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Abstract

Impressive image captioning results are achieved in do-

mains with plenty of training image and sentence pairs

(e.g., MSCOCO). However, transferring to a target domain

with significant domain shifts but no paired training data

(referred to as cross-domain image captioning) remains

largely unexplored. We propose a novel adversarial train-

ing procedure to leverage unpaired data in the target do-

main. Two critic networks are introduced to guide the cap-

tioner, namely domain critic and multi-modal critic. The

domain critic assesses whether the generated sentences are

indistinguishable from sentences in the target domain. The

multi-modal critic assesses whether an image and its gen-

erated sentence are a valid pair. During training, the crit-

ics and captioner act as adversaries – captioner aims to

generate indistinguishable sentences, whereas critics aim

at distinguishing them. The assessment improves the cap-

tioner through policy gradient updates. During inference,

we further propose a novel critic-based planning method to

select high-quality sentences without additional supervision

(e.g., tags). To evaluate, we use MSCOCO as the source do-

main and four other datasets (CUB-200-2011, Oxford-102,

TGIF, and Flickr30k) as the target domains. Our method

consistently performs well on all datasets. In particular, on

CUB-200-2011, we achieve 21.8% CIDEr-D improvement

after adaptation. Utilizing critics during inference further

gives another 4.5% boost.

1. Introduction

Datasets with large corpora of “paired” images and sen-

tences have enabled the latest advance in image caption-

ing. Many novel networks [9, 21, 17, 33] trained with

these paired data have achieved impressive results under a

domain-specific setting – training and testing on the same

domain. However, the domain-specific setting creates a

huge cost on collecting “paired” images and sentences in

each domain. For real world applications, one will prefer

a “cross-domain” captioner which is trained in a “source”

Source Caption

(MSCOCO)

Target Caption 

(CUB-200)

Generated Caption 

before adapt        after adapt

Source Ground Truth Target Ground Truth

Generated (before adapt) Generated (after adapt)

A family of ducks 
swimming in the 
water.

A hummingbird 
close to a flower 
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This bird has wings 
that are brown and 
has red eyes.
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orange flank and a 
long thin black bill.

A duck floating on 
top of a lake .

This bird has brown 
wings and red eyes.

Figure 1: We propose a cross-domain image captioner that can

adapt the sentence style from source to target domain without the

need of paired image-sentence training data in the target domain.

Left panel: Sentences from MSCOCO mainly focus on location,

color, size of objects. Right panel: Sentences from CUB-200 de-

scribe the parts of birds in detail. Bottom panel shows our gener-

ated sentences before and after adaptation.

domain with paired data and generalized to other “target”

domains with very little cost (e.g., no paired data required).

Training a high-quality cross-domain captioner is chal-

lenging due to the large domain shift in both the image and

sentence spaces. For instance, MSCOCO [23] mostly con-

sists of images of large scene with more object instances,

whereas CUB-200-2011 [34] (shortened as CUB-200 in the

following) consists of cropped birds images. Moreover,

sentences in MSCOCO typically describe location, color

and size of objects, whereas sentences in CUB-200 describe

parts of birds in detail (Fig. 1). In this case, how can one ex-
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pect a captioner trained on MSCOCO to describe the details

of a bird on CUB-200 dataset?

A few works propose to leverage different types of

unpaired data in other domains to tackle this challenge.

[14, 31] propose to leverage an image dataset with category

labels (e.g., ImageNet [8]) and sentences on the web (e.g.,

Wikipedia). However, they focus on the ability to generate

words unseen in paired training data (i.e., word-level mod-

ification). Anderson et al. [2] propose to leverage image

taggers at test time. However, this requires a robust cross-

domain tagger. Moreover, they focus on selecting a few

different words but not changing the overall style.

We propose a novel adversarial training procedure to

leverage unpaired images and sentences. Two critic net-

works are introduced to guide the procedure, namely do-

main critic and multi-modal critic. The domain critic as-

sesses whether the generated captions are indistinguishable

from sentences in the target domain. The multi-modal critic

assesses whether an image and its generated caption is a

valid pair. During training, the critics and captioner act

as adversaries – captioner aims to generate indistinguish-

able captions, whereas critics aim at distinguishing them.

Since the sentence is assessed only when it is completed

(e.g., cannot be assessed in a word by word fashion), we

use Monte Carlo rollout to estimate the assess of each gen-

erated word. Then, we apply policy gradient [30] to update

the network of the captioner. Last but not least, we propose

a novel critic-based planning method to take advantage of

the learned critics to compensate the uncertainty of the sen-

tence generation policy with no additional supervision (e.g.,

tags [2]) in testing.

To evaluate, we use MSCOCO [23] as the source

domain and CUB-200 [34, 28], Oxford-102 [26, 28],

Flickr30k [37] and TGIF [22] as target domains. Our

method consistently performs well on all datasets. In par-

ticular, on CUB-200, we achieve 21.8% CIDEr-D improve-

ment after adaptation. Utilizing critic during inference

further gives another 4.5% boost. Our codes are avail-

able at https://github.com/tsenghungchen/

show-adapt-and-tell. Finally, the contributions of

the paper are summarized below:
• We propose a novel adversarial training procedure for

cross-domain captioner. It utilizes critics to capture

the distribution of image and sentence in the target do-

main.
• We propose to utilize the knowledge of critics during

inference to further improve the performance.
• Our method achieves significant improvement on four

publicly available datasets compared to a captioner

trained only on the source domain.

2. Related Work
Visual description generation. Automatically describing

visual contents is a fundamental problem in artificial intel-

ligence that connects computer vision and natural language

processing. Thanks to recent advances in deep neural net-

works and the release of several large-scale datasets such

as MSCOCO [23] and Flickr30k [37], many works [9, 21,

17, 33] have shown different levels of success on image

captioning. They typically employ a Convolutional Neural

Network (CNN) for image encoding, then decoding a cap-

tion with a Recurrent Neural Network (RNN). There have

been many attempts to improve the basic encoder-decoder

framework. The most commonly used approach is spatial

attention mechanism. Xu et al. [35] introduce an attention

model that can automatically learn where to look depend-

ing on the generated words. Besides images, [9, 32, 36, 40]

apply LSTMs as video encoder to generate video descrip-

tions. In particular, Zeng et al. [40] propose a framework to

jointly localize highlights in videos and generate their titles.

Addressing exposure bias. Recently, the issue of expo-

sure bias [27] has been well-addressed in sequence predic-

tion tasks. It happens when a model is trained to maxi-

mize the likelihood given ground truth words but follows

its own predictions during test inference. As a result, the

training process leads to error accumulation at test time.

In order to minimize the discrepancy between training and

inference, Bengio et al. [5] propose a curriculum learning

strategy to gradually ignore the guidance from supervision

during training. Lamb et al. [11] introduce an adversarial

training method as regularization between sampling mode

and teacher-forced mode. Most recently, there are plenty of

works [27, 4, 24, 29] using policy gradient to directly opti-

mize the evaluation metrics. These methods avoid the prob-

lem of exposure bias and further improve over cross entropy

methods. However, they cannot be applied in cross-domain

captioning, since they need ground truth sentences to com-

pute metric such as BLEU.

Reward modeling. In contrast to the above works, we learn

the reward function in cross-domain setting and the reward

can be computed even during testing to enable our novel

critic-based planning method. Several works [13, 38] incor-

porate auxiliary models as rewards. Hendricks et al. [13]

minimize a discriminative loss to ensure generated sen-

tences be class specific. Similar to our method, Yu et al. [38]

also introduce a critic to learn a reward function. However,

their proposed method is for random sentence generation

and not designed for domain adaptation.

Domain adaptation. Conventional DNN-based do-

main adaptation aim to learn a latent space that min-

imize the distance metrics (e.g., Maximum Mean Dis-

crepancy (MMD) [25] and Central Moment Discrepancy

(CMD) [39]) between data domains. On the other hand, ex-

isting adversarial domain adaptation methods use a domain

classifier to learn mappings from source to target domains.

Ajakan et al. [1] introduce a domain adaptation regularizer

to learn the representation for sentiment analysis. Ganin
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Figure 2: Our captioner is a standard CNN-RNN architec-

ture [33], where predicted word from previous step is serve as

input of current step during inference. <BOS> and <EOS> rep-

resent the Begin-Of-Sentence and End-Of-Sentence, respectively.

et al. [10] propose a gradient reversal layer for aligning

the distribution of features across source and target domain.

Hoffman et al. [15] propose an unsupervised domain adver-

sarial method for semantic segmentations in street scenes.

Chen et al. [6] further collect a dataset of road scene images

across countries for cross-city adaptation. Performance im-

provement has been shown on sentiment analysis, image

classification, person re-identification, and scene segmen-

tation tasks. However, we are not aware of any adversarial

domain adaptation approach applied on cross-domain cap-

tioning.

3. Cross-domain Image Captioning

We first formally define the task of cross-domain image

captioning; then, give an overview of our proposed method.

Cross-domain setting. This is a common setting where

data from two domains are available. In the source domain,

we are given a set P = {(xn, ŷn)}n with paired image xn1

and “ground truth” sentence ŷ
n describing x

n. Each sen-

tence ŷ = [ŷ1, . . . , ŷt, . . . , ŷT ] consists of a sequence of

word ŷt with length T . In the target domain, we are given

two separate sets of information: a set of example images

X = {xn}n and a set of example sentences Ŷ = {ŷn}n.

Note that collecting paired data P in the source domain is

typically more costly than X and Ŷ in the target domain.

Image captioning. For standard image captioning, the goal

is to generate a sentence y for x, where y is as similar as

the ground truth sentence ŷ. For cross-domain image cap-

tioning, since the ground truth sentence of each image in X
is not available, the goal becomes the following. For an im-

age x ∈ X , we aim at generating a sentence y such that (1)

y is similar to Ŷ in style, and (2) (x,y) are a relevant pair

similar to pairs in P .

Overview of our method. To achieve the goal of cross-

domain image captioning, we propose a novel method con-

sisting of two main components. The first component is a

standard CNN-RNN-based captioner (Fig. 2). However, our

captioner is treated as an agent taking sequential actions (i.e,

generating words). This agent is trained using policy gradi-

ent given reward of each generated sentence. Our second

1We extract image representation x
n from CNN.

component consists of two critics to provide reward. One

critic assesses the similarity between y and Ŷ in style. The

other critic assesses the relevancy between x and y, given

paired data P in the source domain as example pairs. We

use both critics to compute a reward for each generated sen-

tence y. Both the captioner and two critics are iteratively

trained using a novel adversarial training procedure. Next,

we describe the captioner and critics in detail.

3.1. Captioner as an Agent

At time t, the captioner takes an action (i.e., a word yt)

according to a stochastic policy πθ(yt|x,yt−1), where x is

the observed image, yt−1 = [y1, ..., yt−1]
2 is the generated

partial sentence, and θ is the parameter of the policy. We

utilize an existing CNN-RNN model [33] as the model of

the policy. By sequentially generating each word yt from

the policy πθ(.) until the special End-Of-Sentence (EOS)

token, a complete sentence y is generated. In standard im-

age captioning, the following total expected per-word loss

J(θ) is minimized.

J(θ) =

N
∑

n=1

Tn
∑

t=1

Loss(πθ(ŷ
n
t |x

n, ŷn
t−1)) , (1)

Loss(πθ(ŷ
n
t |x

n, ŷn
t−1)) = − log πθ(ŷ

n
t |x

n, ŷn
t−1) ,

where N is the number of images, Tn is the length of the

sentence ŷ
n, Loss(.) is cross-entropy loss, and ŷ

n
t−1 and

ŷnt are ground truth partial sentence and word, respectively.

For cross-domain captioning, we do not have ground truth

sentence in target domain. Hence, we introduce critics to

assess the quality of the generated complete sentence y
n.

In particular, the critics compute a reward R(yn|xn,Y,P)
(see Sec. 3.2 for details) utilizing example sentences Y in

target domain and example paired data P in source domain.

Given the reward, we modify Eq. 1 to train the agent using

policy gradient.

Policy gradient. The main idea of policy gradient is to

replace per-word loss Loss(.) in Eq. 1 with another com-

putable term related to the state-action reward Q(st, at),
where the state st is characterized by the image x and par-

tial sentence yt−1 while the action at is the current gener-

ated word yt. The state-action reward Q((x,yt−1), yt) is

defined as the expected future reward:

Ey(t+1):T

[

R(
[

yt−1, yt,y(t+1):T

]

|x,Y,P)
]

. (2)

Note that the expectation is over the future words

y(t+1):T = [yt+1, . . . , yT ] until the sentence is completed

at time T . Hence, Q((x,yt−1), yt) takes the random-

ness of future words y(t+1):T into consideration. Given

Q((x,yt−1), yt), we aim at maximizing a new objective as

below,

2For the partial sentence starting from index 1, we denoted it as yt−1

for simplicity.
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gradient to update the captioner toward generating sentences with higher reward. Right panel: the critics observe sentences generated from

the captioner and aim at discriminating them from the true data in target and source domains. During adversarial training, both captioner

(Left) and critics (Right) are iteratively updated to achieve competing goals.

J(θ) =

N
∑

n=1

Jn(θ) ,

Jn(θ) =

Tn
∑

t=1

Ey
n
t

[

πθ(y
n
t |x

n,yn
t−1)Q((xn,yn

t−1), y
n
t )
]

,

where y
n
t =

[

y
n
t−1, y

n
t

]

is a random vector instead of

ground truth ŷ
n
t =

[

ŷ
n
t−1, ŷ

n
t

]

as in Eq. 1. However, since

the spaces of yt
3 is huge, we generate M sentences {ym}m

to replace expectation with empirical mean as follows,

Jn(θ) ≃
1

M

M
∑

m=1

Jn,m(θ) , (3)

Jn,m(θ) =

Tm
∑

t=1

πθ(y
m
t |x,ym

t−1)Q((x,ym
t−1), y

m
t ) , (4)

where Tm is the length of the generated mth sentence. Note

that ym
t = [ym

t−1, y
m
t ] is sampled from the current policy πθ

and thus computing Jn,m(θ) becomes tractable. The policy

gradient can be computed from Eq. 4 as below,

▽θJn,m(θ) =

Tm
∑

t=1

▽θπθ(y
m
t |x,ym

t−1)Q((x,ym
t−1), y

m
t ) =

Tm
∑

t=1

πθ(y
m
t |x,ym

t−1)▽θ log πθ(y
m
t |x,ym

t−1)Q((x,ym
t−1), y

m
t ) ,

and the total gradient is

▽θJ(θ) ≃
1

M

N
∑

n=1

M
∑

m=1

▽θJn,m(θ) . (5)

We apply stochastic optimization with policy gradient to up-

date model parameter θ. Next we describe how to estimate

the state-action reward Q((x,yt−1), yt).

3We remove superscript n for simplification.

Estimating Q. Since the space of y(t+1):T in Eq. 2 is also

huge, we use Monte Carlo rollout to replace expectation

with empirical mean as below,

Q((x,yt−1), yt) ≃

1

K

K
∑

k=1

R(
[

yt−1, yt,y
k
(t+1):Tk

]

|x,Y,P) , (6)

where {yk
(t+1):Tk

}k are generated future words, and we

sample K complete sentences following policy πθ. Next,

we introduce the critics for computing the reward R(·).

3.2. Critics

For cross-domain image captioning, a good caption

needs to satisfy two criteria: (1) the generated sentence re-

sembles the sentence drawn from the target domain. (2) the

generated sentence is relevant to the input image. The crit-

ics follow these two rules to assign reward to each generated

sentence. We introduce the domain critic and multi-modal

critic below.

Domain critic. In order to address the domain shift in sen-

tence space, we train a Domain Critic (DC) to classify sen-

tences as “source” domain, “target” domain, or “generated”

ones. The DC model consists of an encoder and a classi-

fier. A sentence y is first encoded by CNN [18] with high-

way connection [19] into a sentence representation. Then,

we pass the representation through a fully connected layer

and a softmax layer to generate probability Cd(l|y), where

l ∈ {source, target, generated}. Note that the scalar

probability Cd(target|y) indicates how likely the sentence

y is from the target domain.

Multi-modal critic. In order to check the relevance be-

tween a sentence y and an image x, we propose a Multi-

modal Critic (MC) to classify (x,y) as “paired”, “un-

paired”, or “generated” data. The model of MC consists
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of multi-modal encoders, modality fusion layer, and a clas-

sifier as below,

c = LSTMρ(y) , (7)

f = tanh(Wx · x+ bx)⊙ tanh(Wc · c+ bc) , (8)

Cm = softmax(Wm · f + bm) , (9)

where ρ,Wx, bx,Wc, bc,Wm, bm are parameters to be

learned, ⊙ denotes element-wise multiplication, and Cm is

the probabilities over three classes: paired, unpaired, and

generated data. In Eq. 7, the sentence y is encoded by

an LSTM-based sentence encoder. Then, in Eq. 8, the en-

coded image x and sentence c representations are fused via

element-wise multiplication similar to [3]. Finally, in Eq. 9,

the fused representation is forwarded through a fully con-

nected layer and a softmax layer to generate probability

Cm(l|x,y), where l ∈ {paired, unpaired, generated}.

The scalar probability Cm(paired|x,y) indicates how a

generated caption y is relevant to an image x. Please see

Supplementary for the intuition and empirical studies of the

design choices in DC and MC.
Sentence reward. We define the reward R(y|.) =
Cd(target|.) · Cm(paired|.). This ensures a sentence re-

ceives a high reward only when (1) DC believes the sen-

tence is from the target domain, and (2) MC believes the

sentence is relevant to the image.
Training critics. We introduce the training objective of DC

and MC below. For DC, the goal is to classify a sentence

into source, target, and generated data. This can be for-

mulated as a supervised classification training objective as

follows,

Ld(φ) = −
N
∑

n=1

logCd(l
n|yn;φ)

l
n =











source if yn ∈ Ŷsrc,

target if yn ∈ Ŷtgt,

generated if yn ∈ Yπθ
,

Yπθ
= {yn ∼ πθ(.|x

n
, .)}n,x

n ∈ Xtgt ,

(10)

where N is the number of sentences, φ is the model param-

eter of DC, Ŷsrc denotes sentences from the source domain,

Ŷtgt denotes sentences from the target domain, and Yπθ
de-

notes sentences generated from the captioner with policy πθ

given target domain images Xtgt.

For MC, the goal is to classify a image-sentence pair into

paired, unpaired, and generated data. This can also be for-

mulated as a supervised classification training objective as

follows,

Lm(η) = −
N
∑

n=1

logCm(ln|xn
,y

n; η) ,

l
n =











paired if (xn,yn) ∈ Psrc ,

unpaired if (xn,yn) ∈ Ṕsrc ,

generated if (xn,yn) ∈ Pgen ,

Ṕsrc = {(xi ∈ Xsrc, ŷ
j ∈ Ŷsrc); i 6= j} ,

Pgen = {(x ∈ Xsrc,y ∈ Yπθ
)} ,

(11)

Algorithm 1: Adversarial Training Procedure

Require: captioner πθ , domain critic Cd, multi-modal critic

Cm, an empty set for generated sentences Yπθ
, and an

empty set for paired image-generated-sentence Pgen;

Input: sentences Ŷsrc, image-sentence pairs Psrc, unpaired data

Ṕsrc in source domain; sentences Ŷtgt, images Xtgt in

target domain;

1 Pre-train πθ on Psrc using Eq. 1;

2 while θ has not converged do

3 for i = 0, ..., Nc do

4 Yπθ
← {y},where y ∼ πθ(·|x, ·) and x ∼ Xtgt;

5 Compute gd = ∇φLd(φ) using Eq. 10;

6 Adam update of φ for Cd using gd;

7 Yπθ
← {y},where y ∼ πθ(·|x, ·) and x ∼ Xsrc;

8 Pgen ← {(x,y)};
9 Compute gm = ∇ηLm(η) using Eq. 11;

10 Adam update of η for Cm using gm;

11 for i = 0, ..., Ng do

12 Yπθ
← {y},where y ∼ πθ(·|x, ·) and x ∼ Xtgt;

13 Pgen ← {(x,y)};
14 for t = 1, ..., T do

15 Compute Q((x,yt−1), yt) with Monte Carlo

rollouts, using Eq. 6;

16 Compute gθ = ∇θJ(θ) using Eq. 5;

17 Adam update of θ using gθ;

where η is the model parameter of MC, Psrc is the paired

data from the source domain, Ṕsrc is the unpaired data in-

tentionally collected randomly by shuffling images and sen-

tences in the source domain, and Pgen is the source-image-

generated-sentence pairs.

3.3. Adversarial Training

Our cross-domain image captioning system is sum-

marized in Fig. 3. Both captioner πθ and critics Cd

and Cm learn together by pursuing competing goals as

described below. Given x, the captioner πθ gener-

ates a sentence y. It would prefer the sentence to

have large reward R(y|.), which implies large values

of Cd(target|y) and Cm(paired|x.y). In contrast, the

critics would prefer large values of Cd(generated|y)
and Cm(generated|x,y), which implies small values of

Cd(target|y) and Cm(paired|x.y). We propose a novel

adversarial training procedure to iteratively updating the

captioner and critics in Algorithm 1. In short, we first pre-

train the captioner using cross-entropy loss on source do-

main data. Then, we iteratively update the captioner and

critics with a ratio of Ng : Nc, where the critics are updated

more often than captioner (i.e., Ng < Nc).

3.4. Critic­based Planning

The quality of a generated word yt is typically measure

by the policy network π(yt|·). For cross-domain caption-
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(a)	MSCOCO (b)	Oxford-102 (c)	CUB-200

Figure 4: Word clouds for testing set of (a) MSCOCO, (b) Oxford-102, (c) CUB-200, where font size indicates the frequency of words.

ing, the learned critics can also be used to measure the qual-

ity of yt by computing Q((x,yt−1), yt) using Eq. 6. Here,

Q is an expected value that models the randomness of fu-

ture words, so we call our method ”critic-based planning”.

Critic-based planning takes advantage of both the learned

policy network as well as the critics. By default, we se-

lect y∗t = argmaxy πθ(y|·) as the generated word. How-

ever, when the difference between the maximum probabil-

ity and the second largest probability of πθ(·) is below a

threshold Γ (where the selection of y∗t is ambiguous), we

take the top J words {yjt }
J
j=1 according to π(y|·) and eval-

uate Q((x,yt−1), y
j
t ) for all j. Then, we select the word

with the highest Q value as the generated word. Note that

the sentences generated via critic-based planning can be

exactly the same as greedy search. Our critic-based plan-

ning method obtain further performance improvement typi-

cally on dataset with large domain shift (e.g., CUB-200 and

Oxford-102).

4. Experiments
We perform extensive evaluations on a number of pop-

ular datasets. For all experiments, we use MSCOCO [23]

as the source dataset and CUB-200 [34], Oxford-102 [26],

TGIF [22], and Flickr30k [37] as target datasets. We show

that our method generalizes to datasets with large domain

shift (CUB-200 and Oxford-102) and datasets with regu-

lar domain shift (Flickr30k and TGIF). We also show that

critic-based planning can further improve performance dur-

ing inference on datasets with large domain shift. Finally,

we conduct an ablation study on Flickr30k to show the con-

tribution of different components.

4.1. Implementation details

Data preprocessing. For source domain dataset, we se-

lect the MSCOCO training split from [17] which contains

113, 287 images, along with 5 captions each. We prune

the vocabulary by dropping words with frequency less than

5, resulting in 10, 066 words including special Begin-Of-

Sentence (BOS) and End-Of-Sentence (EOS) tokens. We

use the same vocabulary in all experiments. For target do-

main datasets, we remove the training sentences containing

out-of-vocabulary words (see Supplementary for detailed

statistics).

Pre-training details. The architecture of our captioner is a

CNN-LSTM with hidden dimension 512. The image fea-

tures are extracted using the pre-trained Resnet-101 [12]

and the sentences are represented as one-hot encoding. We

first pre-train the captioner on source domain dataset via

cross entropy objective using ADAM optimizer [20] with

learning rate 5 × 10−4. We apply learning rate decay with

a factor of 0.8 every three epoches. To further improve the

performance, we use schedule sampling [5] to mitigate the

exposure bias. The best model is selected according to the

validation performance and serve as the initial model for

adversarial training.

Adversarial training details. We train the captioner and

critics using ADAM optimizer [20] with learning rate of

5 × 10−5. We apply dropout in training phase to prevent

over-fitting, which also served as input noise similar to [16].

In Monte Carlo rollout, the model samples words until the

EOS token under the current policy for K = 3 times. These

K sentences are them fed to the critics for estimating the

state-action value Q(·). Both critics are trained from scratch

using the standard classification objective.

4.2. Experimental Results

We first pre-train the captioner on MSCOCO training set.

Next, we update the captioner by adversarial training pro-

cedure with unpaired data from the training set in target do-

mains. Finally, we evaluate our method on four target do-

main datasets, representing different levels of domain shift.

Baseline. We re-implement Deep Compositional Captioner

(referred to as DCC) [14] as our baseline method. DCC con-

sists of a lexical classifier and a language model. The for-

mer is a CNN model trained to predict semantic attributes

and the latter is an LSTM model trained on unpaired text.

In the end, the overall DCC model combines both models

with a linear layer trained on paired image-caption data. For

fair comparison, we apply the following settings on DCC,

where the lexical classifier is a ResNet-101 model and the

language model is trained on target domain sentences. Note

that the ResNet-101 is fine-tuned with 471 visual concepts

(pre-defined in [14]) extracted from captions. Finally, we

use source domain image-caption pairs to fine-tune DCC.

We also fine-tune a pre-trained source domain model di-
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Table 1: Results of adaptation across four target domain datasets. Source (MSCOCO) Pre-trained and DCC are two baseline methods.

Fine-tuning with paired data in target domain serves as the upper bound performance of our CNN-RNN captioner.

Method Target (test) Bleu-1 Bleu-2 Bleu-3 Bleu-4 Meteor ROUGE CIDEr SPICE

Source Pre-trained CUB-200 50.8 28.3 13.9 6.1 12.9 33 3 4.6

DCC CUB-200 68.6 47.3 31.4 21.4 23.8 46.4 11.9 11.1

Ours CUB-200 91.4 73.1 51.9 32.8 27.6 58.6 24.8 13.2

Fine-tuning CUB-200 91.3 80.2 69.2 59 36.1 69.7 61.1 17.9

Source Pre-trained Oxford-102 48.3 21.6 6.2 1.3 10.5 25.8 3.1 4.4

DCC Oxford-102 51 33.8 24.1 16.7 21.5 38.3 6 9.8

Ours Oxford-102 85.6 76.9 67.4 60.5 36.4 72.1 29.3 17.9

Fine-tuning Oxford-102 87.5 80.1 72.8 66.3 40 75.6 36.3 18.5

Source Pre-trained TGIF 41.6 23.3 12.6 7 12.7 32.7 14.7 8.5

DCC TGIF 34.6 17.5 9.3 4.1 11.8 29.5 7.1 7.3

Ours TGIF 47.5 29.2 17.9 10.3 14.5 37 22.2 10.6

Fine-tuning TGIF 51.1 32.2 20.2 11.8 16.2 39.2 29.8 12.1

Source Pre-trained Flickr30k 57.3 36.2 21.9 13.3 15.1 38.8 25.3 8.6

DCC Flickr30k 54.3 34.6 21.8 13.8 16.1 38.8 27.7 9.7

Ours Flickr30k 62.1 41.7 27.6 17.9 16.7 42.1 32.6 9.9

Fine-tuning Flickr30k 59.8 41 27.5 18.3 18 42.9 35.9 11.5

rectly on paired training data in the target domain (referred

to as Fine-tuning). Ideally, this serves as the upper bound 4

of our experiments.

We further categorize three kinds of domain shift be-

tween MSCOCO and other target datasets, namely general

v.s. fine-grained descriptions, difference in verb usage and

subtle difference in sentence style.

General v.s. fine-grained descriptions. The large domain

shift between MSCOCO and CUB-200/Oxford-102 sug-

gests that it is the most challenging domain adaptation sce-

nario. In CUB-200/Oxford-102, descriptions give detailed

expressions of attributes such as beak of a bird or stamen of

a flower. In contrast, in MSCOCO, descriptions usually are

about the main scene and character. We illustrate the differ-

ences at word-level distribution among MSCOCO, CUB-

200, and Oxford-102 using Venn-style word clouds [7] (see

Fig. 4 5).

On the top two rows of Fig. 5 show that our model can

describe birds and flowers in detailed and also the appear-

ance of fine-grained object attributes. In the top two blocks

of Table 1, our method outperforms DCC and Source Pre-

trained models by a considerable margin for all evaluation

metrics.

Difference in verb usage. Next, we move towards the verb

usage difference between the source and target domains.

According to [22], there are more motion verbs (30% in

TGIF vs. 19% in MSCOCO) such as dance and shake, and

more facial expressions in TGIF, while verbs in MSCOCO

are mostly static ones such as stand and sit. Examples in

Fig. 5 show that our model can accurately describe human

activities or object interactions. On the third panel of Ta-

4We find that the model directly trained on all paired data in target

domain performs worse than fine-tuning. Please see Supplementary for

details.
5Visualization generated using http://worditout.com/.

ble 1, our method also significantly improves over Source

Pre-trained and DCC models.
Subtle difference in sentence style. In order to test the

generalizability of our method, we conduct an experiment

using similar dataset (i.e. Flickr30k) as target domain. In

the bottom block of Table 1, our method also offers a no-

ticeable improvement. In addition, we reverse the route of

adaptation (i.e. from Flickr30k to MSCOCO). Our method

(CIDEr 38.2%, SPICE 8.9%) also improves over source

pre-trained model (CIDEr 27.3%, SPICE 7.6%). To sum up,

our method shows great potentials for unsupervised domain

adaptation across datasets regardless of regular or large do-

main shift.
Critic-based planning. Instead of directly generating the

word yt from policy network π(yt|.), we take the advantage

of its adversary, critics, during the inference. The results is

shown in Table 2. The threshold Γ is set to 0.15 in CUB-200

and to 0.1 in Oxford-102. In every time-step, we choose

top J = 2 words according to πθ(.). Out of 16.2% and

9.4% of words are determined by the critics in CUB-200,

and Oxford-102, respectively. Compared to greedy search,

critic-based planning can achieve better performance in

many evaluation metrics, especially in datasets with large

domain shift from the source domain dataset (e.g., CUB-

200 and Oxford-102). Compared to beam search with beam

size 2, critic-based planning also typically gets a higher per-

formance. Beam search method generates the words only

depending on captioner itself, while critic-based planning

method acquires a different point of view from the crit-

ics. For the case of regular domain shift (e.g., TGIF

and Oxford-102), critic-based planning achieves compa-

rable performance with beam search and greedy search.

Some impressive examples are shown in Fig. 6.
4.3. Ablation Study

We have proposed an adversarial training procedure with

two critic models: Multi-modal Critic (MC) and Domain
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C
U
B
-2
0
0 Before:	A	bird	is	standing	on	a					

table	with	flowers.								

After:	A	small	bird	with	a	white	

belly	and	a	black	head.

Before:	A	red	bird	sitting	on	a	tree	

branch.								

After:	This	is	a	red	bird	with	a	black	

wing	and	a	small	beak.

Before:	A	bird	flying	 through	 the	

air	with	a	sky	background.

After:	A	large	bird	with	a	long	 tail	

and	a	long	beak.

T
G
IF

Before: A cat	is	standing	 in	a	room	

with	a	cat.

After:	A cat	is	playing	with	a	toy	

in	a	room.

Before:	A baseball	player	is	a	ball	

on	a	field.

After: A group	 of	men	are	playing	

soccer	on	a	field.

Before:	A man	in	a	black	shirt	

and	a	tie.

After:	A man	in	a	suit	is	singing	

into	a	microphone.

After:	A	young	baseball	player	is	

sliding	 into	a	base.

Before:	A	young	baseball	player	is	

a	ball	in	the	field.

After:	A	young	boy	playing	with	a	

soccer	ball	in	a	field.

Before:	A	boy	in	a	field	playing	

with	a	frisbee.
Before:	A	dog	is	running	 in	the	

grass	with	a	frisbee.

After:	A	brown	dog	is	running	 in	

the	grass.

Before:	A	white	flower	in	a	vase	on	

a	table.

After:	This	flower	has	petals	that	

are	pink	and	has	a	yellow	center.

Before:	A	yellow	flower	 is	in	a	clear	

vase.

After:	This	flower	has	petals	that	

are	yellow	and	has	red	lines.

Before:	A	red	flower	 in	a	yellow	

vase	on	a	wooden	table.

After:	This	flower	has	petals	that	

are	pink	and	has	red	dots.

O
x
fo
rd
-1
0
2

F
li
ck
r3
0
k

After:	A	man	and	a	woman	are	

looking	 at	each	other.

Before:	A	man	with	a	beard	and	a	

tie	and	a	man.

After:	A	dog	 is	eating	a	banana	in	a	

bowl.

Before:	A	dog	laying	in	the	floor	

with	a	banana.
Before:	A	man	is	looking	at	a	cell	

phone.

After:	A	man	is	looking	 at	

something	 in	the	mirror.

Fa
il
u
re
	c
a
se
s

Figure 5: Examples of captions before and after domain adaptation for all four target domain datasets. The last row demonstrates the

failure cases, where the generated captions do not accurately describe the images.

G:	A	small	bird	with	a	yellow	belly	and	a	black	beak.

B:	This	is	a	grey	bird	with	a	black	head	and	a	small	beak.

P:	This is	a	grey bird	with	a	white belly	and	a	black head.

G:	This	is	a	grey	bird	with	a	black	head	and	a	white	beak	.

B:	This	is	a	grey	bird	with	a	white	belly	and	a	black	head	.

P:	A black bird	with	a	white belly	and	a	black	beak	.

Figure 6: Results of critic-based planning. G stands for greedy search, B for beam search, and P for critic-based planning. The underlined

words denote that the difference between the maximum probability and the second largest probability of π is lower than Γ (selected by

critic). When critic-based planning does not choose the word with maximum probability of π, the word is colored in red.

Table 2: Results of proposed critic-based planning compared with

greedy search and beam search.

Method Bleu-4 Meteor ROUGE CIDEr-D

MSCOCO → CUB-200

Greedy Search 32.8 27.6 58.6 24.8

Beam Search 33.1 27.5 58.3 26.2

Planning 35.2 27.4 58.5 29.3

MSCOCO → Oxford-102

Greedy Search 60.5 36.4 72.1 29.3

Beam Search 60.3 36.3 72 28.3

Planning 62.4 36.6 72.6 24.9

MSCOCO → TGIF

Greedy Search 10.3 14.5 37 22.2

Beam Search 10.5 14.2 36.7 22.6

Planning 10.3 14.4 37 21.9

MSCOCO → Flickr30k

Greedy Search 17.5 16.4 41.9 32.2

Beam Search 18.2 16.4 42.1 33.3

Planning 17.3 16.5 41.7 32.3

Critic (DC). In order to analyze the effectiveness of these

two critics, we do ablation comparison with either one and

both. Table 3 shows that using MC only is insufficient since

MC is not aware of the sentence style in target domain. On

the other hand, using DC only contributes significantly. Fi-

nally, combining both MC and DC achieves the best perfor-

mance for all evaluation metrics. We argue that both MC

and DC are vital for cross-domain image captioning.

Table 3: Ablation study for two critic models on Flickr30k. MC:

Multi-modal Critic, DC: Domain Critic.

Method Bleu-4 Meteor ROUGE CIDEr-D

Source Pre-trained 13.3 15.1 38.8 25.3

+MC 13.7 15.2 38.8 25.9

+DC 17.6 16.3 41.4 32.1

+MC+DC 17.9 16.7 42.1 32.6

5. Conclusion

We propose a novel adversarial training procedure (cap-

tioner v.s. critics) for cross-domain image captioning. A

novel critic-based planning method is naturally introduced

to further improve the caption generation process in testing.

Our method consistently outperforms baseline methods on

four challenging target domain datasets (two with large do-

main shift and two with regular domain shift). In the future,

we would like to improve the flexibility of our method by

combining multiple critics in a plug-and-play fashion.
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