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Abstract

Convolutional sparse coding (CSC) is a promising direc-

tion for unsupervised learning in computer vision. In con-

trast to recent supervised methods, CSC allows for convolu-

tional image representations to be learned that are equally

useful for high-level vision tasks and low-level image recon-

struction and can be applied to a wide range of tasks with-

out problem-specific retraining. Due to their extreme mem-

ory requirements, however, existing CSC solvers have so far

been limited to low-dimensional problems and datasets us-

ing a handful of low-resolution example images at a time.

In this paper, we propose a new approach to solving CSC

as a consensus optimization problem, which lifts these limi-

tations. By learning CSC features from large-scale image

datasets for the first time, we achieve significant quality

improvements in a number of imaging tasks. Moreover,

the proposed method enables new applications in high-

dimensional feature learning that has been intractable us-

ing existing CSC methods. This is demonstrated for a va-

riety of reconstruction problems across diverse problem

domains, including 3D multispectral demosaicing and 4D

light field view synthesis.

1. Introduction

Natural image statistics lie at the core of a wide variety

of discriminative and generative computer vision tasks. In

particular, convolutional image representations have proven

essential for supervised learning using deep neural networks

– the de-facto state-of-the-art for many high-level vision

tasks [20, 29, 28, 13]. While these models are successful

for supervised discriminative problems, the same architec-

tures do not easily transfer to generative tasks.

Generative models have some significant advantages

∗Denotes equal contribution

over discriminative models for low level vision and image

reconstruction tasks. The most important distinction is that

generative approaches learn models of the data that can act

as priors for a wide range of reconstruction tasks without

retraining, while discriminative methods learn specific re-

construction tasks, and cannot be easily applied to other

tasks. As a consequence patch-based sparse coding tech-

niques [7, 23, 1] have been very popular for low-level tasks

such as denoising, inpainting, demosaicing, deconvolution

and similar problems [11, 34, 30, 24, 21, 2], Unfortunately,

patch-based dictionaries are highly redundant because they

have to capture all shifted copies of the sparsifying filters.

Introduced as a model for receptive fields in human vi-

sion [26], convolution sparse coding (CSC) [14, 17, 32, 33]

has been demonstrated to remove much of the overhead of

patch-based sparse coding by using a convolution image

formation model for a range of different applications [11,

34, 30, 24, 21, 2]. CSC techniques are fast, because many

Traditional CSC Consensus CSC

Figure 1: Large-scale unsupervised feature learning. Left:

Convolutional features from [15] can only be learned from a

handful of example images since existing CSC methods are

limited by memory. Right: CCSC overcomes these limita-

tions, and allows to learn features on ImageNet [9]. These

features contain less specialized structures, leading to sig-

nificant improvements across a variety of vision tasks.
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Figure 2: Illustration of traditional CSC (left) and the proposed CCSC (right). CCSC lifts the prohibitive memory limita-

tions of existing algorithms by breaking large, high dimensional datasets into tractable subproblems, each of which can be

efficiently solved with a low memory footprint.

implementations efficiently perform convolutions in the fre-

quency domain [5, 6, 15].

While fast, existing CSC approaches are not scalable due

to their extreme memory requirements (Fig. 3). For exam-

ple, existing methods would require terabytes of physical

memory for learning light field data from only 100 exam-

ples (Sec. 4), and datasets comparable to ImageNet would

require petabytes of memory. As a result, it has been in-

tractable to learn convolutional filters from large datasets,

and to apply CSC to high-dimensional image reconstruc-

tion problems that arise in 3D video, 3D multispectral, or

4D light field image processing.

In this paper, we revisit unsupervised, generative learn-

ing using CSC, and propose a consensus-based optimiza-

tion framework that makes CSC tractable on large-scale

datasets, and enables high-dimensional feature learning.

We call our approach consensus convolutional sparse cod-

ing (CCSC). CCSC splits a single large-scale problem into

a set of smaller sub-problems that fit into available mem-

ory resources. Due to the convex nature of the problem and

the enforced consensus between the sub-problems, global

convergence is guaranteed. We demonstrate convolutional

dictionary learning on datasets that are orders of magnitude

larger than what has previously been possible, and show that

the resulting sparsifying filters are, in fact, different from

those learned from smaller datasets (Fig. 1). Moreover, we

show that these new features also lead to significant im-

provements in a variety of image reconstruction tasks. To

validate the proposed method for high-dimensional data,

we evaluate CCSC on a number of high-dimensional re-

construction problems that are intractable for existing CSC

solvers. In particular, we make the following contributions:

• We derive a consensus optimization method that en-

ables convolutional sparse coding problems of arbi-

trary size with limited memory to be solved efficiently.

• We extend traditional CSC to allow for non-

convolutional data dimensions, greatly reducing mem-

ory requirements for high-dimensional datasets.

• We verify the scalability of CCSC by learning from

large-scale 2D datasets as well as from several high-

dimensional datasets.

• We show that the features learned on large-scale

datasets are more general, and lead to better recon-

structions than existing methods.

• We evaluate CCSC using several high-dimensional

reconstruction problems across diverse problem do-

mains, including 3D multispectral demosaicing, 3D

video deblurring, and 4D light field view synthesis.

Finally, the full source code will be made available on-

line for evaluation and improvements in the future.

2. Mathematical Framework

Traditionally, convolutional sparse coding is formulated

as the following optimization problem

argmin
d,z

J∑

j=1

1

2
‖bj −

W∑

w=1

dw ∗ z
j
w‖

2
2 + β

W∑

w=1

‖zjw‖1

subject to ‖dw‖
2
2 ≤ 1 ∀ w ∈ {1, . . . ,W},

(1)

where each example image bj is represented as the sum

of sparse coefficient feature maps zjw convolved with filters

dw of fixed spatial support. The superscripts indicate the

example index j = 1 . . . J , and the subscripts indicate the

filter/coefficient map index w = 1 . . .W . The variables

bj ∈ R
D and zjw ∈ R

D are vectorized images and feature

maps, respectively, dw ∈ R
M represents the vectorized m-

dimensional filters, and ∗ is the m-dimensional convolution

operating on the vectorized inputs. The constraint on dw

ensures the dictionary does not absorb all of the system’s

energy.
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To solve Eq. (1) we first reformulate it as an uncon-

strained optimization problem, following [15]. Absorbing

the constraint in an additional indicator penalty indC(·)
for each filter, defined on the convex set of constraints

C = {x | ‖Sx‖22 ≤ 1}, where S is the R
M×D Fourier

submatrix that computes the inverse Fourier transform and

projects the result onto the spatial support of each filter,

yields

argmin
d,z

1

2

J∑

j

(‖bj − Zjd‖22 + β‖Zj‖1 + indC(d)). (2)

Here, d = [dT
1 . . .dT

W ]T , where d ∈ R
DW×1. Similarly, Zj

= [Zj
1 . . .Z

j
W ] is a concatenation of Toeplitz matrices, each

one expressing the convolution with the respective sparse

coefficient map zjw (Zj ∈ R
D×DW ). Note that we can ex-

press the convolutional term from Eq. (1) in this way be-

cause convolution is a commutative operator. Eliminating

the sum over the examples (index J) by stacking the vec-

torized images in b′ = [b1
T . . .bJ

T ]T and coefficient maps

Z′ = [Z1T . . .ZJT
]T accordingly results in

argmin
d,z

1

2
‖b′ − Z′d‖22 + β‖Z′‖1 + indC(d). (3)

We jointly solve for both the filters d and coefficient maps

z in Equation 3 using a coordinate descent approach [15]

that alternates between updates to d and z while keeping

the other fixed (described later in Alg. 2). For this spatial

formulation, the filters can be represented in a memory-

efficient way, due to their small spatial support. However,

the full set of coefficients zw must be stored which incurs

an enormous memory footprint. Furthermore, convolutions

in the spatial domain are computationally expensive.

Recent work [5, 6, 18, 15] has demonstrated that Eq. (3)

can be solved efficiently in the frequency domain by ap-

plying Parseval’s theorem, which states that the energy

of a signal is equivalent to that of its Fourier transform

up to a constant. In this frequency domain formulation,

the previously costly spatial convolutions become efficient

Hadamard (component-wise) products. Although computa-

tionally efficient, the Fourier formulation still requires fre-

quency representations over the full domain of all frequen-

cies to be held in memory, both for filters and coefficient

maps. The size of the coefficient maps grows linearly with

the number of filters and images, but exponentially with the

dimensionality. For these reasons, classical convolutional

sparse coding, and especially its efficient Fourier formu-

lation, do not scale beyond 2D images and small training

datasets.

In the following, we derive a consensus optimization

method for CSC, allowing to split large-scale and high-

dimensional CSC into smaller sub-problems, each of which

can be solved with a limited memory budget. Furthermore,

the individual sub-problems can be solved efficiently using

the Fourier-domain formulation, and in a distributed fash-

ion using parallel workers. Consensus optimization makes

CSC tractable for large problems sizes, which we verify by

learning from large-scale and high-dimensional datasets.

2.1. Consensus Optimization

To account for large, high-dimensional datasets, we split

the problem of learning from the entire dataset b′ into learn-

ing from smaller subsets which can be solved individu-

ally with modest memory and computational requirements.

Specifically, we partition the data vector b′ and their cor-

responding sparse feature matrix Z′ across all of the exam-

ples1 into N blocks arranged by rows,

b′ =






b1

...

bN




 , Z′ =






Z1

...

ZN




 , (4)

with bi ∈ R
Bi and Zi ∈ R

Bi×MW , where
∑N

i=1 Bi =
JD. Here, bi represents the ith data block along with its

respective filters Zi. In the following we first demonstrate

how to solve Eq. (3) using this block splitting with respect

to the filters d, and subsequently for the coefficients z.

2.1.1 Filter Subproblem

Using the partition from Eq. (4), we can solve Eq. (3) for d

for a given Z′ as follows

argmin
d

1

2

N∑

i=1

‖bi − Zid‖
2
2 + indC(d)

⇔ argmin
y

1

2

N∑

i=1

‖bi − Zidi‖
2
2 + indC(y)

subject to di − y = 0 ∀i ∈ {1, . . . , N}.

(5)

This is a convex problem in the global consensus form [3].

Introducing local variables di allows us to turn the joint ob-

jective from the first row of Eq. (5), which cannot be split

due to the joint variable d, into separable terms that can be

split during the optimization. This also facilitates the han-

dling of the i-th set (bi,Zi,di) independently by parallel

workers. The shared global variable y ∈ R
MW introduced

as a slack variable enables solving Eq. (5) using the Al-

ternate Direction Method of Multipliers (ADMM) [3, 22],

which we derived from the augmented Lagrangian

L(d1 . . .dN ,y, λ1 . . . λN ) =

N∑

i=1

1

2
‖bi − Zidi‖

2
2

+ indC(y) + λT
i (di − y) +

ρ

2
‖di − y‖22,

(6)

1Please see the supplemental for other splitting strategies.
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where λi is a set of a Lagrange multipliers for each of the

N consensus constraints. ADMM alternately minimizes

Eq. (6) with respect to all of its variables, yielding Alg. 1.

Algorithm 1 ADMM for the Filters d

1: while Not Converged do

2: for i = 1 to N do

3: dk+1
i = argmin

di

1
2‖bi−Zidi‖

2
2+

ρ
2‖di−y

k+λk
i ‖

2
2

4: end for

5: yk+1 = argmin
y

indC(y)+
Nρ
2 ‖y−d

k+1
−λ

k
‖22

6: for i = 1 to N do

7: λk+1
i = λk

i + dk+1
i − yk+1

8: end for

9: end while

10: d = yk+1

Line 5 uses the average d
k+1

= 1
N

∑N
i=1 d

k+1
i and

λ
k
= 1

N

∑N
i=1 λ

k
i as a notational shortcut. It becomes clear

that the subproblems in the first inner for-loop around Line 3

are now independent of each other. The N subproblems can

be solved on a single machine sequentially, or in parallel on

up to N workers, each worker i handling only the i-th block

of data. After the parallel solve a global synchronization

step in Line 5 fuses all individual filter dictionaries, while

enforcing the constraint C = {x| ‖Sx‖22 ≤ 1}. Line 7 up-

dates the Lagrange multipliers for each data-block based on

the running error of the fused filters. In the following, we

define the individual subproblems of Alg. 1 in detail.

Line 3 is a least-squares problem with the solution

dk+1
i = (Z†

iZi + ρI)−1(Z†
ibi + ρ(yk − λk

i )), (7)

where ·† denotes the conjugate transpose, and I denotes

the identity matrix. As described in [5, 6, 15] one can

find a variable reordering which makes (Z†
iZi + ρI) block-

diagonal which we directly invert using Cholesky factoriza-

tion for the individual blocks, in parallel. The update in

Line 5 of Alg. 1 is in the form of a proximal operator for

which a rich body of literature exists [27]. Specifically, it is

yk+1 = prox 1

Nρ
(d

k+1
+ λ

k
), with

proxθ indC(·)(v) =

{
Sv

‖Sv‖2

: ‖Sv‖22 ≥ 1

Sv : else
(Projection)

(8)

2.1.2 Coefficient Subproblem

The coefficient subproblem can be written as

argmin
z

1

2
‖b′ −D′z‖22 + β‖z‖1

⇔ argmin
zi

1

2

N∑

i=1

‖bi −Dzi‖
2
2 + β‖zi‖1

. (9)

The sparse coefficient maps z can be solved analogous to

the filters d. This is a result of the convolution from Eq. (1)

being commutative, which allows to rewrite Z′d = D′z

in Eq. (3), with D′ is a block diagonal matrix with D =
blkdiag[D1 . . .DW ] repeated along its diagonal J times,

and z = [z1 . . . zJ ]T and zj = [zj1
T
. . . z

j
W

T
]. Hence,

when solving for z, we can follow the recipe from the pre-

vious section, using the same block partition. The resulting

algorithm can be found in the supplemental material.

2.1.3 Joint Optimization

The previous paragraphs describe optimization methods

for solving the joint objective from Eq. (1) for d and z.

We solve for both unknowns jointly by solving the bi-

convex optimization problem using coordinate descent, fol-

lowing [5, 15].

Algorithm 2 Large Scale CCSC Learning

1: Initialize parameters ρd ∈ R
+, ρz ∈ R

+

2: Initialize variables d0, z0, λ0
d, λ

0
z, β.

3: repeat{Outer Iterations}
4: Filter Update:

dk, λk
d ← Solve with Alg. 1 and ρ = ρd, λ = λk−1

d

5: Coefficient Update:

zk, λk
z ← Detailed in supplemental ρ = ρz, λ = λk−1

z

6: until No more progress in both directions.

The respective Lagrange multipliers are initialized with

those from the previous iteration. ρ is a parameter of the

Lagrangian which intuitively is the step size enforcing the

Lagrangian step. For any positive ρ, the primal residual

(di − y) converges to zero, thereby guaranteeing that the

algorithm converges to a saddle point. We refer to [3] for a

detailed discussion and proof of convergence. Specifically,

for our implementation, running the sub-step algorithms for

a fixed number of P steps achieved good progress in the

coordinate descent step. We terminate the execution when

neither sub-step can further decrease the objective.

2.2. NonConvolutional Dimensions

Above, we have considered all dimensions of the ex-

ample data b to be convolutional. However, some image

modalities exist only at very low resolution, e.g. the color

dimension of an RGB image. In these cases it is common

that no convolutional structure can be found. We represent

non-convolutional dimensions by introducing an additional

replication operator Rep(·) which repeats the sparse coef-

ficient maps, that do not contain the non-convolutional di-

mensions, along the missing dimensions. The original con-

volutional sparse coding problem from Eq. 1 becomes
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argmin
d,z

J∑

j=1

1

2
‖bj −

W∑

w=1

dw ∗ Rep(z
j
w)‖

2
2 + β

W∑

w=1

‖zjw‖1

subject to ‖dw‖
2
2 ≤ 1 ∀w ∈ {1, . . . ,W},

(10)

For example, considering a single dimension with length

µ = 3 for RGB image data, Rep(·) expands the 2D feature-

maps to the full three-channel data by replicating the fea-

ture map 3 times along the 3rd dimension. The convolution

operator is still a 2D convolution, but with full color RGB

filters. In Eq. (3), the operator Rep(·) can be represented

by an additional matrix P = [I1 . . . Iµ]
T such that D and

PZ are then of complimentary dimensions. Redefining the

coefficient matrix as Z̃ = PZ, the described Alg. 1 and 2

generalize to this setting. P being stacked identity matrices,

the efficient inverse from Eq. (7) can be applied.

3. Memory and Complexity Analysis

This section analyzes the memory and runtime of the

proposed approach. The consensus optimization from the

previous section enables splitting CSC problems of arbi-

trary size into subproblems that fit into physical memory.

Fig. 3 shows the memory consumption of the proposed

CCSC approach compared to existing CSC [15], as well as

classic patch-based sparse coding [1]. Even on a machine

with 128 GB of physcial memory these existing methods

become infeasible for learning from medium datasets in 2D,

and fail for small data-sets in higher-dimensions. CCSC

makes large-scale convolutional sparse coding feasible by

efficiently solving smaller subproblems with memory re-

quirements which scale slowly as dataset size and dimen-

sions increase. However, splitting the CSC problem comes

at the cost of increased iterations which are necessary to

enforce consensus between local variables.

Each subproblem can now be solved sequentially or in

parallel, affecting the runtime of the individual iterations.

With full parallelization CCSC closely matches classical,

non-distributed runtimes, while at the same time allowing

CSC to scale. We first present the theoretical computational

cost for a single iteration in Figure 4 (top), with P being the

number of inner iterations (of the substeps in Alg. 2) and

U ≤ N being the number of parallel workers. Assuming N

blocks of equal size, splitting and distributing drastically re-

duces the cost of the linear system solves and of the Fourier

transforms. In terms of runtime, this smaller per-iteration

cost allows more iterations in the proposed consensus op-

timization, while at the same time enabling scalability in

terms of the memory requirements.

In Figure 4 (bottom) we provide empirical evidence of

the high computational efficiency of the proposed approach

by comparing the best competing CSC technique [15] with

P
e
a
k
M
e
m
o
ry
[G
B
]

Number of Images 4100x100px6

Number of Videos 4100x100x100px6

3D Convolutional Feature Learning

2D Convolutional Feature Learning

2000 4000 6000 8000 100000
0

20

40

60

80

100

120

140

0

20

40

60

80

100

120

140

0 5 10 15 2520

128 GB MAX

KSVD
CSC
CCSC

P
e
a
k
M
e
m
o
ry
[G
B
]

128 GB MAX

Figure 3: Memory Consumption for large 2D image

datasets (top) and video data (bottom). CSC (blue) as well

as popular patch-based coding methods (green) become in-

feasible with increasing size of the dataset (top plot). This

effect is even more significant in higher dimensions (bottom

plot). Note the very small number of example videos in the

bottom plot.

Method Cost (in flops)

Zeiler et al. [32] PJ · ( WD
︸︷︷︸

Conjugate gradient

· WDM
︸ ︷︷ ︸

Spatial convolutions

+ WD
︸︷︷︸

Shrinkage

)

Bristow et al. [5, 6] PJ · ( W 3D
︸ ︷︷ ︸

Linear systems

+WD log(D)
︸ ︷︷ ︸

FFTs

+ WD
︸︷︷︸

Shrinkage

)

Heide et al. [15] W 3D + (P − 1)W 2D
︸ ︷︷ ︸

Linear systems

+ PJ · (WD log(D)
︸ ︷︷ ︸

FFTs

+ WD
︸︷︷︸

Shrinkage

)

CCSC 1
U
(W 3D + (P − 1)W 2D)
︸ ︷︷ ︸

Linear systems

+ 1
U
PJ · (WD log(

D

N
)

︸ ︷︷ ︸

FFTs

+ WD
︸︷︷︸

Shrinkage

)

Dataset CSC CCSC (U = Number of PCs)

Size [15] U=5 U=10 U=50

100 203.56 sec 35.35 sec 25.69 sec 25.20 sec

500 1530.71 sec 259.30 sec 82.69 sec 28.57 sec

1000 Out of Memory 387.68 sec 255.38 sec 35.63 sec

Figure 4: Complexity and Runtime Analysis. Top: The-

oretical per-iteration cost of CCSC and other current CSC

methods. Bottom: Runtime comparisons between the best

competing CSC method [15] and CCSC. We demonstrate

the runtime gain for a varying number of parallel working

threads (U) and increasing dataset size. Note: These val-

ues apply only where Z can be naturally split into equal

partitions such that the FFT can be efficiently performed.

CCSC for increasing sizes of 2D dataset with varying num-

ber of parallel workers. For example, with a 2D dataset

composed of 500 examples (each 100 × 100 pixels), we

observe a speedup of 19× for 10 workers, and a 54× for

50 workers over existing CSC methods. Please note that,

for datasets of larger size, current CSC techniques are in-

tractable. All algorithms were executed on Intel Xeon 2.7

GHz Dual-core processor with 128GB RAM.
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Figure 5: Multispectral (2D convolutional + 1D non-

convolutional) dictionary. We show examples of 10 filters

learned across all 31 channels on the CAVE dataset. Note

the similarity in the kernels across channels which depict

the inherent redundancy along multi-channel image data.

4. Learning

Large-scale Feature Learning on ImageNet: To test

CCSC on large-scale image data, we use it to learn a dictio-

nary for 5000 images from ImageNet [9] which is at least

an order of magnitude more images than previously feasi-

ble with CSC methods. The dictionary itself consists of 100

filters of size 11×11, and can be seen in Figure 1. For com-

parison we have included a similar dictionary trained on a

very small fruit dataset. Although superficially similar, the

large scale dictionary contains more general features which

lead to better reconstruction results (Sec. 5). Our dictionary

also contains noise-like filters similar to those learned by

discriminative feature learning models [8].

Multi-Spectral Feature Learning: Next, we test CCSC

on multispectral data. Each image is now a 3-dimensional

entity, with the wavelength as the extra dimension. How-

ever, this third dimension is typically much smaller (31

channels in our case) than the two spatial dimensions, and

thus we chose to convolve only along the spatial dimensions

while the third dimension is non-convolutional in the CCSC

dictionary. We therefore force each pixel in the image to

share the same coefficients for each element in the dictio-

nary which promotes similarity among all channels without

the need for any group sparsity constraints. We found that

this method was greatly superior to solving each channel

individually with 2D CSC, particularly in the presence of

missing data where the proposed method is able to pull in-

formation across all channels. For details please refer to the

supplementary material.

We trained the dictionaries on a select number of images

from the Foster et al. [12] and CAVE [31] hyperspectral

datasets, each learning 100, 11×11×31 filters. An exam-

ple of the CAVE filters can be seen in Figure 5 which show

how the proposed framework learns a variety of features

that slowly vary from channel to channel.

Video Feature Learning: Unlike multispectral data

which contains a fixed number of channels, videos are com-

posed of an arbitrary number of frames which lends itself to

a fully convolutional 3D filter. Therefore, we learned a set

Time

F
il

te
rs

Figure 6: Learned Video Features (3D-Convolutional).

Each row shows a single 3D convolutional video kernel

whose features slowly change over time from left to right.

of 49 3D filters of size 11×11×11 from a varied set of 64

HD video clips. A sample set of these filters can be seen

in Figure 6, which demonstrates the variety of CCSC filters

as well as their smooth spatial and color transitions across

time frames. For reconstruction results please refer to the

supplemental material.

Light Field Feature Learning: Although typically cap-

tured as a single image, light fields can be represented as

a 4D tensor with two spatial dimensions and two angu-

lar dimensions. Because the two angular dimensions are

small (typically only 5 to 8 angles), we chose to train dic-

tionary filters which were convolutional spatially, but non-

convolutional in the angular dimensions. The final dictio-

nary was trained on a set of 64 light fields truncated to 5 an-

gular views in both x and y, and contained 49 filters of size

11×11×5×5. A sample set of these filters can be found in

Figure 7 which clearly demonstrates the angular structure

learned by CCSC. Each 5×5 group of filters slowly varies

across the angular dimensions while exhibiting general fea-

tures for reconstruction throughout.

5. Reconstruction

M-Operator: Similar to Heide et al. [15], we employ a

binary mask M as a general linear operator which can be

Filter 6 Filter 7 Filter 8 Filter 9 Filter 10

Filter 1 Filter 2 Filter 3 Filter 4 Filter 5

Figure 7: Example of 10 Learned Light Field Features (2D

convolutional + 2D non-convolutional). Each group of 5x5

filters shows all 25 angular features learned.
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2D Inpainting
Image CCSC CSC[15] NLR [10]

Wind Mill 35.13 33.49 27.30

Sea Rock 28.45 27.29 23.38

Parthenon 31.36 29.79 24.99

Rolls Royce 29.15 27.34 22.05

Fence 30.83 29.59 22.41

Car 34.06 32.57 22.86

Kid 29.41 28.05 23.08

Tower 29.97 28.30 24.86

Fish 31.68 30.26 20.92

Food 36.77 35.09 23.78

2D Poisson Deconvolution
Image CCSC CSC [15] Krishnan [19]

Agama 28.05 27.87 24.26

Gypful 29.36 29.31 24.52

Kathmandu 23.14 22.86 20.19

Laser 31.59 31.57 28.10

Libelle 27.56 27.17 22.86

Melinaea 28.36 28.05 24.16

Mototaxis 23.41 23.34 20.87

Painted 22.47 21.89 18.84

Platycercus 25.93 24.94 21.12

Porsche 27.11 26.21 19.60

3D Multispectral Demosaicing
Image CCSC IID [25] SD [4] WB [4]

Balloons 28.62 27.38 25.83 25.91

Beads 23.87 23.33 14.18 14.57

CD 30.54 23.38 18.23 18.39

Chart 24.64 21.56 13.92 13.84

Clay 29.74 14.25 12.53 12.57

Cloth 23.50 20.96 13.91 14.02

Statue 33.38 20.83 16.97 17.12

Face 28.12 17.50 12.91 13.00

Beer 23.72 18.33 9.21 9.23

Food 28.91 25.50 17.38 17.61

Figure 8: Quantitative analysis of 2D Image Reconstruction and Multispectral Demosaicing. Left: Inpainting results for 50%

randomly subsampled observations of images randomly selected from ImageNet [9]. The filters learned using CCSC (shown

in Fig. 1) lead to significantly prediction results compared to the ones from [15], as well as recent patch-based methods

such as the non-local low-rank method from [10]. Center: 2D Poisson Deconvolution. Comparisons of CCSC against the

state of the art deconvolution method [19] and the classical CSC method. Right: Multispectral Demosaicing results for the

CAVE dataset comparing CCSC against the state of the art Iterative Intensity Difference (IID) [25], and the previous standard

Spectral Difference (SD) [4] and Weighted Bilinear (WB) [4] interpolation methods. All values reported as PSNR in dB.

Please see supplement for comparisons of CCSC with other state of the art techniques.

used for a variety of purposes, such as boundary handling,

and masking incomplete data. Note that, typically M is a

diagonal or block diagonal matrix, such that it decouples

linear systems of the form (MTM + I)x = v into many

small independent systems that can be efficiently solved.

Inpainting and Deconvolution: To compare the CCSC

large-scale dictionary with conventional CSC, and demon-

strate applicability to different noise and image formation

models, we evaluated their performance in both inpainting

and Poisson noise deconvolution with the Poisson proximal

operator described in the supplement. Quantitative results

can be found in Figure 8 (left and center), and sample re-

constructions can be found in Figure 9 & 10. In all cases

SubsampleSubsample OriginalOriginal CCSCCCSC CSCCSC

OriginalOriginal CCSC (29.97dB)CCSC (29.97dB) CSC (28.30dB)CSC (28.30dB)

Figure 9: Inpainting results using 2D filters for the “Clock”

example. Top row show from left to right: (a) Subsampled

image, (b) Ground Truth, (c) CCSC, (d) Conventional CSC.

Bottom shows insets from (b-d) respectively. It is evident

that conventional filters fail for difficult contrast edges such

as the vertical clock features.

the CCSC large-scale features outperformed both classical

CSC as well as state of the art alternatives. Please see sup-

plement for additional comparisons of our algorithm with

other state of the art techniques.

Multi-Spectral Demosaicing: We compare the pro-

posed method to the state of the art multispectral demosaic-

ing technique [25]. To emulate the demosaicing process

we process the raw data to conform to a multispectral filter

array (MSFA) pattern with 16 evenly spaced channels cor-

responding to data from the 400 to 700 nm range. We then

reconstruct the data as a sub-sampling problem where the

missing data from each channel is masked by the M opera-

tor. We compared the CCSC results with the code provided

by [25] on the original CAVE dataset [31] and calculated

BlurredBlurred OriginalOriginal CCSCCCSC CSCCSC

OriginalOriginal CCSC (27.11dB)CCSC (27.11dB) CSC (26.21dB)CSC (26.21dB)

Figure 10: Deconvolution results using 2D filters for the

Car example. Top row show from left to right: (a) Blurred

image, (b) Ground Truth, (c) CCSC, (d) Conventional CSC.

Bottom shows insets from (b-d) respectively. In darker re-

gions such as the car text conventional CSC hallucinates

features which are not present resulting in poor deconvolu-

tion results.
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OriginalOriginal

IID (21.56dB)IID (21.56dB)

CCSC (24.64dB)CCSC (24.64dB)

420nm 460nm 500nm 540nm

Figure 11: Multispectral demosaicing results from four

wavelengths of the chart dataset. Note that while the pro-

posed algorithm does contain demosaicing artifacts it is bet-

ter able to reconstruct the high frequency details found in

the background chart while preserving spectral differences.

Find a comparison to additional methods, WB (13.84 dB)

and SD (13.92 dB), in the supplement.

the PSNR of the entire reconstructed image. The results in

Figure 8 (right) show that CCSC outperforms state of the art

techniques, an example of which can be seen in Figure 11.

Light Field View Synthesis: Here we compare CCSC

using the learned light field dictionary with state of the art

light field view synthesis algorithms. The results can be

found in Figure 12 along with sample output. Using the

M operator to mask the unknown views we wish to synthe-

size, we can employ our general reconstruction algorithm to

generate the missing data. Using the dictionary described in

previous sections with 5×5 angular views and testing data

provided by [16], we synthesized the second and fourth an-

gular views in both x and y after removing them from the

data. Although this is not the experimental setup used in

[16], which may account for some degradation in their per-

formance, it demonstrates the versatility of the proposed ap-

proach. One dictionary trained with CCSC can be used to

synthesize any number or orientation of light field views.

6. Discussion

Conclusion We have shown that CSC has the potential

to be applied in many high and low level computer vision

applications. Our distributed CCSC algorithm is both mem-

ory efficient and capable of high quality representations of

N-Dimensional image data. Furthermore, by reducing and

distributing the memory requirements compared to previous

CSC methods, our algorithm is capable of handling much

larger datasets thereby generating more generalized feature

OriginalOriginal CCSC (30.05dB)CCSC (30.05dB) Kalantari (25.21dB)Kalantari (25.21dB)

OriginalOriginal CCSC (28.82dB)CCSC (28.82dB) Kalantari (22.87dB)Kalantari (22.87dB)

Scene Cars Flower 1 Flower 2 Rock Seahorse

CCSC 27.57 30.05 29.89 28.82 31.77

Kalantari [16] 21.41 25.21 24.13 22.87 25.67

Figure 12: Top: Example of synthesized views from the

Flower dataset. From left to right, (a) Ground Truth, (b)

CCSC, (c) Kalantari [16]. The proposed algorithm produces

less noticeable ghosting artifacts due to far away objects and

better reconstructs fine detail in nearby objects such as the

leaf edges and stalk tip. Bottom: Quantitative reconstruc-

tion results in PSNR (dB).

spaces. With our proposed method, we hope to provide a

step towards practical and efficient approaches to solving

high-dimensional sparse coding problems.

Future Work Although we have shown that CCSC is ca-

pable of tackling many computer vision problems, there are

many further possible applications. Because our algorithms

produce high-dimensional per-pixel coefficients, they could

be incorporated into classification, segmentation, or spec-

tral unmixing techniques.

Unlike previous CSC implementations, our distributed

framework is amenable to GPU implementation which of-

ten have extreme memory constraints. Such an implementa-

tion would dramatically increase performance and, for ex-

ample, bring our multispectral demosaicing algorithm run

time in line with other methods.
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