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(a) Input semantic layouts

(b) Synthesized images

Figure 1. Given a pixelwise semantic layout, the presented model synthesizes an image that conforms to this layout. (a) Semantic layouts
from the Cityscapes dataset of urban scenes; semantic classes are coded by color. (b) Images synthesized by our model for these layouts.
The layouts shown here and throughout the paper are from the validation set and depict scenes from new cities that were never seen during

training. Best viewed on the screen.

Abstract

We present an approach to synthesizing photographic
images conditioned on semantic layouts. Given a seman-
tic label map, our approach produces an image with photo-
graphic appearance that conforms to the input layout. The
approach thus functions as a rendering engine that takes
a two-dimensional semantic specification of the scene and
produces a corresponding photographic image. Unlike re-
cent and contemporaneous work, our approach does not
rely on adversarial training. We show that photographic
images can be synthesized from semantic layouts by a sin-
gle feedforward network with appropriate structure, trained
end-to-end with a direct regression objective. The pre-
sented approach scales seamlessly to high resolutions; we
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demonstrate this by synthesizing photographic images at
2-megapixel resolution, the full resolution of our training
data. Extensive perceptual experiments on datasets of out-
door and indoor scenes demonstrate that images synthe-
sized by the presented approach are considerably more re-
alistic than alternative approaches.

1. Introduction

Consider the semantic layouts in Figure 1. A skilled
painter could draw images that depict urban scenes that con-
form to these layouts. Highly trained craftsmen can even
create paintings that approach photorealism [20]. Can we
train computational models that have this ability? Given a
semantic layout of a novel scene, can an artificial system
synthesize an image that depicts this scene and looks like a
photograph?
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This question is connected to central problems in com-
puter graphics and artificial intelligence. First, consider the
problem of photorealism in computer graphics. A system
that synthesizes photorealistic images from semantic lay-
outs would in effect function as a kind of rendering engine
that bypasses the laborious specification of detailed three-
dimensional geometry and surface reflectance distributions,
and avoids computationally intensive light transport simu-
lation [33]. A direct synthesis approach could not imme-
diately replace modern rendering engines, but would indi-
cate that an alternative route to photorealism may be viable
and could some day complement existing computer graph-
ics techniques.

Our second source of motivation is the role of mental
imagery and simulation in human cognition [18]. Mental
imagery is believed to play an important role in planning
and decision making. The level of detail and completeness
of mental imagery is a matter of debate, but its role in hu-
man intelligence suggests that the ability to synthesize pho-
torealistic images may support the development of artificial
intelligent systems [24].

In this work, we develop a model for photographic im-
age synthesis from pixelwise semantic layouts. Our model
is a convolutional network, trained in a supervised fashion
on pairs of photographs and corresponding semantic lay-
outs. Such pairs are provided with semantic segmentation
datasets [5]. We use them not to infer semantic layouts from
photographs, but to synthesize photographs from semantic
layouts. In this sense our problem is the inverse of semantic
segmentation. Images synthesized by our model are shown
in Figure 1.

We show that photographic images can be synthesized
directly by a single feedforward convolutional network
trained to minimize a regression loss. This departs from
much recent and contemporaneous work, which uses adver-
sarial training of generator-discriminator dyads [7, 16, 27,

]. We show that direct supervised training of a single
convolutional network can yield photographic images. This
bypasses adversarial training, which is known to be “mas-
sively unstable” [1]. Furthermore, the presented approach
scales seamlessly to high image resolutions. We synthesize
images with resolution up to 2 megapixels (1024 x 2048),
the full resolution of our training data. Doubling the output
resolution and generating appropriate details at that resolu-
tion amounts to adding a single module to our end-to-end
model.

We conduct careful perceptual experiments using the
Amazon Mechanical Turk platform, comparing the pre-
sented approach to a range of baselines. These experiments
clearly indicate that images synthesized by our model are
significantly more realistic than images synthesized by al-
ternative approaches.

2. Related Work

The most prominent contemporary approach to im-
age synthesis is based on generative adversarial networks
(GANSs) [12]. In the original work of Goodfellow et al. [12],
GANs were used to synthesize MNIST digits and 32 x 32
images that aimed to reproduce the appearance of different
classes in the CIFAR-10 dataset. Denton et al. [6] proposed
training multiple separate GANSs, one for each level in a
Laplacian pyramid. Each model is trained independently
to synthesize details at its scale. Assembling separately-
trained models in this fashion enabled the authors to synthe-
size smoother images and to push resolution up to 96 x 96.
This work is an important precursor to ours in that multi-
scale refinement is a central characteristic of our approach.
Key differences are that we train a single model end-to-end
to directly synthesize the output image, and that no adver-
sarial training is used.

Radford et al. [35] remark that “Historical attempts to
scale up GANSs using CNNs to model images have been un-
successful” and describe a number of modifications that en-
able scaling up adversarial training to 64 x 64 images. Sal-
imans et al. [39] also tackle the instability of GAN training
and describe a number of heuristics that encourage conver-
gence. The authors synthesize 128 x 128 images that pos-
sess plausible low-level statistics. Nevertheless, as observed
in recent work and widely known in the folklore, GANs
“remain remarkably difficult to train” and “approaches to
attacking this problem still rely on heuristics that are ex-
tremely sensitive to modifications” [1]. (See also [26].) Our
work demonstrates that these difficulties can be avoided in
the setting we consider.

Dosovitskiy et al. [8] train a ConvNet to generate images
of 3D models, given a model ID and viewpoint. The net-
work thus acts directly as a rendering engine for the 3D
model. This is also an important precursor to our work
as it uses direct feedforward synthesis through a network
trained with a regression loss. Our model, loss, and problem
setting are different, enabling synthesis of sharper higher-
resolution images of scenes without 3D models.

Dosovitskiy and Brox [7] introduced a family of com-
posite loss functions for image synthesis, which combine
regression over the activations of a fixed “perceiver” net-
work with a GAN loss. Networks trained using these com-
posite loss functions were applied to synthesize preimages
that induce desired excitation patterns in image classifica-
tion models [7] and images that excite specific elements in
such models [27]. In recent work, networks trained us-
ing these losses were applied to generate diverse sets of
227 x 227 images, to synthesize images for given captions,
and to inpaint missing regions [28]. These works all rely
on the aforementioned composite losses, which require bal-
ancing the adversarial loss with a regression loss. Our work
differs in that GANs are not used, which simplifies the train-
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Figure 2. Comparison to the approach of Isola et al. [16]. Zoom in for details.

ing procedure, architecture, and loss.

Isola et al. [16] consider a family of problems that in-
clude the image synthesis problem we focus on. The paper
of Isola et al. appeared on arXiv during the course of our re-
search. It provides an opportunity to compare our approach
to a credible alternative that was independently tested on the
same data. Like a number of aforementioned formulations,
Isola et al. use a composite loss that combines a GAN and
a regression term. The authors use the Cityscapes dataset
and synthesize 256256 images for given semantic layouts.
In comparison, our simpler direct formulation yields much
more realistic images and scales seamlessly to high resolu-
tions. A qualitative comparison is shown in Figure 2.

Reed et al. [37] synthesize 64 x 64 images of scenes that
are described by given sentences. Mansimov et al. [23] de-
scribe a different model that generates 32 x 32 images that
aim to fit sentences. Yan et al. [49] generate 64 x 64 images
of faces and birds with given attributes. Reed et al. [36] syn-
thesize 128128 images of birds and people conditioned on
text descriptions and on spatial constraints such as bound-
ing boxes or keypoints. Wang and Gupta [47] synthesize

128 x 128 images of indoor scenes by factorizing the image
generation process into synthesis of a normal map and sub-
sequent synthesis of a corresponding color image. Most of
these works use GANSs, with the exception of Yan et al. [49]
who use variational autoencoders and Mansimov et al. [23]
who use a recurrent attention-based model [14]. Our prob-
lem statement is different in that our input is a pixelwise
semantic layout, and our technical approach differs substan-
tially in that a single feedforward convolutional network is
trained end-to-end to synthesize a high-resolution image.

A line of work considers synthesis of future frames in
video. Srivastava et al. [44] train a recurrent network for
this purpose. Mathieu et al. [25] build on the work of Den-
ton et al. [6] and use a composite loss that combines an ad-
versarial term with regression penalties on colors and gra-
dients. Oh et al. [31] predict future frames in Atari games
conditioned on the player’s action. Finn et al. [9] explic-
itly model pixel motion and also condition on action. Von-
drick et al. [46] learn a model of scene dynamics and use it
to synthesize video sequences from single images. Xue et
al. [48] develop a probabilistic model that enables synthe-

1513



sizing multiple plausible video sequences. In these works,
a color image is available as a starting point for synthesis.
Video synthesis can be accomplished by advecting the con-
tent of this initial image. In our setting, photographic scene
appearance must be synthesized without such initialization.

Researchers have also studied image inpainting [32], su-
perresolution [3, 17, 19], novel view synthesis [10, 45, 51],
and interactive image manipulation [52]. In these problems,
photographic content is given as input, whereas we are con-
cerned with synthesizing photographic images from seman-
tic layouts alone.

3. Method
3.1. Preliminaries

Consider a semantic layout L € {0,1}"*"™*¢ where
m X n is the pixel resolution and c is the number of seman-
tic classes. Each pixel in L is represented by a one-hot
vector that indicates its semantic label: L(7,j) € {0,1}°
st. >, L(i,j,p) = 1. One of the c possible labels is
‘void’, which indicates that the semantic class of the pixel
is not specified. Our goal is to train a parametric mapping
g that given a semantic layout L produces a color image
I € R™*"%3 that conforms to L.

In the course of this project we have experimented with a
large number of network architectures. As a result of these
experiments, we have identified three characteristics that are
important for synthesizing photorealistic images. We re-
view these characteristics before describing our solution.

Global coordination. Globally consistent structure is es-
sential for photorealism. Many objects exhibit nonlocal
structural relationships, such as symmetry. For example,
if the network synthesizes a red light on the left side of a
car, then the corresponding light on the right should also be
red. This distinguishes photorealistic image synthesis from
texture synthesis, which can leverage statistical stationar-
ity [34]. Our model is based on multi-resolution refinement.
The synthesis begins at extremely low resolution (4 x 8 in
our implementation). Feature maps are then progressively
refined. Thus global structure can be coordinated at lower
octaves, where even distant object parts are represented in
nearby feature columns. These decisions are then refined at
higher octaves.

High resolution. To produce truly photorealistic results, a
model must be able to synthesize high-resolution images.
Low resolution is akin to myopic vision in that fine visual
features are not discernable. The drive to high image and
video resolutions in multiple industries is a testament to
resolution’s importance. Our model synthesizes images by
progressive refinement, and going up an octave in resolu-
tion (e.g., from 512p to 1024p) amounts to adding a single
refinement module. The entire cascade of refinement mod-
ules is trained end-to-end.
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Figure 3. A single refinement module.

Memory. We conjecture that high model capacity is essen-
tial for synthesizing high-resolution photorealistic images.
Human hyperrealistic painters use photographic references
as external memory of detailed object appearance [20]. The
best existing image compression techniques require mil-
lions of bits of information to represent the content of a
single high-resolution image: there exists no known way to
reconstruct a given photograph at high fidelity from a lower-
capacity representation [40]. In order for our model to be
able to synthesize diverse scenes from a given domain given
only semantic layouts as input, the capacity of the model
must be sufficiently high to be able to reproduce the de-
tailed photographic appearance of many objects. We expect
a successful model to reproduce images in the training set
extremely well (memorization) and also to apply the learned
representations to novel layouts (generalization). This re-
quires high model capacity. Our design is modular and the
capacity of the model can be expanded as allowed by hard-
ware. The network used in most of our experiments has
105M parameters and maximizes available GPU memory.
We have consistently found that increasing model capacity
increases image quality.

3.2. Architecture

The Cascaded Refinement Network (CRN) is a cascade
of refinement modules. Each module M* operates at a given
resolution. In our implementation, the resolution of the first
module (M?) is 4 x 8. Resolution is doubled between con-
secutive modules (from M?~! to M*?). Let w; x h; be the
resolution of module :.

The first module, M9, receives the semantic layout L
as input (downsampled to wg X hg) and produces a feature
layer FO at resolution wq x hgo as output. All other mod-
ules M (for i # 0) are structurally identical: M* receives a
concatenation of the layout L (downsampled to w; xh;) and
the feature layer F*~! (upsampled to w; x h;) as input, and
produces feature layer F' as output. We denote the number
of feature maps in F? by d;.

Each module M? consists of three feature layers: the in-
put layer, an intermediate layer, and the output layer. This
is illustrated in Figure 3. The input layer has dimensionality
w; X h; x (d;—1 + ¢) and is a concatenation of the downsam-
pled semantic layout L (c channels) and a bilinearly upsam-
pled feature layer F*~1 (d;_; channels). Note that we do
not use upconvolutions because upconvolutions tend to in-
troduce characteristic artifacts [30]. The intermediate layer
and the output layer both have dimensionality w; X h; X d;.
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Each layer is followed by 3 x 3 convolutions, layer normal-
ization [2], and LReLU nonlinearity [22].

The output layer ™ of the final module M" is not fol-
lowed by normalization or nonlinearity. Instead, a linear
projection (1 x 1 convolution) is applied to map F* (dimen-
sionality w; X h; X dy) to the output color image (dimension-
ality w; x hy X 3). The total number of refinement modules
in a cascade depends on the output resolution. For our main
experiments on the high-resolution Cityscapes dataset, the
number of modules is 9, accounting for a resolution increase
from 4 x 8 to 1024 x 2048. For the number of feature maps
d;, weuse 1024 fori = 0..4, 512 fori = 5,6, 128 fori = 7,
and 32 fori = 8.

3.3. Training

The CRN is trained in a supervised fashion on a seman-
tic segmentation dataset D = {(I, L)}. A semantic layout
L is used as input and the corresponding color image I as
output. This can be thought of as “inverse semantic seg-
mentation”. It is an underconstrained one-to-many inverse
problem. We will generally refer to I as a “reference image”
rather than “ground truth”, since many valid photographic
images could have yielded the same semantic layout.

Given the underconstrained nature of the problem, using
an appropriate loss function is critical, as observed in prior
work on image synthesis. Simply comparing the pixel col-
ors of the synthesized image and the reference image could
severely penalize perfectly realistic outputs. For example,
synthesizing a white car instead of a black car would induce
a very high loss. Instead we adopt the “content representa-
tion” of Gatys et al. [11], also referred to as a perceptual
loss or feature matching [3, 7, 17, 19, 27, 28]. The basic
idea is to match activations in a visual perception network
that is applied to the synthesized image and separately to
the reference image.

Let ® be a trained visual perception network (we use
VGG-19 [43]). Layers in the network represent an image
at increasing levels of abstraction: from edges and colors
to objects and categories. Matching both lower-layer and
higher-layer activations in the perception network guides
the synthesis network to learn both fine-grained details and
more global part arrangement.

Let {®;} be a collection of layers in the network ®, such
that ® denotes the input image. Each layer is a three-
dimensional tensor. For a training pair (I, L) € D, our loss
is

Lrp(0) =Y N@(I) - (g(L:0)]1. (D)
l

Here ¢ is the image synthesis network being trained and 6 is
the set of parameters of this network. The hyperparameters
{A\;} balance the contribution of each layer [ to the loss.
For layers ®; (I > 1) we use ‘convl_2’, ‘conv2.2’,
‘conv3_2’, ‘conv4_2’, and ‘conv5_2’ in VGG-19 [43]. The

hyperparameters {);} are set automatically. They are ini-
tialized to the inverse of the number of elements in each
layer. After 100 epochs, {\;} are rescaled to normalize the
expected contribution of each term ||®;(I) — ®;(g(L; 6))]1
to the loss.

3.4. Synthesizing a diverse collection

The architecture and training procedure described so far
synthesize a single image for a given input L. In our ex-
periments this already yields good results. However, since
a given semantic layout can correspond to many images,
it also makes sense to generate a diverse set of images as
output. Conditional synthesis of diverse images can be ap-
proached as a stochastic process [28]. We take a different
tack and modify the network to emit a collection of images
in one shot, with a modified loss that encourages diversity
within the collection.

Specifically, we change the number of output channels
from 3 to 3k, where k is the desired number of images. Each
consecutive 3-tuple of channels forms an image. Now con-
sider the loss. If loss (1) is applied independently to each
output image, the k synthesized images will be identical.
Our first modification is to consider the set of k outputs to-
gether and define the loss of the whole collection in terms
of the best synthesized image. Let g, (L; ) be the u" im-
age in the synthesized collection. Our first version of the
modified loss is based on the hindsight loss developed for
multiple choice learning [15]:

muinz)\lH‘bl(I)*(I)l(gu(LJ‘g»Hl- 2
l

By considering only the best synthesized image, this loss
encourages the network to spread its bets and cover the
space of images that conform to the input semantic layout.
The loss is structurally akin to the k-means clustering ob-
jective, which only considers the closest centroid to each
datapoint and thus encourages the centroids to spread and
cover the dataset.

We further build on this idea and formulate a loss that
considers a virtual collection of up to k¢ images. (Re-
call that c is the number of semantic classes.) Specifically,
for each semantic class p, let L,, denote the corresponding
channel L(-, -, p) in the input label map. We now define a
more powerful diversity loss as

Sominy Ny ||ZL© (9](1) = @ (9u(L:0)]], 3)
p=1 l J

where @] is the j feature map in ®;, L, is the mask L,
downsampled to match the resolution of ®;, and © is the
Hadamard product. This loss in effect constructs a virtual
image by adaptively taking the best synthesized content for
each semantic class from the whole collection, and scoring
the collection based on this assembled image.
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4. Baselines

The approach presented in Section 3 is far from the first
we tried. In this section we describe a number of alternative
approaches that will be used as baselines in Section 5.

GAN and semantic segmentation. Our first baseline is
consistent with current trends in the research community. It
combines a GAN with a semantic segmentation objective.
The generator is trained to synthesize an image that fools
the discriminator [12]. An additional term in the loss spec-
ifies that when the synthesized image is given as input to
a pretrained semantic segmentation network, it should pro-
duce a label map that is as close to the input layout L as
possible. The GAN setup follows the work of Radford et
al. [35]. The input to the generator is the semantic layout
L. For the semantic segmentation network, we use publicly
available networks that were pretrained for the Cityscapes
dataset [50] and the NYU dataset [21]. The training objec-
tive combines the GAN loss and the semantic segmentation
(pixelwise cross-entropy) loss.

Full-resolution network. Our second baseline is a feed-
forward convolutional network that operates at full resolu-
tion. This baseline uses the same loss as the CRN described
in Section 3. The only difference is the network architec-
ture. In particular, we have experimented with variants of
the multi-scale context aggregation network [50]. An ap-
pealing property of this network is that it retains high reso-
lution in the intermediate layers, which we hypothesized to
be helpful for photorealistic image synthesis. The original
architecture described in [50] did not yield good results and
is not well-suited to our problem, because the input seman-
tic layouts are piecewise constant and the network of [50]
begins with a small receptive field. We obtained much better
results with the inverse architecture: start with large dilation
and decrease it by a factor of 2 in each layer. This can be
viewed as a full-resolution counterpart to the CRN, based
on dilating the filters instead of scaling the feature maps.
One of the drawbacks of this approach is that all interme-
diate feature layers are at full image resolution and have a
high memory footprint. Thus the ratio of capacity (num-
ber of parameters) to memory footprint is much lower than
in the CRN. This high memory footprint of intermediate
layers also constrains the resolution to which this approach
can scale: with 10 layers and 256 feature maps per layer,
the maximal resolution that could be trained with available
GPU memory is 256 X 512.

Encoder-decoder. Our third baseline is an encoder-decoder
network, the u-net [38]. This network is also trained with
the same loss as the CRN. It is thus an additional baseline
that evaluates the effect of using the CRN versus a different
architecture, when everything else (loss, training procedure)
is held fixed.

Image-space loss. Our next baseline controls for the feature

matching loss used to train the CRN. Here we use exactly
the same architecture as in Section 3, but use only the first
layer ®( (image color) in the loss:

Lro(0) =Y NI —g(L;0)]s. “4)
l

Image-to-image translation. Our last baseline is the con-
temporaneous approach of Isola et al., the implementation
and results of which are publicly available [16]. This ap-
proach uses a conditional GAN and is representative of the
dominant stream of research in image synthesis. The gener-
ator is an encoder-decoder [38]. The GAN setup is derived
from the work of Radford et al. [35].

5. Experiments

5.1. Experimental procedure

Methodology. The most reliable known methodology for
evaluating the realism of synthesized images is percep-
tual experiments with human observers. Such experiments
yield quantitative results and have been used in related
work [6, 19, 39]. There have also been attempts to design
automatic measures that evaluate realism without humans
in the loop. For example, Salimans et al. ran a pretrained
image classification network on synthesized images and an-
alyzed its predictions [39]. We experimented with such
automatic measures (for example using pretrained seman-
tic segmentation networks) and found that they can all be
fooled by augmenting any baseline to also optimize for the
evaluated measure; the resulting images are not more real-
istic but score very highly [13, 29]. Well-designed percep-
tual experiments with human observers are more reliable.
We therefore use carefully designed perceptual experiments
for quantitative evaluation. We will release our complete
implementation and experimental setup so that our experi-
ments can be replicated by others.

All experiments use pairwise A/B tests deployed on the
Amazon Mechanical Turk (MTurk) platform. Similar pro-
tocols have been used to evaluate the realism of 3D recon-
structions [4, 41]. Each MTurk job involves a batch of
roughly 100 pairwise comparisons, along with sentinel pairs
that test whether the worker is attentive and diligent. Each
pair contains two images synthesized for the same label map
by two different approaches (or a corresponding reference
image from the dataset). The workers are asked to select the
more realistic image in each pair. The images are all shown
at the same resolution (200x400). The comparisons are ran-
domized across conditions and both the left-right order and
the order within a job are randomized.

Two types of experiments are conducted. In the first,
images are shown for unlimited time and the worker is free
to spend as much time as desired on each pair. In the second,
each pair is shown for a randomly chosen duration between
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Image-space loss GAN+SemSeg Isolaetal. [16] Encoder-decoder Full-resolution network
Cityscapes 99.7% 98.5% 96.9% 78.3% 67.7%
NYU 91.4% 82.3% 77.2% 71.2% 65.8%

Table 1. Results of pairwise comparisons of images synthesized by models trained on the Cityscapes and NYU datasets. Each column
compares our approach with one of the baselines. Each cell lists the fraction of pairwise comparisons in which images synthesized by our
approach were rated more realistic than images synthesized by the corresponding baseline. Chance is at 50%.

% and 8 seconds. This evaluates how quickly the relative
realism of different image pairs can be established.

The experimental setup is further detailed in the supple-
ment and is demonstrated in supplementary videos.

Datasets. We use two datasets with pixelwise semantic la-
bels, one depicting outdoor scenes and one depicting indoor
scenes. Our primary dataset is Cityscapes, which has be-
come the dominant semantic segmentation dataset due to
the quality of the data [5]. We train on the training set
(3K images) and evaluate on the validation set (500 im-
ages). (Evaluating “inverse semantic segmentation” on the
test set is impossible because the label maps are not pro-
vided.) Our second dataset is the older NYU dataset of in-
door scenes [42]. This dataset is smaller and the images are
VGA resolution. Note that we do not use the depth data in
the NYU dataset, only the semantic layouts and the color
images. We use the first 1200 of the 1449 labeled images
for training and the remaining 249 for testing.

5.2. Results

Primary experiments. Table 1 reports the results of ran-
domized pairwise comparisons of images synthesized by
models trained on the Cityscapes dataset. Images synthe-
sized by the presented approach were rated more realistic
than images synthesized by the four alternative approaches.
Note that the ‘image-space loss’ baseline uses the same ar-
chitecture as the CRN and controls for the loss, while the
‘full-resolution network’ and the ‘encoder-decoder’ use the
same loss as the CRN and control for the architecture. All
results are statistically significant with p < 1073, Com-
pared to the approach of Isola et al. [16], images synthe-
sized by the CRN were rated more realistic in 97% of the
comparisons. Qualitative results are shown in Figure 5.

Figure 4 reports the results of time-limited pairwise com-
parisons of real Cityscapes images, images synthesized by
the CRN, and images synthesized by the approach of Isola
et al. [16] (referred to as ‘Pix2pix’ following the public im-
plementation). After just % of a second, the Pix2pix im-
ages are clearly rated less realistic than the real Cityscapes
images or the CRN images (72.5% Real>Pix2pix, 73.4%
CRN>Pix2pix). On the other hand, the CRN images
are on par with real images at that time, as seen both in
the Real>CRN rate (52.6%) and in the nearly identical
Real>Pix2pix and CRN>Pix2pix rates.

100%
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©
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o
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50% ‘ ‘ ‘ ‘ ‘
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Figure 4. Time-limited pairwise comparisons on Cityscapes.

At 250 milliseconds (% of a second), the Real>Pix2pix
rate rises to 85.0% while the Real>CRN rate is at 57.4%.
The CRN>Pix2pix rate is 84.0%, still nearly identical to
Real>Pix2pix. At 500 milliseconds, the Real>Pix2pix
and CRN>Pix2pix rates finally diverge, although both
are extremely high (95.1% and 87.4%, respectively), and
the Real>CRN rate rises to 64.2%. Over time, the
CRN>Pix2pix rate rises above 90% and the Real>Pix2pix
rate remains consistently higher than the Real>CRN rate.

NYU dataset. We conduct supporting experiments on the
NYU dataset. This dataset is smaller and lower-resolution,
so the quality of images synthesized by all approaches is
lower. Nevertheless, the differences are still clear. Table 1
reports the results of randomized pairwise comparisons of
images synthesized for this dataset. Images synthesized by
the presented approach were again rated consistently more
realistic than the baselines. All results are statistically sig-
nificant with p < 1073, Qualitative results are shown in
Figure 6.

Diversity loss. For all preceding experiments we have used
the feature matching loss specified in Equation 1. The
models produced a single image as output, and this im-
age was evaluated against baselines. We now qualitatively
demonstrate the effect of the diversity loss described in Sec-
tion 3.4. To this end we trained models that produce image
collections as output (9 images at a time). Figure 7 shows
pairs of images sampled from the synthesized collections,
for different input layouts in the NYU validation set. The
figure illustrates that the diversity loss does lead the output
channels to spread out and produce different appearances.
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Isolaetal. [16]

Encoder-decoder

Figure 5. Qualitative comparison on the Cityscapes dataset.

Our result

Isolaetal. [16]

Full-resolution network Encoder-decoder

Figure 6. Qualitative comparison on the NYU dataset.

Figure 7. Synthesizing a diverse collection, illustrated on the NYU dataset. Each pair shows two images from a collection synthesized for

a given semantic layout.
6. Conclusion

We have presented a direct approach to photographic im-
age synthesis conditioned on pixelwise semantic layouts.
Images are synthesized by a convolutional network trained
end-to-end with a regression loss. This direct approach is
considerably simpler than contemporaneous work, and pro-
duces much more realistic results. We hope that the simplic-
ity of the presented approach can support follow-up work

that will further advance realism and explore the applica-
tions of photographic image synthesis. Our results, while
significantly more realistic than the prior state of the art, are
clearly not indistinguishable from real HD images. Exciting
work remains to be done to achieve perfect photorealism. If
such level of realism is ever achieved, which we believe to
be possible, alternative routes for image synthesis in com-
puter graphics will open up.
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