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Abstract

Low rank tensor completion, which solves a linear in-

verse problem with the principle of parsimony, is a power-

ful technique used in many application domains in comput-

er vision and pattern recognition. As a surrogate function

of the matrix rank that is non-convex and discontinuous, the

nuclear norm is often used instead to derive efficient algo-

rithms for recovering missing information in matrices and

higher order tensors. However, the nuclear norm is a loose

approximation of the matrix rank, and what is more, the

tensor nuclear norm is not guaranteed to be the tightest

convex envelope of a multilinear rank. Alternative algo-

rithms either require specifying/tuning several parameters

(e.g., the tensor rank), and/or have a performance far from

reaching the theoretical limit where the number of observed

elements equals the degree of freedom in the unknown low-

rank tensor. In this paper, we propose a pseudo-Bayesian

approach, where a Bayesian-inspired cost function is ad-

justed using appropriate approximations that lead to desir-

able attributes including concavity and symmetry. Although

deviating from the original Bayesian model, the resulting

non-convex cost function is proved to have the ability to re-

cover the true tensor with a low multilinear rank. A compu-

tational efficient algorithm is derived to solve the resulting

non-convex optimization problem. We demonstrate the su-

perior performance of the proposed algorithm in compar-

ison with state-of-the-art alternatives by conducting exten-

sive experiments on both synthetic data and several visual

data recovery tasks.

1. Introduction

In many application domains in computer vision and pat-

tern recognition, we often have to deal with incomplete

or noisy data. In addition, multidimensional data arrays,

i.e., tensors, are becoming more and more common. For

instance, serial image stacks in diffusion magnetic reso-

nance imaging constitute a three-order tensor, and a color

video sequence in gait/gesture recognition for surveillance

or human-computer interaction is a four-order tensor. Ten-

sor completion aims to recover missing values in a tensor

from observed elements, and has many applications such

as image/video in-painting, identigram/watermark removal,

scan completion, and appearance acquisition completion.

However, as a higher order generalization of matrices, the s-

tudy on tensor completion is far from mature in comparison

to matrix completion, partly because most tensor analogues

of many efficiently computable problems in numerical lin-

ear algebra are NP-hard [7].

To handle high dimensional data that has a large amoun-

t of redundancy, one usually resorts to sparsity models,

meaning that the model is described by relatively few pa-

rameters. One popular model used to capture the parsimony

characteristics is the low multilinear rank, where a mode-i
rank of a tensor is the matrix rank via unfolding the tensor

along the ith mode. Mathematically, the tensor completion

problem with a low multilinear rank can be described as

min
X

rank[X ]

s.t. XΩ = YΩ,
(1)

where X ∈ R
n1×...×nk , rank[X ] = [r1, . . . , rk] denotes

the multilinear rank of X , and the m observed elements of

X in the set Ω are given by YΩ.

Unfortunately, the non-convexity and discontinuous na-

ture of the rank function make the problem challenging to

solve. A widely used approach is to replace matrix rank

function by the nuclear norm (i.e., the sum of singular val-

ues), which is a convex surrogate of the non-convex matrix

rank function. In [13], Liu et al. define a tensor nuclear nor-

m, which is a convex combination of the nuclear norms of

all matrices unfolded along different modes. Based on the

tensor nuclear norm, a number of methods have been de-

rived [14, 17, 15, 19]. However, the solution of the convex

relaxed problem is usually suboptimal as the nuclear norm

is a loose approximation of the matrix rank. Furthermore,

there is no theoretical guarantee that the tensor nuclear nor-

m is the tightest convex envelope of a tensor rank.

Low-rank tensor completion can also be solved by

factorization-based methods, where Tucker decomposition
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and Candecomp/Parafac (CP) decomposition have attract-

ed considerable interest. Tucker decomposition represents

a k-order tensor by multilinear operations between k fac-

tor matrices and a core tensor. In contrast, CP decompo-

sition enforces a strict super-diagonal core tensor. Various

factorization-based methods have been developed in litera-

ture [23, 8, 9, 27]. For example, Kasai and Mishra propose a

Riemannian preconditioning approach based on Tucker de-

composition for the tensor completion problem with rank

constraints [9]. Zhao et al. develop a Bayesian probabilis-

tic CP factorization method in [27] that uses a hierarchical

model and applies variational Bayesian inference for deter-

mining the true tensor. Other approximations of the mul-

tilinear rank function and pre-defined tensor structural as-

sumptions can be found in [25, 3, 12, 4, 11, 5].

1.1. Motivations

For the existing state-of-the-art algorithms, there is still

a large gap between the number of degrees of freedom in

the unknown low-rank tensor and the number of observed

elements for successful reconstruction. Interestingly, recent

work [16] proves that for a low multilinear rank tensor, us-

ing nuclear norms along different modes, can do no better,

order-wise, than only using a nuclear norm for one of the

tensor unfoldings. This result reveals a fundamental limita-

tion imposed by using convex relaxation, and gives the mo-

tivation to develop non-convex algorithms. In addition, ow-

ing to the multilinear characteristics, it is difficult to derive

a fully Bayesian model that leads to an efficient algorithm

capable of reaching the theoretical reconstruction limit.

The multilinear rank is usually seen as a natural exten-

sion of the matrix rank from a matrix to a higher order ten-

sor. Xin and Wipf propose a low-rank matrix recovery al-

gorithm, namely BARM, that uses a probabilistic PCA-like

model [21], resulting in solving a non-convex optimization

problem. Surprisingly, BARM is capable to successful re-

covery at the theoretical limit where the number of observa-

tions equals the degrees of freedom in the low-rank matrix.

However, the extension of BARM to the tensor case is far

from trivial for two reasons. Firstly, the symmetric model of

BARM leads to the formulation of the reconstructed matrix

as the sum of two matrices, whose ranks are penalized from

the column space and row space, respectively. However, a

higher order tensor with a low multilinear rank cannot be

decomposed in this way. For instance, a three-order tensor

X = X 1 + X 2 + X 3 may not be a low-rank tensor, even

if the unfolding of X i (i = 1, 2, 3) along the ith mode is

a low rank matrix. Secondly, BARM has a high computa-

tional cost owing to the computation of a matrix inverse in

a size m×m, where m is the number of observed elements.

In this paper, we propose a pseudo-Bayesian approach,

in which a Bayesian-inspired cost function is adjusted using

appropriate approximations that lead to desirable attributes.

1.2. Contributions

The contributions of this work are summarized as:

• We propose a pseudo-Bayesian approach, where the

cost function is inspired from the probabilistic PCA-

like model used in BARM [21] and symmetrized in

the form of the Kronecker product to accommodate

the higher order tensor. The resulting non-convex cost

function is adjusted using appropriate approximations

to facilitate the derivation of efficient algorithms. The

newly proposed cost function requires no tuning pa-

rameters, except for a single standard trade-off param-

eter to balance data-fit and minimal rank in the noisy

case.

• By analysing the cost function, we provide the ratio-

nale why it has the ability to recover the true tensor

with a low multilinear rank, although the cost func-

tion deviates from the original Bayesian model. For

solving this optimization problem, we develop an ef-

fective and computational efficient algorithm that by-

passes the computation of a matrix inverse in a size

m × m and is guaranteed to reduce the cost function

or leave it unchanged in each iteration.

• We demonstrate the superior performance of the pro-

posed algorithm in comparison with state-of-the-art

alternatives by conducting extensive experiments on

both synthetic data and several visual data recovery

tasks.

2. Methodology

2.1. Problem Formulation

Bayesian Model: To begin with, we consider a Gaussian

likelihood model

p(YΩ|X ) ∝ exp

[

−
1

2ν
‖y −Ax]‖22

]

, (2)

where y ∈ R
m is the observed data vector corresponding

to YΩ, x = vec[X ] ∈ R
n (n =

∏

k

i=1 ni) is the vectored

data corresponding to the tensor X , and A ∈ R
m×n is a

matrix corresponding to the sampling process. The rows of

A can be regarded as m rows of a permuted identity matrix

of a size n × n. ν → 0 will enforce the same constraint

as in (1). We adopt a zero-mean multilinear Gaussian prior

distribution p(x;0, Ψ̄) with the covariance constructed by

Ψ̄ = Ψk ⊗ . . .⊗Ψ1. (3)

where Ψi is a positive semi-definite and symmetric matrix,

and ⊗ denotes the Kronecker product. The covariance in (3)

is a symmetric function in the form of Kronecker product

and involvs hyperparameters associated to different modes.
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Given both likelihood and prior are Gaussian, the poste-

rior p(x|y; Ψ̄) is also Gaussian, with mean

x̂ = Ψ̄AT (νI+AΨ̄AT )−1y. (4)

Therefore, the problem boils down to the estimation of Ψ̄.

By employing empirical Bayesian approach that treats x as

hidden variables, integrates them out, and conducts maxi-

mum a posteriori (MAP) estimation on the hyperparameter-

s, we have

argmax
{Ψi}

∫

p(y|x)p(x; Ψ̄)dx

=arg min
{Ψi}

yTΣ−1y + log |Σ|,
(5)

where Σ = νI+AΨ̄AT ∈ R
m×m.

Note that in the case k = 2 where the general tensor

completion problem collapses to a matrix completion prob-

lem, the cost function of this optimization problem differ-

s with the cost function in BARM [21]. The construction

of the covariance via (3) is Ψ̄ = Ψ2 ⊗ Ψ1, while BARM

applies a zero-mean multilinear Gaussian prior distribution

with a covariance1 Ψ̄ = Ψ2 ⊗ In1
+ In2

⊗Ψ1. The new-

ly proposed model exploits the multilinear characteristics,

while brings new challenges in the derivation of efficient

algorithms.

As the log-determinant function is a concave non-

decreasing function of the singular values of symmetric pos-

itive definite matrices, and thus the term log |Σ| in (5) favors

minimal rank of Ψ̄. According to (4) and properties of Kro-

necker product, the rank of the mode i unfolding of X̂ is

equal to the rank of Ψi. Therefore, the empirical Bayesian

estimate of the tensor is likely to be low-rank, where the

mode i rank is determined by Ψi. However, solving the

problem in (5) is difficult in part because the Kronecker

structure in Ψ̄, together with the fact that the dimensions

of Σ ∈ R
n×n are huge even for reasonably sized problems.

To alleviate this problem, we will need certain approxima-

tions that lead to affordable update rules.

Pseudo-Bayesian Objective: By using determinant i-

dentities, the log-determinant term in the cost function of

(5) can be rewritten as

log |Σ| = log |Ψ̄|+ log |ATA+ νΨ̄
−1

|. (6)

To alleviate the difficulties in solving (5), we first use a full-

rank diagonal approximation to ATA, which leads to the

penalty function

yTΣ−1y + log |Ψ̄|+ log |βIn + νΨ̄
−1

|

=yTΣ−1y + log |νIn + βΨ̄|,
(7)

1Generalizing the BARM for a three-order tensor by using an additive

component covariance model (Ψ̄ = Ψ3 ⊗ In2
⊗ In1

+ In3
⊗ Ψ2 ⊗

In1
+ In3

⊗ In2
⊗ Ψ1) fails, as the reconstructed tensor given in (5) is

not necessary low-rank, even if all Ψi have low ranks.

where the constant β = m

n
so that the approximation satis-

fies E(ATA) = βIn (by assumingA as a random sampling

matrix). Furthermore, we approximate the matrix determi-

nant |νI+ βΨ̄| by

lim
ν→0

|νIn + βΨ̄| = lim
ν→0

∣

∣

∣

∣

∣

k
∏

i=1

⊗
(

ν
1

k Ini
+ β

1

kΨi

)

∣

∣

∣

∣

∣

, (8)

where
∏k

i=1 ⊗ denotes the Kronecker product of k compo-

nents. This approximation is also accurate in the noisy case

with ν → ∞. Now, we obtain the simplified cost function

as

L({Ψi}) = yTΣ−1y + log

∣

∣

∣

∣

∣

k
∏

i=1

⊗(ν
1

k Ini
+ β

1

kΨi)

∣

∣

∣

∣

∣

= yTΣ−1y +

k
∑

i=1

n

ni

log |ν
1

k Ini
+ β

1

kΨi|,

(9)

where the second equality is obtained by using properties of

Kronecker product.

Although this simplified cost function deviates from the

original Bayesian model owing to the approximation and

cannot be justified from formal probabilistic terms, we will

explain shortly that it is a viable cost function that has the

ability to recover the true tensor. In addition, with this ap-

proximation, the Kronecker product in the log-determinant

log |Σ| is dissolved, and dimensionality of the matrix inside

the log-determinant is reduced significantly in this simpli-

fied cost function.

2.2. Optimization

To solve the non-convex optimization problem in (9), we

employ several upper bounds and the cost function can be

minimized using coordinate descent method, which leads to

an algorithm with computational efficient update rules.

2.2.1 Update x

The first term in (9) can be upper bounded by

yTΣ−1y ≤
1

ν
‖y −Ax‖22 + xT Ψ̄

−1
x, (10)

where the equality in (10) holds if

x = Ψ̄ATΣ−1y. (11)

This standard upper bound given in (10) has been used in

deriving update rules for various Bayesian learning algo-

rithms [2, 21, 20]. However, the resulting update rule (11)

involves a matrix inverse operation which has a computa-

tional complexity of O(m3) and prohibits its application to

recover data of high dimensionality, e.g., tensors.
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To overcome this drawback, we consider to further

bound the righthand side of (10) using the fundamental

property of continuously differentiable function [1]. From

Taylor’s theorem, for some b we have

F(x) =
1

ν
‖y −Ax‖22

= F(z) + (x− z)T∇F(z) +
1

2
(x− z)T∇2F(b)(x − z).

(12)

As the function F(x) is strongly-convex, its gradient is

Lipschitz-continuous, i.e.,

∇2F(x) ≤ LF , (13)

for some LF . Then the righthand side of (10) can be upper

bounded as

1

ν
‖y −Ax‖22 + xT Ψ̄

−1
x

≤F(z) + (x− z)T∇F(z) +
L

2
‖x− z‖22 + xT Ψ̄

−1
x

=
1

ν

(

yTy + 2xTATAz− zTATAz− 2yTAx
)

+
L

2
‖x− z‖22 + xT Ψ̄

−1
x,

(14)

where L ≤ LF . Obviously, the equality in (14) holds with

x = z. The largest L, i.e., the (smallest) Lipschitz constant

of the gradient ∇F , is LF = 2λmax[
1
ν
ATA] = 2

ν
.

Insert the upper bounds (10) and (14) into the cost func-

tion (9). With irrelevant terms omitted, the estimate of x can

be updated by solving the following optimization problem

min
x

1

ν

(

2xTATAz− 2yTAx
)

+
1

ν
‖x− z‖22 +xT Ψ̄

−1
x,

(15)

which has a closed-form expression

x =

(

Ψ̄
−1

+
1

ν
I

)−1(
1

ν
z+

1

ν
(ATy −ATAz)

)

.

(16)

The matrix inverse (Ψ̄+ 1
ν
I)−1 can be computed efficiently

by

(

Ψ̄
−1

+
1

ν
I

)−1

= U

(

1

ν
I+D−1

k
⊗ . . .⊗D−1

1

)−1

UT ,

(17)

where U = Uk⊗ . . .⊗U1, Ui and Di (i = 1, . . . , k) come

from the eigendecomposition of the positive semi-definite

and symmetric matrix Ψi, i.e., UiDiU
T

i
= Ψi, and the

matrix Di is diagonal. Therefore the term 1
ν
I+D−1

k
⊗. . .⊗

D−1
1 is also diagonal and its inverse can be easily obtained.

The computational complexity is now reduced to that of the

eigendecompositions, i.e., O(
∑k

i=1 n
3
i
).

2.2.2 Update Ψi

Now we consider upper bounds for the log-determinant

terms of the cost function (9). As the log-determinant terms

are concave non-decreasing functions of the singular val-

ues of symmetric positive definite matrices, we define the

concave conjugate functions

gi(Wi) = min
Ψi

Tr[WT

i Ψ
−1
i

]− log |Ψ−1
i

+ (β/ν)
1

k Ini
|,

(18)

where i = 1, . . . , k. According to the duality relationship of

concave conjugate functions, we have the following upper

bound:

log |Ψ−1
i

+ (β/ν)
1

k Ini
| = min

Wi

Tr[WT

i Ψ
−1
i

]− gi(Wi),

(19)

where the bound is tight when

Wi = (Ψ−1
i

+ (β/ν)
1

k Ini
)−1. (20)

Inserting the upper bound (19) into the cost function (9)

and considering Ψi related terms in the upper bounds, we

arrive at the following approximation

min
Ψi

xT Ψ̄
−1

x+
n

ni

(

Tr[WT

i Ψ
−1
i

] + log |Ψi|
)

, (21)

and its solution is

Ψi = Wi +
ni

n
Q(i)X

T

(i), (22)

where X(i) is the ith mode unfolding of the tensor X =
Fold[x, n1, . . . , nk]. Here Fold[x, n1, . . . , nk] denotes the

transform of a vector into a tensor of a size n1 × . . . × nk.

Q(i) is the ith mode unfolding of the tensor

Q = X×1Ψ
−1
1 . . .×i−1Ψ

−1
i−1×iI×i+1Ψ

−1
i+1 . . .×kΨ

−1
k

,
(23)

where ×i denotes the multiplication at mode i. Note that

all the Ψi iterates are positive semi-definite, if all Ψi are

initialized as positive semi-definite symmetric matrices.

2.2.3 Convergence

By iteratively cycling through each of the above subprob-

lems, we arrive at Algorithm 1. Although each iteration of

the proposed algorithm is guaranteed to reduce or leave the

cost function (9) unchanged, it is insufficient to guarantee

formal convergence to a stationary point. Deriving a theo-

retical guarantee for the proposed algorithm is difficult, as

it requires, for example, that the additional conditions of the

Zangwills Global Convergence Theorem hold [24]. Instead,

we provide empirical evidence to demonstrate the feasibili-

ty and applicability of the proposed method in Section 3.
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Algorithm 1 The proposed algorithm for tensor recovery

with low multilinear ranks

Step 1: Initialize Ψi = I ∀i and z = 0;

Step 2: Update x using (16) and let z = x (this step could

be repeated for a certain number of times);

Step 3: For each mode i, compute Wi using (20) and update

Ψi using (22);

Step 4: Iterate steps 2 and 3 until convergence.

2.3. Analysis of the Cost Function

In this subsection, we provide the rationale why the cost

function (9) has the ability to recover the true tensor with

a low multilinear rank, although the cost function deviates

from the original Bayesian model.

Firstly, the log-determinant function is a concave non-

decreasing function of the singular values of symmetric pos-

itive definite matrices, and thus the cost function (9) fa-

vors minimal rank of Ψi. The log-determinant function is

strongly concave, which avoids over-penalize large singular

values in comparison to the nuclear norm. In addition, by

rewriting the update rule (16) as

x = Ψ̄

(

I+
1

ν
Ψ̄

)−1(
1

ν
z+

1

ν
(ATy −ATAz)

)

,

(24)

we note that X(i), i.e., the ith mode folding matrix of X , re-

sults from a left-multiplication with Ψi (according to prop-

erties of the Kronecker product). Thus, if Ψi is a low rank

matrix, X(i) must be low-rank as well.

Ideally, for a tensor that has a low multilinear rank, it

is expected that the one with the lowest multilinear rank

should be the solution that minimizes the cost function (at

least in the noiseless case). In the following result (Theo-

rem 1), we show that the global minima of the cost function

(9) produces the solution with the lowest multilinear rank.

Note that as the original low rank tensor completion prob-

lem involves multiple objectives, i.e., ranks along different

modes, the global minima of the cost function (9) is optimal

for the scalarized problem, i.e., minimum
∑

k

i=1
ri

ni

, where

ri denotes the mode i rank of any feasible solution.

Theorem 1 Let y = Ax, and define ri as the mode i rank

of any feasible solution that leads to the smallest
k
∑

i=1

ri

ni
.

Then the global minima of the cost function lim
ν→0

yTΣ−1y+

k
∑

i=1

n

ni
log |ν

1

k Ini
+β

1

kΨi| is achieved at {Ψ̂i}ki=1 such that

x̂ = ˆ̄ΨAT (Aˆ̄ΨAT )−1y and rank[X̂(i)] = ri.

Proof: The following proof is based on the result of

Lemma 1 in [21], which considers a low-rank matrix recov-

ery problem. However, for tensor completion with a low

multilinear rank, some modifications are required.

In the limit ν → 0, a minimizer of the cost function in

(9) must satisfy y ∈ span[Σ
1

2 ], otherwise the cost function

would diverge to infinity as yΣ−1y tends to be infinity with

a faster rate than the log-determinant terms approaching mi-

nus infinity. The constraint y ∈ span[Σ
1

2 ] is equivalent to

requiring

yT (νI+AΨ̄AT )−1y ≤ ρ,

where ρ > 0 denotes some finite bound.

While y(νI + AΨ̄AT )−1y is bounded, the minimum

occurs when the log-determinant terms are approaching mi-

nus infinity. The sum of the log-determinant terms is given

by

k
∑

i=1

n

ni

log |ν
1

k Ini
+ β

1

kΨi|

=

k
∑

i=1

n

ni

(

ri
∑

h=1

log
(

ν
1

k + β
1

k σh[Ψi]
)

+
ni − ri

k
log |ν|

)

,

(25)

where σh[·] denotes the hth singular value of a matrix. Con-

sequently, when ν → 0, the sum of log-determinant terms

scales as n

k

k
∑

i=1

(1 − ri

ni
) log |ν|, and hence the overall cost

function is minimized when
k
∑

i=1

ri

ni
achieves its minimum.

Now we complete the proof.

3. Experimental Validation

In this section we compare the proposed algorithm with

existing state-of-the-art algorithms, which include Gom-

CG [10], TMac [22], FBCP [27] and RP [9], i.e., decom-

position based algorithms, and FaLRTC [14], i.e., a nuclear

norm minimization algorithm. All the code of compared al-

gorithms is available from the original authors. Note that

our focus here is on algorithms that are based on the low

multilinear rank model and hence we do not include com-

parison with many algorithms that exploit structural knowl-

edge from specific applications. For instance, GTV [6] con-

siders a total variation model for visual tensor to enforce

piece-wise smooth. We validate the proposed algorithm by

both synthetic data and real visual data. Our simulations are

performed in MATLAB R2014a environment on a system

with a dual-core 3.4 GHz CPU and 16 GB RAM, running

under the Microsoft Windows 7 operating system.

3.1. Experiments With Synthetic Data

In the experiments with synthetic data, we use the Tuck-

er model, i.e., X = C ×1 V1 . . . ×k Vk, to generate
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Figure 1. Comparison of reconstruction success rate in the noise-

less case (r1 = r2 = r3 = r).

the ground truth tensor. First, elements of the core tensor

C ∈ R
r1×...×rk and all Vi ∈ R

ri×ni (i = 1, . . . , k) are

generated independently from N (0, 1). Then the tensor is

normalized so that ‖X‖2
F

=
∏k

i=1 ni. A portion of ele-

ments are randomly chosen as observed data while the rest

are left as missing components. In each iteration of the pro-

posed algorithm, the step 2 is repeated with 20 times.

3.1.1 Noiseless Case

We begin with the noiseless case where the tensor is exact-

ly low-rank. We set ni = 50 (i = 1, 2, 3), resulting in the

ground truth tensor with size 50 × 50 × 50. The recovery

performance is evaluated via relative recovery error defined

by
‖X̂−X‖F

‖X‖F

, and averaged over 100 trials. If the relative

recover error is smaller than 10−3, X̂ is regarded as a suc-

cessful recovery of X . The proposed algorithm is stopped

when either the change of X in an iteration is below 10−8

or the number of iterations exceeds 1000.

In the first experiment, we consider a symmetric rank

setting, i.e., r1 = r2 = r3 = r, for the rank parameter ri
along each mode. Fig. 1 (a) and fig. 1 (b) show how the

proposed algorithm perform in different ranks and differ-
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Figure 2. Comparison of reconstruction success rate in the noise-

less case (2r1 = r2 = r3 = r, and missing rate 80%).

ent missing rates, respectively. As shown in the figure, our

proposed algorithm outperforms the existing state-of-the-art

alternatives. It is the only algorithm that is able to recover

the tensor with 85% missing data. FaLRTC uses tensor nu-

clear norm as an approximation of the multilinear rank. Al-

though FaLRTC is computational efficient, its performance

is poor owing to the approximation. As a tuning parameter-

free approach that uses Bayesian inference, FBCP has little

performance improvement in comparison to FaLRTC.

To investigate instances where the ranks along certain

modes are different than others, we set 2r1 = r2 = r3 = r.

As shown in fig. 2, the proposed algorithm has the highest

reconstruction accuracy among all the algorithms.

3.1.2 Noisy Case

In this experiment we investigate how the proposed algo-

rithm performs if the data is corrupted by noise. The ground

truth tensor with size 50 × 50 × 50 and rank r1 = r2 =
r3 = 18 is randomly generated as the previous experiments.

Then an additive noise tensor is produced, where elements

are generated following a zero-mean Gaussian distribution

with variance adjusted to have a desired value of the sig-

nal to noise ratio (SNR). In this experiment, we follow a

heuristic strategy introduced in [26] to adaptively setting ν.

We simply set ν = 0.1 and reduce the value by ν = 0.98ν
for each iteration. The proposed algorithm is stopped when

either the change of X in an iteration is below 10−8 or the

number of iterations exceeds a threshold. The relative re-

covery error is averaged over 100 trials. Results are shown

in fig. 2, where the proposed algorithm exhibits superior re-

construction accuracy in comparison to all the competitors.

3.1.3 Computing Time

The averaged quantitative results in terms of recovery per-

formance and runtime is given in Table 1, where the ground

truth tensor is 50 × 50 × 50 with rank r1 = r2 = r3 =
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Figure 3. Comparison of reconstruction accuracy in the noisy case.

15, and is corrupted by additive zero-mean Gaussian noise

yielding an SNR of 20 dB. For different data missing rates,

the proposed algorithm consistently achieves the best recov-

ery accuracy, although it is not the one with the shortest run-

time. Among all the compared algorithms, FBCP has the

worst runtime performance according to our investigation.

3.2. Experiments With Real Data

Now we evaluate the proposed algorithm by considering

two real-world applications including hyperspectral image

inpainting and facial image synthesis. Although the main

focus here is on the comparison of low-rank based algo-

rithms, we still include one additional algorithm, i.e., S-

DTC [3], for comparison, which takes into account the local

similarity in addition to the low rank assumption. Further-

more, as suggested in [27], FBCP is also adjusted to inte-

grate a Gaussian mixture factor prior that takes into account

structures in visual data.

3.2.1 Hyperspectral Image

In the first experiment with real data, we complete miss-

ing information in hyperspectral images, which are three-

order tensors with each slice corresponding to an image

of a particular scene measured at a different wavelength.

As suggested in [9], all hyperspectral images are resized to

204× 268× 33. We randomly remove 80% data and using

the remaining 20% for completion. To enhance visualiza-

tion, hyperspectral images and the reconstructed ones are

transformed to RGB colour images. As shown in fig. 4, our

approach outperforms the other algorithms in terms of the

performance of the relative recovery error. SDTC and F-

BCP produce images that are smooth owing to the use of

more complex models, and thus the visual quality of the re-

covered images is not too bad, although their relative recov-

ery errors are much higher than our algorithm. We envisage

that by incorporating additional visual structures, our algo-

rithm may have a better visual quality, while doing so is out
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Figure 4. Visual effects of hyperspectral image inpainting (the rel-

ative recovery error is given in brackets).

of the scope this paper.

3.2.2 CMU-PIE Face Database

In this experiment, we aim to generate novel facial im-

ages under multiple conditions (e.g., poses and illumina-

tion changes) given images under other conditions. The re-

covered facial images can be used to create a robust clas-

sifier in applications such as face recognition from surveil-

lance videos, where a complete training set is not available.

We use the CMU-PIE Face Database [18], where the fa-

cial images are aligned by eye positions and cropped to size
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Missing rates Performance FaLRTC geomCG TMac RP FBCP Proposed

70% Relative recovery error 0.4955 0.0490 0.0552 0.0570 0.2753 0.0533

Computing time 0.9 24.3 0.3 24.0 88.9 7.3

80% Relative recovery error 0.7455 0.0667 0.1541 0.0579 0.0819 0.0604

Computing time 0.6 17.2 0.3 12.6 17.4 8.6

90% Relative recovery error 0.9160 1.9103 0.5367 0.1897 2.3944 0.1025

Computing time 0.5 11.3 0.3 8.0 11.1 10.8

Table 1. The averaged recovery performance and computing time (seconds) with missing rates of 70, 80 and 90 Percent.
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Figure 5. CMU-PIE face completion (the relative recovery error is given in brackets).

32× 32. We use a subset selected from the first 30 people,

each rendered in 11 different poses under 21 different illu-

mination changes. Each image is vectored, as facial images

do not possess an intrinsic low-rank structure. Thus, we

construct a fourth order tensor X ∈ R
30×11×21×1024. We

assume 80% facial images are fully missing, and compare

the proposed algorithm with FBCP, FaLRTC, GeomCG, R-

P, STDC and TMac. Results are reported in fig. 5, where

the visual quality of image synthesis obtained by the pro-

posed algorithm is significantly superior to those by other

methods.

4. Conclusion

In this paper, we present a pseudo-Bayesian learning ap-

proach for low-rank tensor completion, where a Bayesian-

inspired cost function is adjusted using appropriate approx-

imations that lead to desirable attributes, i.e., global mini-

ma, concavity and symmetry. We demonstrate the superior

performance of the proposed algorithm in comparison with

state-of-the-art alternatives by conducting extensive experi-

ments on both synthetic data and several visual data recov-

ery tasks.
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