasingly

larger rectangular windows that correspond to a superpixel,

its neighboring regions and the whole image (except the

segments). Finally, multi-scale features enter FC layers for

saliency prediction. A salient map can be thus generated by

By repeatedly processing every superpixel.

DCL [21] adopts two streams that take the original image

and the segmented superpixels as inputs, respectively. In the

first stream, VGG16 is revised by incorporating the idea of

dilation convolution [45] to generate a coarse saliency map.
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In the second stream, images are divided into superpixels,

which are then linked with the features extracted in the first

stream so that a fine saliency map can be generated by

simultaneously measuring the saliency of all superpixels.

Finally, the coarse and fine maps are fused via a convolu-

tional layer with 1× 1 kernels.

LEGS [24] first estimates pixel-wise saliency for an image

by using CNNs. Meanwhile, various object proposals are

extracted and incorporated to obtain a local saliency map.

After that, another deep networks with only FC layers are

adopted to predict the saliency of each candidate object

from the global perspective so that salient objects can be

detected as a whole.

MCDL [47] adopts a two-stream architecture that embeds

superpixels into different contexts. The first stream handles

a superpixel-centered window padded with mean pixel

value and outputs a global saliency map, which are then

fed into the last layer of the second stream that focuses on

a closer superpixel-centered window. Finally, saliency map

is generated by fusing local and global features.

RFCN [41] proposes convolutional networks with recurrent

mechanism for image-based SOD. Heuristic saliency maps

are first computed on superpixels by using a contrast-based

framework. Such heuristic maps are then used as prior

knowledge that enter the recurrent CNNs along with the

original image to obtain the refined saliency map. In this

process, the foreground map generated by the network is

iteratively delivered back to replace the heuristic saliency

map so that the quality of a saliency map can be progres-

sively improved. In other words, such recurrent mechanism

provides a new way to balance recall and precision.

DSS [10] proposes to use short connections from deeper

outputs to shallower ones. In this manner, information from

the deeper side can spread out to the shallower side so that

salient objects can be accurately detected and refined.

The main characteristics of these deep models can be

found in Table 1, from which we find a trend to develop

multi-stream end-to-end networks. On the one hand, the

multi-stream architecture can learn representative features

from multiple perspectives that can be helpful in separating

salient objects and distractors. On the other hand, the

end-to-end training process avoids the errors at superpixel

boundaries caused by inaccurate segmentation algorithms

and often leads to faster prediction process.

Beyond existing multi-stream end-to-end networks, an

important issue that needs to be further discussed is how to

design a better architecture for image-based SOD. In this

work, we propose to address this issue by simulating the

ways in which ground-truth annotations of salient objects

are generated in eye-tracking experiments. Extensive ex-

periments have demonstrated better performance than the 5

deep models we reviewed in this section.

Table 1. A brief summary of state-of-the-art deep models. Input

(I: image, S: superpixel), Feature (H: heuristic, L: learned),

Type (S: single-stream/cascaded, M: multi-stream, R: recurrent),

Evaluation (1: MAE, 2: Max F-Measure, 3: Mean F-Measure, 4:

Adaptive F-Measure, 5: Precision-Recall Curve)

Model Input Feat. Type Eval. #Train

DRR [8] I L M 5 0

ELD [7] I+S H+L M 1+2+5 9, 000

SuperCNN [9] S L M 1+4+5 800

LEGS [24] I+S L S 1+3+5 3, 340

MCDL [47] I+S L M 4 8, 000

MDF [20] S L S 1+4+5 2, 500

DCL [21] I+S L M 1+2+4+5 2, 500

RFCN [41] I+S H+L S+R 3+5 10, 000

SUNet [18] I L M 1+2+3 ∗

25, 000

DHSNet [25] I L S+R 4+5 9, 500

RACDNN [19] I L S+R 1+2+5 10, 565

DSS [10] I L S 1+2+5 2, 500

∗
10, 000 from MSRA10K [28] with salient object masks and 15, 000

from SALICON [16] with fixation density maps.

3. The Two-stream Fixation-Semantic CNNs

The architecture of the proposed two-stream fixation-

semantic CNNs is shown in Fig. 2, which takes H × W

images as the input and probability maps of the same size

as the output. The networks consist of a two-stream module

for feature extraction and an inception-segmentation mod-

ule for feature fusion and saliency estimation.

Two-stream Module. As shown in Fig. 2, the proposed

networks start with a two-stream module that consists of

two separate streams responsible for the tasks of fixation

prediction and semantic perception, respectively. These two

streams are initialized by two pre-trained CNNs, including

the deep fixation prediction networks (deepFixNet) [30]

and the VGG16 networks [36]. In initializing the fixation

stream, we first remove the last deconvolution layer of

deepFixNet and then revise the kernel size of the last CONV

layer from 13 × 13 to 3 × 3. The number of kernels in the

last CONV layer is also revised so as to output a ⌈H
8
, W

8
⌉

feature map with 256 channels.

In initializing the semantic stream with the VGG16 net-

works, we remove all the pooling layers after the CONV3 3

layer and adopt the dilated convolution operator in all

subsequent CONV layers so as to maintain the resolution

while expanding the receptive field [45]. Similarly, the first

two FC layers are also converted into CONV layers with 256

kernels of 7 × 7 and 1 × 1, respectively. After that, we

obtain a ⌈H
8
, W

8
⌉ feature map with 256 channels. Finally,

the two feature maps from the two-streams are fused via an

ELTSUM layer at the end of of the two-stream module to

obtain a feature map with 256 channels via element-wise

summation, in which both fixation and semantic cues are

encoded with equal weights.

Inception-segmentation Module. The fixation and se-

mantic features extracted from the two-stream module are

further delivered into the inception-segmentation module,
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Figure 2. Architecture of the two-stream fixation-semantic CNNs.

The bottom half is the two-stream module for extracting fixation

and semantic cues, while the top half is the inception-segmentation

module for feature fusion and salient prediction.

which contains only a single stream. The design of this

module is inspired by the inception networks [37]. As

shown in Fig. 2, the inception-segmentation module starts

with an inception-like block, in which input features are

simultaneously filtered with kernels of different sizes, and

the filtered features are then fused in the channel-wise

concatenation layer (CONCAT). In this manner, the input

data can be processed at multiple scales, leading to a

more comprehensive analysis of visual saliency. Finally,

a CONV layer with rectified linear unit (ReLU) activation

function [29] is added for feature fusion, followed by a

DECONV layer and a sigmoid layer cascaded at the end of

the inception-segmentation module to output a probability

map that represents pixel-wise saliency distribution.

Model Training. The training process of the networks are

conducted end-to-end with the cross-entropy loss between

estimated and ground-truth saliency maps. The training

images are first resized to the resolution of 280 × 280
and flipped horizontally to obtain more training instances.

In the optimization process, we set the base learning rate

to 5 × 10−8 for the layers initialized with pre-trained

networks at the first 40000 iterations and 1 × 10−9 in

subsequent iterations. In contrast, the learning rates of

the newly added layers are set to 10 times larger. In

this manner, the capabilities of deepFixNet and VGG16

in fixation prediction and semantic understanding can be

largely preserved, while the newly added layers can be

efficiently learned so as to derive a probability map of

Figure 3. The response of Butterworth high-pass filter with x0 =

0.4 and M = 3. This filter can effectively suppress small non-zero

responses while preserving the ordering of saliency.

salient objects from the features extracted from the fixation-

semantic streams. The training process is conducted on

Caffe [13] with a batch size of 4 images. Moreover, a weight

decay of 0.0005 and momentum of 0.9 are used.

Heuristic Layers for The Testing Phase. After the training

process, the end-to-end networks can be directly used to

output a saliency map via the last sigmoid layer. However,

the characteristics of sigmoid function often lead to small

non-zero responses at non-salient regions. Such small

responses may make the saliency map somehow ‘noisy’.

To suppress such small responses and obtain a more clear

saliency map, we cascade a heuristic layer at the end of

the networks that become activated only in the testing

phase. The heuristic layer, denoted as the Butterworth

layer, first normalizes the map to the range of [0,1] and

delivers the saliency values into a Butterworth high-pass

filter that perfectly rejects small saliency values and has

nearly uniform sensitivity for the high saliency values. The

Butterworth high-pass filter B(x) is defined as

B(x) = 1−
1

1 +
(

x
x0

)2M
, (1)

where x0 is the ’cutoff frequency’ and M is the order of

filter. In this study, we empirically set x0 = 0.4 and

M = 3 to prune saliency values smaller than 0.1 (see Fig. 3

for the curve of the Butterworth filter). We can see that

saliency values smaller than 0.1 are almost pruned, while

the ordering of the rest saliency values stay unchanged since

B(x) is monotonically increasing in [0, 1].
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4. Experiments

4.1. Experimental Settings

To validate the effectiveness of the proposed approach,

we conduct massive experiments on 4 datasets that are

widely used in the literature, including:

1) DUT-OMRON [44] contains 5, 168 complex images

with pixel-wise annotations of salient objects. All images

are down-sampled to a maximal side length of 400 pixels.

2) PASCAL-S [23] contains 850 natural images that are

pre-segmented into objects/regions and free-viewed by 8

subjects in eye-tracking tests for salient object annotation.

3) ECSSD [43] contains 1, 000 images with complex struc-

tures and obvious semantically meaningful objects.

4) HKU-IS [20] consists of 4, 447 images. Many images

contain multiple disconnected salient objects or salient

objects that touch image boundaries.

On these datasets, we compare the two-stream fixation-

semantic CNNs (denoted as FSN) with 10 models:

• Deep models, include: LEGS [24], ELD [7], M-

CDL [47], MDF [20] and DCL [21].

• Non-deep models, include SMD [32], DRFI [15],

RBD [48], MST [40] and MB+ [46].

All models have source codes on the Internet. As shown in

Table 1, most deep models are trained on MSRA-B [27] or

MSRA10K [28, 4]. In this study, we have our FSN model

trained on the 10, 000 images from MSRA10K too. Note

that the model LEGS also incorporates 340 images from

PASCAL-S in their training set, which are ignored in the

testing stage. Moreover, complex post-processing steps in

deep models (e.g., the CRF-based post-processing in DCL)

are not used for fair comparisons.

In the comparisons, we refer to two evaluation metrics

(codes implemented by [22]), including Fβ and the Mean

Absolute Error (MAE). MAE reflects the average pixel-

wise absolute difference between the estimated and ground-

truth saliency maps that are both normalized to [0, 1]. Note

that we first compute a MAE score for each image and then

average such scores over a whole dataset. In computing

Fβ , we normalize the estimated saliency maps into [0, 255]
and simultaneously binarize all saliency maps from the

same dataset by enumerating all probable thresholds in

{0, . . . , 255}. At each threshold, a Recall is computed as T-

P/(TP+FN) and a Precision is computed as TP/(TP+FP) for

each frame, where TP, FN and FP are the numbers of true

positives, false negatives and false positives, respectively.

Finally, the Fβ is computed as

Fβ =
(1 + β2) · Precision · Recall

β2 · Precision + Recall
, (2)

where we set β2 = 0.3 as in many previous works to

emphasize more on Precision. After that, the Fmax

β curves

can be drawn to show the performance of a model in using

different thresholds for binarizing saliency maps, and the

maximal Fβ over the curve, denoted as Fmax

β , is used to

represent the overall performance of a model. Different

from the adaptive Fβ that binarizes saliency maps with

adaptive thresholds (e.g., twice the mean saliency value

as in [1]), Fmax

β is less sensitive to reparameterization

operations that are frequently used in the post-processing

steps, which can lead to fairer comparisons.

4.2. Model Comparisons

The performance of FSN and the other 10 models over

the four datasets are reported in Table 2. The Fmax

β curves

of these models are shown in Fig. 4. In addition, some

representative examples are shown in Fig. 5.

Comparisons between FSN and other models. From

Table 2 and Fig. 4, we can see that FSN achieves the best

performance over all the four datasets, including the highest

Fmax

β and the lowest MAE. Its maximal improvement

against other 10 models varies between 7.1% and 28.0%.

In particular, we find that FSN outperforms all the other

5 deep models on the four datasets with the maximal

improvements over Fmax

β range from 7.1% to 16.7%. By in-

specting the characteristics of existing deep models shown

in Table 1, we find that such improvements may be mainly

caused by the two-stream architecture of FSN that fuses

both fixation and semantic streams without segmenting any

superpixels. Actually, the superpixel segmentation will

inevitably bring in certain kinds of noise and inherently

set a performance upper-bound for the SOD model. Even

though the influence of inaccurate segmentation can be

alleviated by multi-scale segmentation (e.g., 15 scales in

MDF), it is still a big challenge to simultaneously select

the segments with the best quality and assign the correct

saliency scores to them. In contrast, the end-to-end training

scheme of fixation-semantic networks avoids the errors

introduced by such heuristic pre-processing operations and

its performance is solely determined by the data and the

network architecture. As a result, pixels within the same

semantic category are actually assigned with similar fea-

ture descriptors in the semantic stream (although such

assignments are not obviously conducted). Meanwhile, the

fixation stream inherently assigns each pixel a descriptor

that is tightly correlated with the fixation density the pixel

may receive. In this manner, the boundaries of salient

objects can be still accurately localized without any direct

segmentation of superpixels (see the examples in Fig. 5).

One more thing that worth mentioning is that FSN

takes only 0.12s per image on the Matlab platform with

a 3.4GHz CPU (single thread) and a NVIDIA GTX 1080

GPU (LEGS: 1.6s, MDF: 8.0s, MCDL: 2.4s, ELD: 0.73s,
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Table 2. Performance of FSN and 10 state-of-the-arts on four datasets. Larger Fmax

β and smaller MAE correspond to better performance.

Max ↑ (%) means the maximal relative improvement of FSN against other models over the four datasets in Fmax

β .

Models
DUT-OMRON PASCAL-S ECSSD HKU-IS

Max ↑ (%)
Fmax

β MAE Fmax

β MAE Fmax

β MAE Fmax

β MAE
N

o
n

-D
ee

p SMD [32] .624 .166 .690 .201 .760 .173 .743 .156 23.1

DRFI [15] .664 .150 .694 .201 .782 .170 .777 .145 19.2

RBD [48] .630 .144 .659 .197 .716 .171 .723 .142 27.1

MST [40] .600 .149 .670 .187 .731 .149 .722 .128 28.0

MB+ [46] .624 .168 .680 .193 .739 .171 .728 .150 23.1

D
ee

p

DCL [21] .717 .094 .808 .110 .887 .072 .880 .058 7.10

LEGS [24] .670 .204 .759 .155 .827 .118 .767 .192 16.7

ELD [7] .700 .092 .771 .126 .866 .079 .839 .073 9.70

MCDL [47] .702 .088 .743 .146 .837 .100 .808 .091 11.3

MDF [20] .694 .092 .768 .150 .832 .105 .814 .112 10.7

FSN .768 .065 .827 .095 .910 .053 .895 .044 -

Figure 4. The Fmax

β curves of FSN and 10 state-of-the-art deep models on four datasets.

DCL: 0.17s). This may be caused by the revision of VGG16

networks that greatly reduces the amount of parameters.

Comparisons between deep and non-deep models. By

comparing the deep models and non-deep models, we also

find that the 6 deep models outperform the 5 non-deep

models in most cases. Actually, deep and non-deep models

now start to focus on different aspects of image-based

SOD. For deep models, recall and precision are still the

major objectives, while speed and complexity are somehow

beyond the main concerns. Instead, computational cost

is frequently emphasized by recent non-deep models (e.g.,

MST: ∼40 FPS, MB+: ∼60 FPS), even though their recall

and precision are often worse than deep models. With

these characteristics, deep models become suitable for off-

line processing of large-scale image data, while non-deep

models can be well utilized in online applications or on
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Figure 5. Representative results of FSN and the other 10 models. GT indicates ground-truth mask of salient objects.

mobile devices that require small models, high processing

speed and acceptable recall and precision.

Comparisons between different settings of FSN. To val-

idate the effectiveness of different components of FSN, we

conduct several experiments on DUT-OMRON, the largest

one among the four datasets with many complex scenarios,

to see the performance variation of FSN with different

experimental settings.

(1) Without fixation stream. The VGG16 network has

been used in many deep SOD models [7, 21], while the

usage of fixation stream is relatively new. To validate

that the fixation stream is useful, we remove the fixation

stream and re-train the whole networks. In this case, the

Fmax

β score decreases from 0.768 to 0.753, and the MAE

score increases from 0.065 to 0.080. This indicates that the

fixation stream can facilitate the detection of salient objects.

(2) Null fixation stream. To further validate the influence

of fixation stream, we set its output feature maps to all

zeros and re-test the two-stream FSN. In this case, the Fmax

β

score drops sharply (see Table 3), implying that the fixation

stream can provide useful cues to detect salient objects.

(3) Randomly initialized fixation stream. Another con-

cern is that the performance gain of FSN may come from

Table 3. Performance of FSN on DUT-OMRON with new settings

Settings Fmax

β MAE

Without fixation stream .753 .080

Null fixation stream .723 .072

Randomly initialized fixation stream .759 .074

Without inception-like block .752 .068

Without Butterworth .773 .101

Default Setting .768 .065

the additional eye-tracking data used to pre-train the fixa-

tion branch. Therefore, we only keep the architecture of

the fixation stream and re-initialize all its parameters with

random values. Surprisingly, as shown in Table 3, the

performance scores only slightly decrease, indicating that

it is the architecture, other than the additional training data,

that makes real contribution to the SOD task.

(4) Without inception-like block. In this experiment, we

remove the inception-like block and retrain the networks. In

this case, salient objects are simply detected and segmented

via CONV and DECONV layers. As shown in Table 3, the

Fmax

β score decreases from 0.768 to 0.752. This may be

caused by the fact that the inception-like block starts with
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three parallel branches with different CONV layers, making

it capable to explore the saliency cues from multiple scales.

(5) Without Butterworth layer. As shown in Table 3, the

Fmax

β score slightly increases (0.65%) when the Butterworth

layer is discarded, while there exists a sharp increase

(55.4%) of MAE. This may be caused by the fact that

the normalization and high-pass filtering operations in the

Butterworth layer have little impact on the ordering of

saliency. In this manner, the Fmax

β obtained by enu-

merating all probable thresholds stay almost unchanged.

In contrast, the MAE metric focuses on the magnitude

of saliency and thus become very sensitive to such re-

parameterization operations. Actually, we observe similar

performance variations by applying Butterworth filter to

the results of other models. For example, after using the

same Butterworth filter the Fmax

β scores of LEGS and MDF

stay almost unchanged, while their MAE scores decrease to

0.129 and 0.087, respectively. These results further validate

the effectiveness of selecting Fmax

β as the main evaluation

metric other than the adaptive Fβ and mean Fβ as in many

previous works.

Drawback of deep models. As shown in Table 2, the Fmax

β

scores of the six deep models reach above 0.8 on at least one

dataset. In particular, on ECSSD, a dataset that used to be

widely recognized as very challenging for containing scenes

with complex structures, existing deep models significantly

outperform non-deep ones in Fmax

β since they can learn

more effective representations. However, such successful

cases do not mean that deep models already capture all the

essential characteristics of salient objects in all scenes.

To validate this point, we test the six deep models over

the psychological patterns, in which salient objects are

very simple and can be easily detected by the human-being

and the fixation prediction algorithms proposed decades

ago (e.g., [12, 11]). As shown in Fig. 6, however, the six

deep models often fail to detect such simple psychological

patterns, which may be caused by the fact that existing

deep models rely heavily on the features learned from

natural images, in which salient objects often have obvious

semantic meanings. However, such features may not always

work well in processing the simple psychological patterns

without obvious semantic attributes. In these cases, simple

features like local/global contrasts, responses of orientated

Gabor filters and spatial color distributions may work,

which may imply that incorporating such heuristic features

may be a way for designing better deep models.

5. Conclusion

This paper proposes two-stream fixation-semantic CNNs

for image-based salient object detection. When the fix-

ation stream corresponds to human visual attention, the

semantic stream extracts features for high level visual

Figure 6. The six deep models fail in many cases when detecting

salient psychological patterns.

perception. These two streams are then fused into the

inception-segmentation module in which salient objects can

be efficiently and accurately segmented. Experimental

results show that the proposed fixation-semantic networks

outperform 5 deep and 5 non-deep models on four datasets,

which further validates the feasibility of designing network

architecture by simulating the ways that ground-truth data

are generated by the human-being.

Despite the impressive success of the proposed networks

over the natural images from existing datasets, the failure

cases on simple psychological patterns indicate that there is

still a long way to go before the perfect detection of salient

objects in various types of scenarios. In the future work, we

will try to incorporate the heuristic features like local/global

contrast into our model and re-design its architecture to

simulate the saccade shift processes of the human-being

in eye-tracking experiments so as to detect salient objects

beyond natural images.
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