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Abstract

We study the problem of single-image depth estimation

for images in the wild. We collect human annotated surface

normals and use them to help train a neural network that

directly predicts pixel-wise depth. We propose two novel

loss functions for training with surface normal annotations.

Experiments on NYU Depth, KITTI, and our own dataset

demonstrate that our approach can significantly improve

the quality of depth estimation in the wild.

1. Introduction

Single-image depth estimation is an important com-

puter vision problem that has the potential to majorly boost

higher-level tasks such as object recognition and scene un-

derstanding. However, despite extensive research [26, 10,

25, 1, 9, 22, 32, 34, 18, 6, 29, 27, 2], single-image depth

estimation remains difficult. In particular, it remains dif-

ficult to estimate depth for unconstrained images of arbi-

trary scenes, because, as prior work [7] has pointed out, ex-

isting RGB-D datasets used to train current systems were

collected by depth sensors. As a result, they consist of a

few specific types of indoor and outdoor scenes. Systems

trained on these datasets thus cannot generalize to images

“in the wild” of arbitrary scenes and compositions.

Recent work by Chen et al. [7] made an attempt to es-

timate depth for images “in the wild”: they collected hu-

man annotations of relative depth—the depth ordering of

two points—for random Internet images and use the anno-

tations to train a deep network that directly predicts metric

depth. Chen et al. showed that it is possible to improve

depth estimation for images in the wild by using human an-

notations of depth. In particular, they showed that while it

is difficult to obtain absolute metric depth (per-pixel depth

values) from humans, it is nonetheless feasible to collect in-

direct, qualitative depth annotations such as relative depth,

and use such annotations to learn to estimate metric depth.

This strategy does not rely on depth sensors and can work

∗Work done while a visiting student at the University of Michigan.

with arbitrary images; it thus has the potential to signifi-

cantly advance depth estimation in the wild.

One limitation of the work by Chen et al. [7], however,

is that annotations of relative depth do not capture all infor-

mation that is perceptually important. In particular, relative

depth is invariant to monotonic transformations of metric

depth, meaning that there can be two scenes that are per-

ceptually very different yet are indistinguishable in terms

of relative depth. For example, it is possible to bend, wig-

gle, or tilt a straight line without affecting relative depth

(Fig. 2). In other words, relative depth does not capture

important perceptual properties such as continuity, surface

orientation, and curvature. As a result, systems trained on

relative depth will not necessarily recover depth that is per-

ceptually faithful in all aspects.

In this paper, we build on the work of Chen et al. [7]

and address the limitation by introducing surface normals

as an additional type of indirect depth annotation. Surface

normals carry important information on 3D geometry: they

encode the local orientation of surfaces and the derivatives

of depth. In fact, absent depth discontinuities, given dense

surface normals, it is possible to recover full metric depth up

to scaling and translation. This suggests that annotations of

surface normals can eliminate a significant amount of ambi-

guity in relative depth and result in better depth estimation.

In addition, it has been well documented in human vision

research that humans perceive surface orientation with a re-

markable degree of consistency [20]. This suggests that it

could be feasible to collect human annotations for images

in the wild.

We consider two questions: how to crowdsource anno-

tations of surface normals, and how to use surface normal

annotations to help train a network that predicts per-pixel

metric depth. To crowdsource surface normals, we develop

a UI that allows a user to annotate a surface normal by ad-

justing a virtual arrow and a virtual tangent plane. This UI

allows human annotators to reliably estimate surface nor-

mals. With this UI we introduce a dataset called “Surface

Normals in the Wild” (SNOW), which consists of surface

normal annotations collected from 60,052 Flickr images.1

1Code and data are available on www.umich.edu/˜wfchen/.
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Figure 1. Building on top of the work of Chen et al. [7], we crowdsource annotations of surface normals and use the collected surface

normals to help train a better depth prediction network.
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Figure 2. Ambiguities of relative depth annotation. Bending, wig-

gling, or tilting a 3D surface from the solid line to the dotted line

does not change the ordinal relation between point A and B.

To incorporate surface normal annotations into training,

we develop two novel loss functions to train a deep network

that directly predicts metric depth. The first loss function

is based on directly comparing normals, that is, comput-

ing the angular difference between the ground truth normals

and the normals derived from the predicted depth. The sec-

ond loss function is based on comparing depth derivatives,

i.e., computing the discrepancy between the derivative of

the predicted depth and the derivative given by the ground

truth normals. We show that each approach incurs its own

trade-offs and emphases on different aspects of depth qual-

ity, and should be chosen based on particular applications.

Our main contributions are (1) a new dataset of crowd-

sourced surface normals for images in the wild and (2) two

distinct approaches of for using surface normal annotations

to train a deep network that directly predicts per-pixel met-

ric depth. Experiments on NYU Depth [31], KITTI [14]2

and SNOW demonstrate that surface normal annotations

can significantly improve the quality of depth estimation.

2. Related work

Datasets with depth and surface normals RGB-D

datasets have played an important role in advancing the es-

timation of depth or normals from a single image [11]. Prior

works have mostly used NYU Depth [31] , Make3D [30],

KITTI [14], or ScanNet [8]. Although these datasets pro-

2in the supplementary material due to space constraints

vide highly accurate depth, as pointed out by Chen et al. [7]

they are limited to specific types of scenes. The same lim-

itation applies to synthetic datasets such as MPI Sintel [5]

and the dataset by [28] because the 3D content had to be

manually created. The Depth in the Wild (DIW) dataset

introduced by Chen et al. [7] takes a major step toward in-

cluding arbitrary scenes in the wild. However, DIW pro-

vides only relative depth annotations, which lack informa-

tion on many essential 3D properties such as surface nor-

mals. We build upon DIW and introduce a new dataset of

crowdsourced surface normals for images in the wild.

Open Surfaces [4] is a large dataset of images with anno-

tations of surface properties including surface normals and

material. However, open Surfaces is not suitable for depth

estimation in the wild: it contains only images of indoor

scenes. In addition, it only has surface normals for planar

surfaces, whereas our dataset has no such restriction.

Depth and surface normals from a single image There

has been a large body of work on estimating depth and/or

surface normals from a single image [15, 26, 10, 25, 1, 9,

24, 22, 32, 34, 18, 3]. All these methods use dense ground

truth depth or normals during training, except the work of

Zoran et al [36] which uses relative depth for training. They

all have difficulty generalizing to images in the wild due to

the limited scene diversity of the existing datasets that were

acquired by depth sensors.

Chen et al. [7] instead use crowdsourced relative depth

for training, using indirect depth human annotations to get

around the limitations of depth sensors. Our work goes be-

yond the work of Chen et al. by exploring surface normals.

Other recent works [15, 13, 35] have also leveraged in-

direct supervision of depth. In particular, they have used

pairs of stereo images to impose constraints on the predicted

depth, e.g. the depth estimated from the left image should

be consistent with the depth estimated from the right image

as dictated by epipolar geometry [13].

Chakrabarti et al. [6] trained a network that simultane-
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Figure 3. The annotation UI. The user can click on the sphere and

adjust the slider bars to annotate the surface normal of the high-

lighted point.

ously predicts distributions of depth and distributions of

depth derivatives at each pixel location. Then they used a

global optimization method to recover a single depth map

that is most consistent with the predictions. Our work dif-

fers in two ways. First, the only output of our network is a

depth map. Our network does not directly predict surface

normals or depth derivatives, and thus there is no need for

additional optimization steps to harmonizing the outputs.

Second, we do not use dense ground truth metric depth in

training. Our ground truth annotations are sparse and in-

volve only relative depth and/or surface normals.

Surface normals in 3D reconstruction Surface normals

have played important roles in many 3D reconstruction sys-

tems. For example, surface normals have been used to infer

3D models [21], create watertight 3D surfaces [19], regular-

ize planar object reconstruction [33], and to aid multi-view

reconstruction [12] and structure from motion [17], or depth

estimation [16]. In our approach, surface normals are used

in training only; the network directly predicts depth, with-

out explicitly producing surface normals.

3. Dataset construction

Similar to the Depth in the Wild (DIW) dataset by Chen

et al. [7], we source our images from Flickr using ran-

dom keywords from an English dictionary. For each image,

we extract the focal length of the camera from the EXIF

metadata—the focal length is needed for determining the

amount of perspective distortion when we visualize a sur-

face normal on top of an image in our UI.

To collect surface normal annotations, we present a

crowd worker with an image and a highlighted location

(Fig. 3). The worker then draws a surface normal using a

set of controls: she can pick a point on a sphere, or use

two slider bars to adjust the angles (there are two degrees

of freedom). The surface normal is visualized as an arrow

originating from a 2D grid that represents the tangent plane.

Both the arrow and the 2D grid are rendered taking into ac-

count the focal length extracted from the image metadata.

This visualization is inspired by the gauge figures used in

human vision research [20]; it helps the worker perceive the

surface normal in 3D.

For each image, we pick one random location uniformly

from the 2D plane to have its surface normal annotated. Fol-

lowing Chen et al. [7] we only pick one random location to

minimize the correlation between annotations.

As the locations are randomly picked, some may fall

onto areas where the surface normal is hard to infer, espe-

cially when there is a large amount of clutter or texture, e.g.

tree leaves in the distance or grass in a field. Surface nor-

mals may also be impossible to infer on regions such as the

sky or a dark background (some examples are shown in the

supplementary material). In these cases a user can indicate

that the surface normal is hard to tell.

We crowdsource the task through Amazon Mechanical

Turk. We randomly inject gold standard samples into the

task to identify spammers. Each surface normal is annotated

by two different workers. If the two annotations are within

30 degree of each other, then we take the average of the

two (renormalized to a unit vector) as the final annotation;

otherwise, we discard both annotations.

Fig. 4 shows some examples of the collected normals. In

total, we processed 210,000 images on Amazon Mechani-

cal Turk and obtain 60,052 valid samples. On average, it

takes about 15 seconds for a worker to annotate one surface

normal. The average angular difference between the two

accepted annotation is 14.32◦. This suggests that human

annotations usually agree with each other quite well.

3.1. Quality of human annotated surface normals

An important question is how consistent and accurate

the human annotations are. To study this, we collect hu-

man annotations of surface normals on a random sample

of 113 NYU Depth [31] images. Each surface normal is

estimated by three human annotators. We compare the hu-

man annotations with the ground truth surface normals (de-

rived from the Kinect ground truth depth). We measure the

Human-Human Disagreement (HHD) using the average an-

gular difference between a human annotation and the mean

of multiple human annotations. We measure Human-Kinect

Disagreement (HKD) using the average angular difference

between a human annotation and the Kinect ground truth.

We found that the Human-Human Disagreement on our

sample is (7.4◦). This suggests that human annotations

are remarkably consistent between each other. However,

the Human-Kinect Disagreement is 32.8◦ which at first

glance seems to suggest that human annotations contain a

large amount of systemic bias measured against the Kinect

ground truth. However, a close inspection reveals that most

of the disagreement is a result of imperfect Kinect ground

truth rather than biased human estimation.

One source of Kinect error is holes in the raw depth map.

Some holes are due to specular or reflective surfaces; others
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Figure 4. Some examples of the surface normal annotations from the SNOW dataset. The surface normal is drawn as a red arrow, and the

tangent plane a green grid. Best viewed in color.

are due to the parallax caused by the RGB camera located

slightly away from the depth camera. The holes in the raw

Kinect depth map are filled through some heuristic post-

processing. Such hole-filling is imperfect. It is especially

problematic at cluttered regions because it cannot recover

the fine variations of depth and as a result the derived nor-

mals will be inaccurate.

Another source of Kinect error is imperfect normals

computed from accurate depth. In this experiment we used

the official toolkit from the NYU Depth dataset [31] to com-

pute normals. Each normal is computed by fitting a plane

to a neighborhood of pixels. But this procedure tends to

smooth out normals at or close to sharp normal discontinu-

ities (e.g. at the intersection of two planes or at occlusion

boundaries). This problem is especially severe in cluttered

regions where there are many such discontinuities. To ad-

dress this issue, more advanced methods such as [23] may

be necessary.

We manually inspected every image in our sample and

found that 37% of the cases can be attributed to one of

the two sources of Kinect error (holes or imperfect normal

calculation). Fig. 5 shows examples of such cases. The

Human-Kinect disagreement on these problematic cases is

44.32◦. Excluding these cases, the Human-Kinect disagree-

ment is only 15.64◦. It is worth noting that in those cases

of Human-Kinect disagreement, humans remain remark-

ably consistent among themselves (average disagreement is

7.17◦). These results suggest that human annotations of sur-

face normals are of high quality.

It is worth noting that due to the inherent ambiguity of

single-image depth estimation, we can never expect humans

to match the accuracy of depth sensors, which use more than

a single image to recover depth. And in many applications,

especially those involving recognition, metric fidelity is not

essential. Consistency is the more important quality mea-

sure because it means that there is a consistent representa-

tion (possibly biased) that we can hope to learn to estimate.

4. Learning with surface normals

Our goal is to train a deep neural network to perform

depth prediction. We build our method upon [7], which uses

relative depth as supervision during training. The main idea

from [7] is to train a network using a loss function that

(a) (b)

Figure 5. Examples of Kinect error with zoomed-in views of the

query points (yellow crosses). The Kinect ground truth is shown as

red arrows and purple grids, and human annotations blue arrows

and green grids. (a): Kinect depth is missing around the query

point due to a transparent object. (b): The Kinect surface normal at

the query point is calculated incorrectly due to depth discontinuity.

penalizes the inconsistency between the predicted depth and

the ground truth relative depth (ordinal relations between

pairs of points). We propose to incorporate surface normals

as additional supervision. This translates to a loss function

that encourages the predicted depth to be consistent with

both the ground truth relative depth and the ground truth

surface normals.

Formally, let I be a training image with K relative depth

annotations and L surface normal annotations. Using the

same notations of [7], let R = (ik, jk, rk), k = 1 . . .K
be the set of relative depth annotations, where ik and jk
are the locations of two points in the k-th annotation and

rk ∈ {>,<,=} is the ground-truth ordinal relation (closer,

further, or same distance). Let S = {pl, nl} be the set of

surface normal annotations, where pl is the location of the

l-th annotation and nl ∈ R
3 is the ground truth surface

normal at this location.

We can now express the loss function as follows:

L(R,S, z) =
1

K

K
∑

k=1

ψ(ik, jk, rk, z) + λ
1

L

L
∑

l=1

φ(pl, nl, z)

(1)

where z is the depth map predicted by the network. The loss

term ψ(ik, jk, rk, z) measures the inconsistency between

the predicted depth map z and the k-th relative depth an-

notation. The loss term
∑L

l=1
φ(pl, nl, z) measures the in-

consistency between the predicted depth map z and the l-th
surface normal annotation. The hyper-parameter λ balances

the two terms.

A revised relative depth loss Chen et al. [7] define the loss

term ψ(ik, jk, rk, z) as
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





ln (1 + exp(−zik + zjk)) , rk ∈ {>}
ln (1 + exp(zik − zjk)) , rk ∈ {<}
(zik − zjk)

2, rk ∈ {=}
(2)

This definition encourages two depth values to be as dif-

ferent as possible if their ground truth ordinal relation is an

inequality, or as similar as possible if their ground truth re-

lation is equality. It works well if relative depth is the only

form of supervision, as shown by Chen et al. [7], but it is

problematic when used in conjunction with annotations of

surface normals. The problem is that it encourages the dif-

ference of two unequal depth values to be infinitely large.

This can potentially conflict with annotations of surface nor-

mals, which encourage the depth values to have a specific

difference to form a specific surface orientation.

To address this issue we revise the loss term by intro-

ducing a margin τ > 0 that stops the loss from decreasing

if two depth values supposed to be unequal are already at

least τ apart and if two equal depth values supposed to be

equal are apart by no more than τ :







ln (1 + exp(−min(zik − zjk , τ))), rk ∈ {>}
ln (1 + exp(−min(zjk − zik , τ))), rk ∈ {<}
max(τ2, |zik − zjk |

2), rk ∈ {=}.
(3)

To make the loss term compatible with surface normals,

we make another modification. We add a softplus transform

to the network to enforce positive depth. This is needed

because a negative depth means that the object is behind the

camera and will cause issues in computing surface normals

from the predicted depth.

Angle-based surface normal loss We now consider how to

define the loss term φ(pl, nl, z) in Eqn. 1 that compares the

predicted depth map z with a ground truth surface normal

nl at location pl.
The first approach we propose is to derive a surface nor-

mal ν(z)pl
at the same location from the predicted depth

map z and compare the derived normal to the ground truth.

Here ν is a function that maps a depth map to a map of

surface normals, and ν(z)pl
is the derived surface normal at

location pl. The loss term can now be defined as the angular

difference between the derived normal and the ground truth

normal, expressed as a dot product of the two normals:

φl(pl, nl, z) = − < nl, ν(z)pl
> . (4)

We call this formulation the angle-based surface normal

loss.

To derive surface normals from depth, i.e. to implement

the function ν, we first back-project the pixels to 3D points

in the camera coordinate system, assuming a pinhole cam-

era model with a known focal length f . In particular, a pixel

Image Plane

Depth 
Axis

θ

θ

∆1

∆2

Near Perpendicular Case Near Parallel Case

Ground-truth

Ground-truth
Predicted

Predicted

d d

Figure 6. Two 3D planes (solid lines) whose predicted surface nor-

mals both deviate by θ from the ground-truth but incur drastically

different metric depth errors ∆1 and ∆2.

located at (x, y) on the image plane with depth z′ is mapped

to the 3D point (xz′/f, yz′/f, z′):

β : (x, y, z′) → (xz′/f, yz′/f, z′) (5)

We then compute the surface normal ν(z)xy for a pixel

located at (x, y) using the cross product of the two vectors

formed by its adjacent four neighbors (top to bottom, left to

right):

ν(z)xy = [β(x− 1, y, zx−1,y)− β(x+ 1, y, zx+1,y)]

⊗[β(x, y − 1, zx,y−1)− β(x, y + 1, zx,y+1)],
(6)

where ⊗ denotes cross product and β is the back-projection

function in Eqn. 5. Combining Eqn. 5, and Eqn. 4 gives a

loss term φ(pl, nl, z) that is differentiable with respect to

the predicted depth z and can be easily incorporated into

backpropagation.

Depth-based surface normal loss. The angle-based sur-

face normal loss is natural, and a network trained with this

loss in addition to relative depth annotations should predict

better depth, as measured by the metric error (comparing

the predict depth with ground truth depth in terms of abso-

lute difference). In our experiments, however, we observe

that this is not always the case, especially with a large train-

ing set. In particular, we observe that a network will predict

a depth map that gives better surface normals, but the depth

map itself does not improve in terms of metric error.

This leads us to make one theoretical observation. The

observation is that when a surface normal is pointing side-

ways, a small change of the surface normal corresponds

to a disproportionally large change in depth values for the

neighobring pixels. In other words, metric depth error is

very sensitive to the depth values in regions of steep slopes,

but the angle-based loss does not reflect this sensitivity

(Fig. 6). This could result in the phenomenon that a de-

crease in the angle-based loss does not corresponds to any

notable improvement of metric depth error—the network is

not focusing on the steep slopes, the places that would make

the most difference in metric depth error.

Based on this observation we propose an alternative loss

formulation, which we call depth-based surface normal

loss. The idea is to take the predicted depth at a pixel and
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compute depth value of a neighbor using the ground truth

normal. In other words, we compute the depth value the

neighbor should take in order to be fully consistent with the

ground truth normal. This “should-be” depth is compared

with the actual predicted depth for the neighbor, and the

difference becomes the penalty in the loss term. This loss

is essentially converting a surface normal into the derivative

of depth, and then compare it to the actual predicted deriva-

tive of depth. This depth-based loss is thus better aligned

with metric depth error: surface normal annotations at steep

slopes will play a bigger role in the loss.

Specifically, let pT , pB , pL, pR be the top, bottom, left,

right neighbors of pixel p. We first obtain the back projec-

tion XT of pT using the predicted depth zpT (same as in

Eqn. 5). Let ΠT denote the plane that goes through XT

and is oriented according to the ground truth normal np.

By intersecting ΠT with a ray that originates from the cam-

era center and goes through the bottom neighbor pT in the

image plane, we obtain the “should-be” depth value ẑpB

for the bottom neighbor pB . Similarly, we can obtain the

“should-be” depth value for the top neighbor from the bot-

tom neighbor (ẑpT from zpB ), for the left neighbor from

the right neighbor (ẑpL from zpR ), and for the right neigh-

bor from the left neighbor (ẑpR from zpL ). Finally, the loss

term is defined as the difference between the “should-be”

depth and the actual predicted depth for all neighbors.

φl(pl, nl, z) =
∑

i∈{T,B,L,R}

(ẑpi

l

− zpl
)2/(ẑpi

l

+ zpl
)2, (7)

which is differentiable with respect to z. Note that the

squared difference between the two depth values is normal-

ized by their squared sum. This is for scale invariance; oth-

erwise the network will minimize the loss mostly by shrink-

ing the depth values with little regard to the normals.

Multiscale normals In addition to introducing depth-based

loss, we consider yet another strategy to address the is-

sue of angle-based surface normal loss. The strategy is to

collect surface normal annotations at multiple resolutions.

That is, we can collect some surface normal annotations at

lower resolutions. The rationale is that the steep slopes get

smoothed out in lower resolutions and become less steep,

which brings the angle-based loss more in line with metric

depth error. To use the normals from lower resolutions, we

add downsampling layers to the network to produce depth

maps of lower resolutions, and add an angle-based loss at

each additional resolution of the depth map.

5. Experiments on NYU Depth

We perform extensive experiments on NYU Depth [31].

The ground truth metric depth available in NYU Depth al-

lows us to simulate and evaluate how adding surface normal

annotations as indirect supervision can improve the predic-

tion of metric depth, which is impossible for images in the

wild, which do not have metric depth ground truth.

Implementation details For all our experiments on NYU

Depth, we use the same network architecture proposed in

[7]. The only difference is two modifications made to en-

sure that the loss term on relative depth will not encourage

the predicted depth to deviate from the true metric depth,

thus minimizing conflict with the loss term on surface nor-

mals. First, we add a softplus layer to ensure positive depth.

Second, we take the log of the predicted depth before send-

ing it to the relative depth loss in Eqn. 3. Taking the dif-

ference of the log depth is the same as taking the log of the

depth ratio, which is more consistent with the relative depth

annotations in NYU Depth [7, 36] because the ground truth

ordinal depth relations are based on thresholding depth ra-

tios rather than thresholding depth difference.

For relative depth “annotations” on NYU Depth, we use

the same set as in [7]. For surface normal “annotations”,

we generate them from the ground-truth depth using Eq 6.

Unless otherwise noted, in all our models trained with sur-

face normals, we provide 5,000 surface normal annotations

at random locations per image. We provide more imple-

mentation details in the supplementary material.

Main experiments We compare 5 models: (1) a model

trained with relative depth only (d); (2) a model trained with

relative depth and surface normals using the angle-based

loss (d n al); (3) same as (2) but using surface normals

from multiple resolutions while keeping the total number

of normal samples the same (d n al M). (4) a model trained

with relative depth and surface normals using depth-based

loss (d n dl). (5) same as (4) but using surface normals

from multiple resolutions while keeping the total number

the same (d n dl M).

As in prior work [7, 36], for each of the 5 models we train

and evaluate on NYU Subset, a standard subset of 1449 im-

ages in NYU Depth, and NYU Full, the entire NYU Depth.

Models trained on NYU Full are named with a F suffix). In

this section we discuss quantitative results. For qualitative

results, please refer to the Supplementary Material.

Evaluating metric depth Metric depth error measures the

metric differences between the predicted depth map and the

ground-truth depth map. Following prior work [7, 9, 36],

we evaluate the root mean squared error (RMSE), the log

RMSE, the log scale-invariant RMSE (log RMSE(s.inv)),

the absolute relative difference (absrel) and the squared rel-

ative difference (sqrrel); their precise definitions can be

found in [10]. Because single-image depth has scale ambi-

guity, before evaluation we normalize each predicted depth

map such that it has the same mean and variance as those of

the entire training set, as is done in [7].

However, such normalization is too crude in that it forces

every predicted depth map to have the same mean and vari-

ance regardless of the input scene, which will unfairly pe-
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nalize accurate predictions for scenes with a different mean

and variance. We therefore propose a new error metric

Least-Square RMSE (LS-RMSE) that better handles scale

and translation ambiguity in evaluation: for a predicted

depth map z and its ground-truth z∗ with pixels indexed by

i, we compute the smallest possible sum of their squared

differences under a global scaling and translation of the

depth values:

LS RMSE(z, z∗) = min
a,b

∑

i

(azi + b− z∗i )
2. (8)

Note that computing this error metric is the same as find-

ing the least square solution to a system of linear equations,

which has a well-known closed form solution.

Tab. 1 reports the results on metric depth error. We can

see that our baseline model trained with relative depth only

matches or exceeds the metric depth error reported by Chen

et al. [7]. We attribute this improvement to our revised rela-

tive depth loss (Eqn. 3), which does not encourage exagger-

ating depth differences once the ordering is correct.

On both NYU Subset and NYU Full, adding surface nor-

mals in training achieves significant improvement in metric

depth quality, as reflected most notably in LS-RMSE. The

improvement in metrics other than LS-RMSE is less sig-

nificant, indicating a mismatch of depth scale and transla-

tion. Among the models trained with surface normals, the

one trained with the depth-based loss (d n dl F) performs

the best, as expected from our discussion in Sec. 4. On

NYU Full, it outperforms the relative-depth-only baseline

significantly on LS RMSE, approaching the models trained

with full ground truth metric depth maps (Eigen(V) [9],

Chakrabarti [6]).

The model trained with the angle-based normal loss

yields no improvement on NYU Subset and negative im-

provement on NYU Full, which can be explained by our

theoretical observation that the angle-based loss is mis-

aligned with the metric depth error. The misalignment is

especially notable on a bigger dataset, which is harder to fit

and can cause the network to “give up” on the steep slopes,

which account for very little in the angle-based normal loss.

Using multiscale normals helps as expected, but it is not

enough to overcome the misalignment on NYU Full to out-

perform the relative-depth-only baseline.

Evaluating relative depth We also evaluate a predicted

depth map on ordinal error: disagreement with ground truth

ordinal relations between selected locations. We use the

same set of ground truth ordinal relations from [7], and re-

port the same metrics: WKDR, the weighted disagreement

rate between the predicted ordinal relations and the ground-

truth ordinal relations, and its variants WKDR= (WKDR of

pairs whose ground-truth order is =) and WKDR6=(WKDR

of pairs whose ground-truth order is either > or <). Fol-

lowing [7], we predict the ordinal relation of point A and B

by thresholding on difference of the predicted depth.

Training Method RMSE RMSE log RMSE absrel sqrrel LS

Data (log) (s.inv) RMSE

NYU d 1.12 0.39 0.26 0.36 0.45 0.64

Subset d n al 1.13 0.39 0.26 0.36 0.45 0.65

d n al M 1.11 0.39 0.25 0.36 0.44 0.59

d n dl 1.11 0.39 0.25 0.35 0.44 0.58

d n dl M 1.11 0.39 0.25 0.36 0.45 0.59

Chen [7] 1.12 0.39 0.26 0.36 0.46 0.65

Zoran [36] 1.20 0.42 - 0.40 0.54 -

NYU d F 1.08 0.37 0.23 0.34 0.41 0.52

Full d n al F 1.09 0.38 0.24 0.34 0.42 0.55

d n al F M 1.09 0.38 0.23 0.34 0.41 0.53

d n dl F 1.08 0.37 0.23 0.34 0.41 0.50

d n dl F M 1.09 0.38 0.24 0.35 0.43 0.52

Chen Full [7] 1.09 0.38 0.24 0.34 0.42 0.58

Eigen(V)* [9] 0.64 0.21 0.17 0.16 0.12 0.47

Chakrabarti* [6] 0.64 0.21 0.17 0.15 0.12 0.47

Table 1. Metric depth error evaluated on the NYU Depth dataset.

Models with a * suffix are trained on full metric depth.

Training Method WKDR WKDR= WKDR 6=

Data

NYU d 37.6% 36.4% 39.3%

Subset d n al 36.5% 35.5% 37.9%

d n al M 34.6% 33.4% 36.3%

d n dl 38.7% 36.9% 40.5%

d n dl M 39.0% 37.7% 40.5%

Chen [7] 35.6% 36.1% 36.5%

Zoran [36] 43.5% 44.2% 41.4%

NYU d F 29.2% 32.5% 28.0%

Full d n al F 27.6% 31.5% 26.6%

d n al F M 27.9% 32.2% 26.6%

d n dl F 30.9% 31.7% 31.4%

d n dl F M 35.5% 38.9% 34.6%

Chen Full [7] 28.3% 30.6% 28.6%

Eigen(V)* [9] 34.0% 43.3% 29.6%

Chakrabarti* [6] 27.5% 30.0% 27.5%

Table 2. Ordinal error evaluated on the NYU Depth dataset. Mod-

els with a * suffix are trained on full metric depth.

The results on relative depth are shown in Tab. 2. First

it is interesting to observe that our relative-depth-only base-

line model is slightly worse than Chen et al. [7], which also

trains with only relative depth. We attribute this difference

to our revised relative depth loss (Eqn. 3)—the loss in Chen

et al. [7] encourages exaggerating depth differences, which

leads to better relative depth performance at the expense of

metric accuracy, as reflected by Tab. 1.

Interestingly, adding normals improves ordinal error, but

only from the angle-based normal loss, not from the depth-

based normal loss. This is because depth-based normal loss

places great emphasis on getting the exact steep slopes, but

this does not make any difference to ordinal error as long as

the sign of the slope is correct.

Evaluating surface normals We now evaluate the pre-

dicted depth in terms of surface normals derived from it.

We use the same metrics as in [9]: the mean and median of

angular difference with the ground-truth, and the percent-

ages of predicted samples whose angular difference with

the ground-truth are under a certain threshold. The ground

truth normals for test are from NYU Depth toolkit [31], as

is done in [34, 9]. We also evaluate the derived surface

normals from other depth-estimation models, including (1)
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Figure 7. Normal maps produced by our model and Bansal [2]. Please view in color. More examples are in the Supplementary Material.

Training Method Angle Distance % Within t◦

Data Mean Median 11.25◦ 22.5◦ 30◦

NYU d 45.46 40.62 7.56 23.65 35.10

Subset d n al 37.53 31.93 13.04 34.38 47.39

d n al M 35.39 29.51 15.50 38.43 51.40

d n dl 40.53 34.58 11.40 31.13 43.56

d n dl M 41.88 35.76 10.73 29.69 41.88

Chen* [7] 50.68 44.96 4.16 16.77 28.21

NYU d F 29.45 22.71 22.31 50.71 63.65

Full d n al F 25.92 20.09 26.28 56.45 69.26

d n al F M 26.50 20.42 26.41 55.47 68.09

d n dl F 30.85 24.51 24.51 46.93 60.31

d n dl F M 37.63 31.58 13.41 34.97 47.97

Chen Full* [7] 30.35 24.37 18.64 46.80 61.42

Eigen(V) [9] 35.97 28.34 17.67 41.12 53.49

Chakrabarti [6] 29.80 20.43 31.34 54.90 64.57

Wang§ [34] 28.8 17.9 35.2 57.1 65.5

Eigen(V)§ [9] 22.89 16.26 38.23 63.30 73.18

Bansal§ [2] 22.63 15.78 39.17 64.17 73.77

Table 3. Surface normal error evaluated on the NYU Depth dataset.

The lower the better for Angle Distance metrics. The higher the

better for the Percentage within t
◦ metrics. Models with a § suffix

directly predict surface normals.

state-of-the-art depth estimation method of Eigen [9] and

Chakrabarti [6]; (2) The original method of Chen et al. [7]

augmented with a softplus layer to ensure positive depth

but otherwise trained the same way with relative depth only

(Chen* and Chen Full*).

We report the results in Tab. 3. As expected, models

trained with the angle-based normal loss perform better than

any other models in terms of surface normals derived from

depth, as the loss directly targes the normal error metric.

For reference, we also evaluate state of art methods that

directly predict surface normals: Bansal [2], Eigen [9] and

Wang [34]. Note that these models are trained on the full

dense normal maps on NYU Full whereas our models are

trained with only a sparse set of normals. Yet our best model

(d n al F) outperforms Wang [34].

Discussion Our experiments on NYU Depth show that sur-

face normal annotations can help depth estimation in the ab-

sence of ground truth depth. We have proposed two differ-

ent surface normal losses. Each has a different set of trade-

offs and is appropriate in different applications. If metric fi-

delity is important, especially at depth discontinuities, then

the depth-based loss is more appropriate. If surface orien-

tation is important than the fidelity of depth discontinuities,

then the angle-based loss is more appropriate.

Model Angle Distance Within t◦

Mean Median 11.25◦ 22.5◦ 30◦

Normals d n al F 32.53 27.44 15.40 40.53 54.12

from d n al F SNOW 25.68 21.20 22.26 52.92 68.31

Predicted Chen Full [7] 35.15 30.25 13.70 36.58 49.58

Depth Eigen(V) [9] 48.67 46.13 6.38 18.96 28.51

FCRN [24] 48.72 45.36 5.86 18.30 28.27

Directly Ours NYU§ 31.95 26.03 18.17 43.73 56.03

Predicted Ours NYU SNOW§ 23.33 17.99 30.42 60.54 72.74

Normals Eigen(V)§ [9] 29.81 23.81 19.90 47.28 59.95

Bansal§ [2] 27.85 22.25 23.41 50.54 64.09

Table 4. Surface normal error evaluated on SNOW. Models with a

§ suffix directly predict surface normals.

6. Experiments on SNOW

Since SNOW provides no ground truth of metric depth,

it is infeasible to evaluate how training with surface nor-

mals helps predict metric depth. We thus evaluate surface

normals as an indirect indicator of depth quality for images

in the wild. We split SNOW into 10,280 test images and

49,772 training images.

We first evaluate the surface normals derived from depth

prediction. Our baselines include state-of-the-art depth esti-

mation methods Eigen [9] and FCRN [24], both trained with

full metric depth from NYU Full. We compare these base-

lines with the d n al F network, our best performing model

in terms of normal error. We also fine tune the d n al F

network on SNOW (d n al F SNOW).

We can see in Tab. 4 that our network trained only on

NYU Full (d n al F) already outperforms the baselines.

Fine-tuning on SNOW yields a significant improvement.

SNOW also enables us to evaluate on methods that

directly predict surface normals. We include four mod-

els: (1) state-of-the-art surface normal estimation meth-

ods of Bansal [2] and Eigen [9]; (2) Chen et al. [7]’s

network trained to directly predict normals (Ours NYU§);

(3) Ours NYU§ fine-tuned on SNOW (Ours NYU SNOW§).

We can see from Tab. 4 that fine-tuning on SNOW signif-

icantly improves surface normal prediction. Finally, Fig. 7

shows examples of qualitative improvement achieved by

our network on images in the wild.
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