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Abstract

We propose a robust hand pose estimation method by

learning hand articulations from depth features and aux-

iliary modality features. As an additional modality to depth

data, we present a function of geometric properties on the

surface of the hand described by heat diffusion. The pro-

posed heat distribution descriptor is robust to identify the

keypoints on the surface as it incorporates both the local

geometry of the hand and global structural representation

at multiple time scales. Along this line, we train our heat

distribution network to learn the geometrically descriptive

representations from the proposed descriptors with the fin-

gertip position labels. Then the hallucination network is

guided to mimic the intermediate responses of the heat dis-

tribution modality from a paired depth image. We use the

resulting geometrically informed responses together with

the discriminative depth features estimated from the depth

network to regularize the angle parameters in the refine-

ment network. To this end, we conduct extensive evalua-

tions to validate that the proposed framework is powerful

as it achieves state-of-the-art performance.

1. Introduction

Rapid advances in human-computer interaction inter-

faces have been promising a realistic environment for gam-

ing and entertainment in the last few years. However, a

comprehensive hand tracking technology that would en-

hance virtual and augmented reality experiences still does

not exist. Extensive and lengthy researches [20, 17, 35, 23,

28, 18, 4, 19, 26, 7, 36] have been directed toward identi-

fying (i) the articulation complexity of the hand, (ii) self-

similarity and self-occlusion of the fingers, and (iii) data

acquisition artifacts such as depth noise. Although these re-

search efforts have provided a coarse interpretation of hand

movements, the current hand pose estimation approaches

do not include: (i) an understanding of the geometric con-

sistency of complex kinematic poses of the articulated hand

and (ii) an additional input modality (besides a single depth

image) to produce a better estimation model. In this paper,

we demonstrate that better hand pose estimation can be at-

tainable when these gaps are addressed.

We propose a promising method for 3D hand pose esti-

mation that achieves performance higher than or compara-

ble to the state-of-the-arts. Specifically, we exploit a convo-

lutional neural network (ConvNet) model which can extract

the property of heat distribution over a 3D hand mesh model

from a single depth image. The proposed method incorpo-

rates a heat distribution network to learn a geometrically

informative representation of hand articulations as an addi-

tional modality. At training time, our modality hallucina-

tion network takes as input a depth image and is trained to

capture the corresponding heat distribution modality. Thus,

our method produces both the depth and heat distribution

features from a single depth image at test time.

With the boom of interest in deep learning, 3D hand pose

estimation is increasingly becoming a part of the learning

and development processes of mid-level features learned

from a large dataset. In view of this, previous approaches

have been proposed for estimating hand poses by incorpo-

rating a prior model [18], regressing heatmap features from

a single view [35] and multiple views [7], synthesizing a

hand pose in a closed loop [19], and training cascaded net-

works following the structural hierarchy of the hand [26]

using a convolutional neural network architecture. Differ-

ent from these approaches which operate in a single depth

modality input, we follow the success of a multi-modal

learning framework [9, 37] which uses complementary fea-

tures of the different modalities. To address it, we employ a

function of geometric properties on the surface of the hand

described by heat distribution as an additional modality to

depth data.

The behavior of heat diffusion on the surface of a shape

has generally been considered to be geometric features by

analyzing a shape operator computed from the heat kernel

matrix. The operator investigates the local geometry of the

shape at small time scales and captures the global structure

at large scales to be insensitive to non-rigid deformation,

topological changes, and noise present in 3D models. Con-
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sequently, the shape signatures/descriptors built on such de-

scriptive representations have been extensively studied in

the geometry community [30, 22, 2] for shape matching and

retrieval. The robustness for identifying the points on the

mesh surface naturally motivates us to pursue 3D keypoint

retrieval (i.e., hand joint positions) in the hand pose esti-

mation problem. In this work, we build a heat distribution

descriptor that incorporates the deformation invariant prop-

erties of heat diffusion over an articulated hand at multiple

scales. Therefore, our method is robust to the changes of the

topology of the hand and noise present in input data. The

proposed ConvNet architecture is trained to hallucinate the

multi-scale heat distribution descriptors using paired depth

and heat distribution data.

The concept of modality hallucination has been previ-

ously presented in [5, 27] to produce a more informed

model on visual recognition tasks. Our work shares analo-

gies with [8] which transfers mid-level depth features ex-

tracted from an RGB image across domains. The potential

for modality hallucination motivates us to consider learn-

ing an additional representation which is informed by anal-

ysis of the multi-scale heat distribution property, in the form

of the articulated hand. Our main insight is that a geo-

metrically consistent representation of the heat distribution

modality can be learned from a single depth image, in addi-

tion to mid-level depth features. We use the resulting geo-

metric responses together with depth features to further en-

hance the regression accuracy of the system. In practice,

we found this step implicitly penalizes the initial estimates

to be more effective and robust than the depth-alone frame-

work. Our main contributions are summarized as follows:

1. Pixel-wise segmentation of an articulated hand using a

ConvNet architecture which is robust to the cluttered

background and efficient to compute in real-time.

2. Multi-scale geometric representations of the hand as a

heat distribution descriptor which compactly encodes

the information of hand articulations.

3. Modality hallucination using a single depth image,

which transfers additional feature representations to

produce a more informed estimation model.

4. The penalization of the initially predicted joint angle

parameters with the guidance of the end-effectors (i.e.,

the coordinates of the fingertips) in a feature space.

The rest of the paper is structured as follows. In the next

section, we discuss the related work. In section 3, we briefly

describe our synthetic 3D hand model. A multi-scale heat

distribution descriptor is discussed in section 4. Section 5

presents a detailed explanation of the proposed pose esti-

mation framework. In section 6, we present experimental

results that illustrate the robustness of our approach. Fi-

nally, section 7 concludes the paper with a brief discussion

and future directions of work.

2. Related Work

We overview the most relevant works on depth sensor

based 3D hand pose estimation in the literature. Two differ-

ent approaches are prevalent for categorizing hand pose es-

timation: discriminative methods and generative methods.

Discriminative methods A system for 3D hand pose es-

timation has been developed through the use of a large

database. This group of approaches provides a trained clas-

sifier or regressor [11, 34] to find a mapping between im-

age features and corresponding hand configurations. How-

ever, these methods can be susceptible to self-occlusion and

ambiguous for low-resolution input data. In [31, 33], local

pose regression methods are presented, demonstrating the

efficacy of their approach against occlusions. While suc-

cessful in many cases, they may experience jitters between

frames when image features are insufficient to discriminate

different poses. Also in [4], a collaborative filtering model

is presented to regress the unknown pose parameters us-

ing similar poses. Recently, a convolutional neural network

framework has been employed to improve the robustness to

occlusions and jitters replacing hand-crafted features. Hand

poses are estimated by incorporating a prior model [18], re-

gressing the heatmaps from a single view [35] and multiple

views [7], synthesizing a hand pose in a closed loop [19],

and training networks following the structural hierarchy of

the hand [26]. To our knowledge, we present the first work

for 3D hand pose estimation using complementary geomet-

ric features as an additional modality to depth data.

Generative methods The optimization of an objective

function has been a mainstream approach to recover the

hand configurations using a deformable 3D hand model.

Initially, particle swarm optimization (PSO) was success-

fully applied in [20, 21] to find a best fit model from a

population of candidate solutions. In addition, gradient-

based optimization was considered in [17, 32] to achieve

faster convergence. While straightforward to implement,

they iteratively update the initial pose parameters toward

the local best solution. Hence, these methods may fail to

track the hand when a prior estimate is inaccurate or to

provide real-time performance. More recently, hybrid ap-

proaches [40, 23, 25, 12] have been introduced to recover

loss of tracking using a per-frame reinitializer. Although

these methods avoid model drift, the system achieves low

frame rates [40], requires clear fingertip detection [23], or is

heavily dependent on random forest [25] which shows rela-

tively lower performance and higher memory requirements

[26].

3. Preliminaries

3D hand model A kinematic hand model with 21 degrees

of freedom (DOF) was well studied in [4, 26] for 3D hand

pose estimation. This model imposes functional constraints
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Figure 1: The pipeline overview. At training time, the hallucination network is trained to mimic heat distribution features

using depth data. At testing time, the localization network takes as input a depth image to localize the hand. The identified

hand is used to extract complementary features from the depth and hallucination network. The refinement network regularizes

an initial pose estimate using the given feature representations.

[13, 16] for joint configurations and finger movement to

reduce the complexity of hand articulations, and therefore

simulates more realistic hand poses. We additionally con-

struct a lower arm segment to help to identify the global

hand orientation, regularizing jitters of the estimated pose

[25]. Note that this portion is individually rotated with 2

DOFs along its longitudinal and lateral axes.

Dataset creation In order to train our ConvNet framework,

we generate a synthetic dataset accurately annotated with

ground truth labels Y(θθθ,φφφ,D), where θθθ denotes a set of

18 joint angle parameters; φφφ is a set of 21 joint position

triplets {x, y, z}; and D denotes multi-scale heat distribu-

tion descriptors. We render 300K hand poses by uniformly

sampling each of the 18 joint angle parameters, covering a

full range of hand articulations. Furthermore, the imposed

hand motion constraints enable the effective simulation of

realistic poses in the restricted configuration space.

Approach overview An overview of our approach is de-

picted in Figure 1. We first preprocess depth data ob-

tained from both 3D sensors and our pose simulator. A

depth map of size 320×240 is center cropped to be the size

240×240. Then we generate a depth image (range [-1, 1])

with depth normalization and mean subtraction. This image

is fed into our localization network to output a centroid of

the hand in the uv-coordinates and a pixel-wise segmenta-

tion of the image. We draw a depth-dependent bounding

box around the centroid of the hand using its corresponding

triplet φc = {xc, yc, zc}. Finally, we resize the bounding

box to obtain a 64×64 depth image that only contains the

hand segment and remove depth noise using a median filter.

For the NYU dataset, we first rescale the depth map to be

the size 320×240 before cropping it. At training time the

64×64 depth image is used to train the depth network with

the joint angle labels, whereas the heat distribution network

learns the fingertip position triplets from the paired heat dis-

tribution descriptors d (detailed in the subsequent section).

To learn heat distribution features through the hallucination

network, we use a hallucination loss LHN between two net-

works. Hence, the intermediate responses of the heat dis-

tribution descriptors can be extracted from the correspond-

ing depth image. Our refinement network uses the resulting

heat distribution features to regularize the estimated joint

angle parameters θθθi. The hand skeleton is used to illustrate

the quality of the estimated parameters θθθr in Figure 1.

4. Heat Distribution

We briefly discover a heat operator derived in [30] and

introduce the heat distribution descriptor to be used to train

our hallucination network.

4.1. Heat Flow on the Hand Surface

Our hand model M is a compact Riemannian manifold

without boundaries, which consists of 3,869 mesh vertices
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(a) (b)

Figure 2: Visualization of the heat distribution descriptor

on different hand poses over time. (a) The point heat source

(red-colored) is placed at the tip of the middle finger at time

t = 0. (b) For a large value t = 40, the behavior of heat

distribution is geometrically consistent on both poses.

and 7,734 triangular faces. Thus, we can write the heat dif-

fusion equation on the surface of the hand:

(

∆+
∂

∂t

)

u(i, t) = 0, (1)

where ∆ is the Laplace-Beltrami operator and u(i, t) is heat

distribution at vertex i at time t. In addition, let Ht be the

heat operator which satisfies Ht = e−t∆. Then the solution

to Eqn. 1 is u(i, t) = Ht(f), where f : M → R denotes

the amount of heat available at t = 0. Therefore, the heat

flowing through the mesh surface from source vertex j to i

at a given diffusion time t for all i, j ∈ M can be denoted

by the heat kernel Ht(i, j):

Ht(i, j) =
∑

k

e−λktvkivkj , (2)

where λk and vk is the k-th eigenvalue and the k-th eigen-

function of the Laplace-Beltrami operator ∆, respectively.

4.2. Heat Distribution Descriptor

Figure 2 illustrates heat distribution on the hand surfaces

over time. A unit heat source is given at the tip of the mid-

dle finger (marked in red) at time t = 0, and the amount

of diffused heat to the rest of the surface is visualized in

Figure 2b. At small time scales, the local geometry of the

hand can be investigated, while the global structure can be

encoded at large scales. Note that the analogy of heat distri-

bution on different hand poses validates the geometrically

consistent property of the diffusion process. This property

motivates us to design a heat distribution descriptor which

is invariant to shape deformation and topological changes.

We employ the characterization of heat distribution at

each point i ∈ M heat transferred from a set of key sources

J = {j1, ..., j5} in T = {t1, t2, t3} time steps. Let P be

the number of vertices of M, then the proposed heat distri-

bution descriptor dt ∈ R
P×1 is as follows:

d
j
t = [Ht(i1, j), ...,Ht(ip, j), ...,Ht(iP , j)]

T

∀j ∈ J and ∀t ∈ T,

dt =
∑

j

d
j
t ∀t ∈ T.

(3)

Here each entry of the P -dimensional vector dt corre-

sponds to the cumulative amount of heat available at each

vertex i at time t ∈ T diffused from source vertices j ∈ J .

Consequently, we compute the heat distribution matrix D =
[dt1 ,dt2 ,dt3 ] ∈ R

P×T , where {t1, t2, t3} = {10, 30, 50}
in practice1. We further process the descriptor matrix D by

rendering each column vector as an image format. A hidden

point removal [10] strategy determines the visible vertices

from the viewpoint of a camera. Our pose simulator inves-

tigates the visibility of the vertices and linearly interpolates

the amount of heat distribution between neighboring ver-

tices using the Phong interpolation method. As a result, we

generate T -channel descriptors to feed into our hallucina-

tion network described in the following section.

Note that we use a heuristic to determine the heat sources

J . We uniformly sample each of the source points from P

vertices. These indices are fixed while generating our train-

ing dataset so that every hand poses share consistent geo-

metric representations. Also, note that we do not find a sig-

nificant difference in regression accuracy when we choose

another set of J . At test time, the input point cloud is not

indexed for the heat sources, and this is the main reason we

hallucinate heat distribution features from a depth image.

5. Learning Hand Articulations

Our system follows the approach of [4, 33, 26] that esti-

mates the joint angle parameters on a per-frame basis. Un-

like the other pose estimation methods, this approach di-

rectly employs the motion constraints guided by the physi-

cal anatomy of the hand. In this setting, all estimated poses

are kinematically valid and follow a natural sequence, and

this is why we choose the angle parameters over the joint

positions. Now we discuss how the proposed method learns

hand articulations from depth and auxiliary modality fea-

tures, in the form of the joint angles.

5.1. Localization Network

Hand localization has been heuristically solved in the lit-

erature [34, 23, 31, 29, 4, 26] by assuming (i) the hand ap-

pears largest in front of the sensor or (ii) the wristband can

be identified by color segmentation. However, the underly-

ing assumptions would be further from real scenarios, such

as those at far-range or with a cluttered background. To

achieve robust performance for localization, we divide the

1We observe that the behavior of heat diffusion is local (finger-level) at

t = 10 and becomes global (hand-level) at t = 50.
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Figure 3: Visual analysis of hand localization. First row:

input 240×240 depth images cherry-picked from the Hand-

Net [38]. Second row: estimated hand probability map and

centroid (green square). Third row: ground truth labels.

problem into two sub-tasks: hand segmentation and hand

center regression.

We present a ConvNet architecture specifically designed

to solve these tasks at one go. The graph of the network ar-

chitecture is visualized in the supplementary material. Our

main insight is that the deep neural network effectively

identifies pixel-wise class labels through the convolution

process [1]. To achieve this from our hand segmentation

problem, the first three convolutional layers with a follow-

ing max pooling layer down-sample the input 240×240 im-

age to be the size 30×30. The next four convolutional layers

capture the low-level image features in depth to distinguish

the hand and background. Then we perform two unpooling

operations in between convolutions to up-sample the given

depth features (to be the size 120×120). The unpooling

uses the original activations stored from the previous max

pooling layers, which is critical for our system for the fol-

lowing reasons: (i) the unpooling process consistently in-

creases the spatial size of the feature map to reconstruct

the detailed hand segment, and (ii) it balances computa-

tional time and segmentation accuracy by generating sparse

representations. Note that the deconvolution method [24]

was also considered, which showed similar accuracy but re-

quired higher processing time because of its convolution op-

eration. In addition, we employ intermediate convolutional

features to regress the hand center. This branch is comprised

of four additional convolutions and one inner product, esti-

mating the centroid of the hand {uc, vc}
2. It is further con-

verted into the triplet φc to draw the bounding box around

the hand. Figure 3 visualizes our hand localization.

5.2. Multi­modal Learning

Our system learns complementary features about hand

articulations from different modalities. We train the depth

network with the joint angle labels, taking into account the

2In practice, we achieved the mean distance error of 14.56 pixels in an

image of size 320×240 on the HandNet dataset [38].

Figure 4: The proposed depth network consists of two

streams: the top stream for the five fingers and the bottom

stream for the global orientation parameters. Numbers in

blue indicate the width & height of the feature map, and

those in orange represent the number of kernels.

process of knowledge transfer across fingers. Moreover,

multi-scale convolutional features are encoded through the

heat distribution network to identify the fingertip positions.

Depth network (DN) The success of multi-task learning in

[3] has caused immense effects on the deep learning models

(e.g. natural language processing in [6, 39], face detection

in [41, 42], and human pose estimation in [14, 15]). These

works all aim to achieve improved performance and pre-

vent overfitting by transferring shared knowledge. Aligned

with these works, we estimate the joint angle parameters of

five fingers θi from a single network. The architecture of

our multi-task depth network is shown in Figure 4. The first

four convolutional layers share knowledge of the hand. This

is crucial for learning a perceptual set of attributes, such as

self-occlusions or self-similarities of the fingers across do-

mains and hence leads to further improvements in the re-

gression performance (see Section 6.3). For our specific

operation, we group the fingers according to the anatomical

position (i.e., three groups: thumb, index-middle-ring, lit-

tle) before passing the fifth convolutional layer. This insight

allows us to achieve higher regression accuracy by learning

structural representations from a correlation of adjacent fin-

gers. In addition, we explore the global orientation of the

hand from a separate network initiated in parallel using the

same network configuration. For the proposed depth net-

work (DN), we introduce the loss weights α, β, and γ to

properly scale the loss function:

LDN = αLT + β(LI + LM + LR + LL) + γLG, (4)

where the subscript denotes each finger (T: thumb, I: index,

M: middle, R: ring, L: little, G: global). In practice, we

observe that the thumb finger contributes less to the total

loss LDN . Thus, we set the loss weights α = 3, β = 1, and

γ = 1 which balance the optimization process.

Heat distribution network (HDN) Our heat distribution

network is trained with the fingertip position labels using T -

channel descriptors that represent the multi-scale heat dis-

tribution property of the hand. The bottom of Figure 5 il-
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Figure 5: The architecture of the hallucination network

(top) and heat distribution network (bottom). The concat

layer concatenates multiple features to one blob. Numbers

in blue indicate the width & height of the feature map, and

those in orange represent the number of kernels.

lustrates the overall architecture. Each of the parallelized

networks independently learns hand articulations from lo-

cal to global geometric features through the first five con-

volutional layers. Then we utilize a feature concatenation

step to aggregate three convolutional features into a single

composition along the depth dimension. This step allows

us to encode both the finger-level local geometry and global

hand structure into more informative representations gener-

ated across the time scales. As a result, our network is ca-

pable of learning a better mapping function between input

hand poses and the corresponding fingertip positions φi.

5.3. Modality Hallucination and Refinement

Hallucination network (HN) The parameter values (i.e.,

weights and bias) of the hallucination network (HN) are ini-

tialized using the network parameters of the pre-trained heat

distribution network (HDN). We then fine-tune these values

with a Euclidean loss LHN between the intermediate fea-

ture vectors, similarly to [8]. However, we do not use the

whole structure of the HDN from our HN. Instead, our HN

has only the first five convolutional layers as illustrated at

the top of Figure 5. Note that the choice of the number

of layers is empirically determined in the next part. As a

result, our hallucination network outputs the geometrically

descriptive responses learned from the heat distribution de-

scriptors using a corresponding depth image.

Refinement network (RN) Conceptually, the resulting

triplets φφφi together with the joint angles θθθi estimated from

the DN are used to regularize the angle parameters in the re-

finement network (RN). In practice, however, the direct use

of θθθi and φφφi does not achieve performance improvements.

Alternatively, our RN takes as input a feature vector that is

well-informed to predict the joint angle parameters θθθi and

fingertip positions φφφi. Hence, we generate a concatenated

vector of depth feature F l
DN and mimicked hallucination

feature F l
HN . The input feature maps for concatenation can

be extracted from any layer l in the network, so we empiri-

Figure 6: The mean angle error is used to evaluate differ-

ent combinations of feature concatenation on our synthetic

dataset. A number associated with each colorbar denotes

layers of the DN (left) and the HDN (right), respectively.

The best accuracy is achieved when we concatenate depth

features extracted after 6th conv layer and heat distribution

features extracted after 5th conv layer (red bar).

cally determine where to extract these features with respect

to regression accuracy. Figure 6 compares the performance

of various combinations of feature concatenation. Note that

we conduct these experiments using the depth activations

and heat distribution activations F l
HDN to eliminate the ef-

fect of hallucination error. It shows that the concatenation of

depth features extracted after the sixth convolutional layer

and heat distribution features extracted after the fifth con-

volutional layer achieves the highest performance (red bar).

The RN consists of the four inner product layers with a fol-

lowing non-linear (ReLU) layer. We progressively reduce

the dimension of the vector as a factor of 4, that is 2048-

512-128-n (where n = 18 is the number of angles).

Network optimization Finally, we have three sets of net-

work parameters independently learned from the depth net-

work (DN), hallucination network (HN), and refinement

network (RN). We further fine-tune the given networks us-

ing depth data and the corresponding angle labels θ. Then

the total loss can be drawn as follows:

LOptimize = ζLDN + ηLRN . (5)

We set the loss weights ζ = 1 and η = 5 so that the depth

network and refinement network to be properly optimized

with input depth data without updating the heat distribution

network. Note that the same loss weights (α, β, γ) are used

for the depth network as discussed previously.

6. Experiments

We conduct evaluations using a synthetic and public

dataset to validate the efficacy of the proposed approach.

6.1. Datasets

We first introduce a self-generated synthetic dataset.

This dataset is mainly used to evaluate our design choices.

As discussed in Section 3, we use a hand model with
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Figure 7: Quantitative evaluation of our method with repect to the self-generated baselines.

21 DOFs to render realistic hand poses with motion con-

straints. In the same manner, we collect the other 30K depth

images with ground truth labels Y(θθθ,φφφ,D).

Additionally, we use public datasets (NYU [35] and

MSRA14 [23]) to compare the performance of our approach

to the state-of-the-art methods. Two datasets are collected

from different camera types across contexts. Specifically,

the NYU dataset involves a continuous sequence of hand

movements acquired at far-range, whereas the MSRA14

dataset contains various gesture types of 6 individuals cap-

tured from close viewpoints. Note that our system requires

the joint angle parameters for training and testing. Thus, we

compute the ground truth angles of these datasets using the

inverse kinematics as proposed in [33].

6.2. Comparison to Baselines

Why multi-task learning? We demonstrate the rationale

for using the multi-task approach to estimate the joint angle

parameters from the depth network. We first define four

baselines: (i) Holistic, which estimates all joint parame-

ters using a single network; (ii) Divided, which divides the

Holistic baseline into six sub-tasks (Thumb-Index-Middle-

Ring-Little-Global) after the fifth convolutional layer; (iii)

Grouped, which groups the fingers (T-IMR-L) according to

their anatomical position and also separates the global net-

work from the finger network; and (iv) Depth-alone, where

we set the loss weights of the Grouped baseline as dis-

cussed. Figure 7 (left) quantitatively compares these base-

lines on a synthetic dataset, where we measure the robust-

ness of each baseline. The performance of the Holistic

baseline is dramatically improved by simply adopting the

multi-task learning approach, and it is further enhanced by

grouping fingers together, as the Grouped achieves higher

regression accuracy than does the Divided baseline. This

indicates that the network model learns a structural correla-

tion across fingers to anatomically constrain hand configu-

rations. While training the network, the loss of the thumb

finger fluctuated more and converged faster than did the

other losses. We thus scale the loss function of the thumb by

setting α = 3 so that the contribution of the thumb will be

3 times larger than that from the Depth-alone. In this way,

we achieve even better performance, as also demonstrated

from the individual mean angle error in Figure 7 (middle).

This comparison validates the rationale of our use of the

multi-tasking approach as opposed to other choices.

Why regularize the initial estimation? Furthermore, we

explore the efficacy of the proposed refinement process.

Figure 7 (right) shows the quantitative evaluation of our

method with respect to the following baselines: (i) Depth-

alone estimates of the joint angles with the aforementioned

settings and (ii) Ideal estimates where geometric features

are directly extracted from the HDN to eliminate the effect

of hallucination error. The fact that our method performs

better than the Depth-alone baseline validates the efficacy

of the RN. The individual mean angle error (see Figure 7

[middle]) shows consistent results. These results also indi-

cate that the fingertip positions guide the initially estimated

angle parameters to be more accurate. Overall, our ap-

proach resulted in comparable performance to Ideal or even

higher accuracy for the global orientations and the little fin-

ger in terms of the mean joint angle error, demonstrating

that our hallucination network is well-trained to mimic heat

distribution features in detail.

6.3. Comparison with the State of the Arts

Quantitative evaluation Figure 8a quantitatively compares

the performance of our approach with the state-of-the-art

methods using a publicly available NYU dataset [35]. The

maximum allowed joint distance error is examined in terms

of the distance threshold ǫD. Here we observe that the over-

all performance of the Depth-alone baseline (purple line) is

greatly improved in Ours (blue line) by hallucinating geo-

metric features and penalizing the initial predictions. More-

over, our approach achieves performance higher than that of

the state-of-the-art methods [35, 18, 26] over all the ranges.

It further demonstrates that the better estimation model can
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(a) (b)

Figure 8: Performance evaluations on the overall robustness. (a) Quantitative evaluation is conducted using the NYU dataset

[35]. (b) Qualitative evaluations using the NYU and MSRA14 [23] dataset. The first row shows the input depth image, and

the estimated poses are visualized in the second row. The third row shows pose reconstruction based on our estimates.

Sub. 1 2 3 4 5 6 Avg.

[20] 35.4 19.8 27.3 26.3 16.6 46.2 28.6

[23] 8.6 7.4 9.8 10.4 7.8 11.7 9.2

[7] 30.1 19.7 24.3 19.9 21.8 20.7 22.7

Ours 17.6 15.2 26.4 16.9 26.6 17.5 20.0

Table 1: Quantitative comparison (in mm) of our approach

with the state-of-the-arts (generative methods [20, 23] and

discriminative method [7]) on the MSRA14 dataset [23].

be built by learning complementary information from a dif-

ferent input modality. Our method also shows comparable

performance to the generative approach [19] with a higher

fraction of frames that have Euclidean error less than 27

mm. It indicates that our approach performs better with a

smaller error tolerance.

We additionally show the comparison of our approach

to the generative methods [20, 23] and discriminative [7]

method using the MSRA14 dataset [23]. For this, we fol-

low the cross-dataset experiment proposed in [7]. We fine-

tune our network models using the MSRA15 dataset [31]

to measure the averaged distance error (in mm) of the palm

and five fingertips from the MSRA14 dataset. In Table 1, we

observe that the discriminative methods (ours and [7]) show

lower accuracy than that of the generative method [23]. For

this, we share similar insights with [7] as follows: (i) the

discriminative methods neither incorporate temporal infor-

mation between frames nor use a manual initialization in

the first frame and (ii) the hand is not calibrated or scaled

for each subject, which is crucial to reduce errors. How-

ever, the proposed method mostly outperforms [20] and [7]

as it achieves a lower error rate. Thus, we conclude that the

use of geometric representations as an additional modality

results in more robust hand pose estimation.

Qualitative evaluation We conduct qualitative evaluations

of our method using the NYU and MSRA14 dataset. The

second row in Figure 8b illustrates hand poses estimated

from the depth images in the first row. In addition, we

provide the corresponding hand reconstructions in the third

row, demonstrating that our approach enforces kinemati-

cally valid hand configurations. Although the fourth column

of the NYU input image has missing pixels (see the finger-

tips), our method robustly predicts the hand pose without

using temporal information.

7. Conclusion

We address two important elements that have been miss-

ing in the current hand pose estimation approaches: (i)

the understanding of geometric properties of the articu-

lated hand and (ii) the use of an additional input modal-

ity to produce more informative representations. To incor-

porate these factors into the pose estimation system, we

present a multi-scale heat distribution descriptor specifi-

cally designed to encode the local geometry as well as

the global structural features of the hand. This descriptor

is used to learn the convolutional responses, and our sys-

tem hallucinates them using a corresponding depth image.

Consequently, we use the geometrically informed features

together with the discriminative depth representations ex-

tracted from the depth network to accurately estimate hand

articulations. The extensive evaluations conducted using

both the synthetic and real dataset validate the robustness

of the proposed approach as we achieve performance higher

than or comparable to the state-of-the-art methods.
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