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Abstract

In this paper, we propose a CNN-based framework for
online MOT. This framework utilizes the merits of single
object trackers in adapting appearance models and search-
ing for target in the next frame. Simply applying single
object tracker for MOT will encounter the problem in com-
putational efficiency and drifted results caused by occlu-
sion. Our framework achieves computational efficiency by
sharing features and using ROI-Pooling to obtain individual
features for each target. Some online learned target-specific
CNN layers are used for adapting the appearance model
for each target. In the framework, we introduce spatial-
temporal attention mechanism (STAM) to handle the drift
caused by occlusion and interaction among targets. The
visibility map of the target is learned and used for inferring
the spatial attention map. The spatial attention map is then
applied to weight the features. Besides, the occlusion status
can be estimated from the visibility map, which controls the
online updating process via weighted loss on training sam-
ples with different occlusion statuses in different frames. It
can be considered as temporal attention mechanism. The
proposed algorithm achieves 34.3% and 46.0% in MOTA
on challenging MOT15 and MOT16 benchmark dataset re-
spectively.

1. Introduction

Tracking objects in videos is an important problem in
computer vision which has attracted great attention. It
has various applications such as video surveillance, human
computer interface and autonomous driving. The goal of
multi-object tracking (MOT) is to estimate the locations of
multiple objects in the video and maintain their identities
consistently in order to yield their individual trajectories.
MOT is still a challenging problem, especially in crowded
scenes with frequent occlusion, interaction among targets
and so on.
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Figure 1. An example of drift caused by occlusion of other targets
when directly adopting single object trackers to MOT.

On the other hand, significant improvement has been
achieved on single object tracking problem, sometimes
called “visual tracking” in previous work. Most state-of-
the-art single object tracking methods aim to online learn
a strong discriminative appearance model and use it to find
the location of the target within a search area in next frame
[, 17, 18, 19]. Since deep convolutional neural networks
(CNNs) are shown to be effective in many computer vi-
sion applications [27, [15) 136} 135, 157, 154], many works
(47,119} 131} 48] have explored the usage of CNNs to learn
strong discriminative appearance model in single object
tracking and demonstrated state-of-the-art performance re-
cently. An intuitive thought is that applying the CNN based
single object tracker to MOT will make sense.

However, problems are observed when directly using
single object tracking approach for MOT.

First, single object tracker may learn from noisy sam-
ples. In single object tracking, the training samples for
learning appearance model are collected online, where la-
bels are based on tracking results. The appearance model
is then used for finding the target in the next frame. When
the target is occluded, the visual cue is unreliable for learn-
ing the appearance model. Consequently, the single object
tracker will gradually drift and eventually fail to track the
target. This issue becomes even more severe in MOT due to
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more frequent occlusion caused by interaction among tar-
gets. An example is shown in Figure |1} one target is oc-
cluded by another when they are close to each other, which
makes the visual cues of the occluded target contaminated
when this target is used for training. However, the tracking
score of the occluded target is still relatively high at the be-
ginning of occlusion. In this case, the corresponding single
object tracker updates the appearance model with the cor-
rupted samples and gradually drifts to the occluder.

Second, since a new single object tracker needs to be
added into MOT system once a new target appears, the com-
putational cost of applying single object trackers to MOT
may grow intolerably as the number of tracked objects in-
creases, which limits the application of computationally in-
tensive single object trackers in MOT such as deep learning
based methods.

In this work, we focus on handling the problems ob-
served above. To this end, we propose a dynamic CNN-
based framework with spatial-temporal attention mechanis-
m (STAM) for online MOT. In our framework, each object
has its own individual tracker learned online.

The contributions of this paper are as follows:

First, an efficient CNN-based online MOT framework. It
solves the problem in computational complexity when sim-
ply applying CNN based single object tracker for MOT by
sharing computation among multiple objects.

Second, in order to deal with the drift caused by occlu-
sion and interactions among targets, spatial-temporal atten-
tion of the target is learned online. In our design, the visi-
bility map of the target is learned and used for inferring the
spatial attention map. The spatial attention map is applied
to weight the features. Besides, the visibility map also indi-
cates occlusion status of the target which is an important cue
that needs to be considered in online updating process. The
more severe a target is occluded, the less likely it should be
used for updating corresponding individual tracker. It can
be considered as temporal attention mechanism. Both the
spatial and temporal attention mechanism help to help the
tracker to be more robust to drift.

We demonstrate the effectiveness of the proposed on-
line MOT algorithm, referred as STAM, using challenging
MOT15 [29] and MOT16 [32] benchmarks.

2. Related Work

Multi-object Tracking by Data Associtation. With the
development of object detection methods [} 14, 15,137,138]],
data association [22} 39, [33| 2] has become popular for
MOT. The main idea is that a pre-defined object detector
is applied to each frame, and then trajectories of objects
are obtained by associating object detection results. Most
of these works adopt an off-line way to process video se-
quences in which the future frames are also utilized to deal
with the problem. These off-line methods consider MOT as
a global optimization problem and focus on designing var-

ious optimization algorithm such as network flow [39, 58],
continuous energy minimization [33]], max weight indepen-
dent set [6], k-partite graph [56} [10], subgraph multi-cut
[43]144] and so on. However, offline methods are not suit-
able for causal applications such as autonomous driving. On
the contrary, online methods generate trajectories only us-
ing information up to the current frame which adopt prob-
abilistic inference [34] or deterministic optimization (e.g.
Hungarian algorithm used in [2]]). One problem of such as-
sociation based tracking methods is the heavy dependency
on the performance of the pre-defined object detector. This
problem has more influence for online tracking methods, s-
ince they are more sensitive to noisy detections. Our work
focuses on applying online single object tracking method-
s to MOT. The target is tracked by searching for the best
matched location using online learned appearance model.
This helps to alleviate the limitations from imperfect detec-
tions, especially for missing detections. It is complemen-
tary to data association methods, since the tracking results
of single object trackers at current frame can be consider as
association candidates for data association.

Single Object Tracker in MOT. Some previous works
[51115311541521159,150] have attempted to adopt single object
tracking methods into MOT problem. However, single
object tracking methods are often used to tackle a small sub-
problem due to challenges mentioned in Sec. [I] For exam-
ple, single object trackers are only used to generate initial
tracklets in [51]]. Yu ez al. [S0] partitions the state space of
the target into four subspaces and only utilizes single object
trackers to track targets in tracked state. There also exists a
few works that utilize single object trackers throughout the
whole tracking process. Breitenstein et al. [3]] use target-
specific classifiers to compute the similarity for data associ-
ation in a particle filtering framework. Yan et al. [52] keep
both the tracking results of single object trackers and the
object detections as association candidates and select the
optimal candidate using an ensemble framework. All meth-
ods mentioned above do not make use of CNN based single
object trackers, so they can not update features during track-
ing. Besides, they do not deal with tracking drift caused by
occlusion. Different from these methods, our work adopts
online learned CNN based single object trackers into online
multi-object tracking and focuses on handling drift caused
by occlusion and interactions among targets.

Occlusion handling in MOT. Occlusion is a well-
known problem in MOT and many approaches are proposed
for handling occlusion. Most works [21} 49| 41}, 23] 145]]
aim at utilizing better detectors for handling partial occlu-
sion. In this work, we attempt to handle occlusion from the
perspective of feature learning, which is complementary to
these detection methods. Specifically, we focus on learn-
ing more robust appearance model for each target using the
single object tracker with the help of spatial and temporal
attention.
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Figure 2. Overview of the proposed algorithm STAM. Motion model provides the search area, where features of candidates are extracted
and then weighted by the spatial attention. The candidate state with the maximum classification score is used as the estimated target state.
The positive and negative training samples at current frame are collected according to the overlap with estimated target state. The historical
positive training samples of the target are also used for online updating. Temporal attention model is used for weighting the loss of positive

training samples in current and historical frames.

3. Online MOT Algorithm
3.1. Overview

The overview of the proposed algorithm is shown in Fig-
ure 2] The following steps are used for tracking objects:

Step 1. At the current frame ¢, the search area of each
target is obtained using motion model. The candidates are
sampled within the search area.

Step 2. The features of candidates for each target are
extracted using ROI-Pooling and weighted by spatial at-
tention. Then the binary classifier is used to find the best
matched candidate with the maximum score, which is used
as the estimated target state.

Step 3. The visibility map of each tracked target is in-
ferred from the feature of corresponding estimated target
state. The visibility map of the tracked target is then used
along with the spatial configurations of the target and its
neighboring targets to infer temporal attention.

Step 4. The target-specific CNN branch of each target is
updated according to the loss of training samples in current
and historical frames weighted by temporal attention. The
motion model of each target is updated according to corre-
sponding estimated target state.

Step 5. The object management strategy determines
the initialization of new targets and the termination of un-
tracked targets.

Step 6. If frame ¢ is not the last frame, then go to Step 1
for the next frame ¢ 4- 1 .

3.2. Dynamic CNN-based MOT Framework

We propose a dynamic CNN-based framework for online
MOT, which consists of both shared CNN layers and target-
specific CNN branches. As shown in Figure 3] the shared
CNN layers encode the whole input frame as a large fea-
ture map, from which the feature representation of each tar-
get is extracted using ROI-Pooling [15]]. For computational

efficiency, these shared layers are pre-trained on Imagenet
Classification task [11]], and not updated during tracking.
All target-specific CNN branches share the same structure,
but are separately trained to capture the appearance of dif-
ferent targets. They can be viewed as a set of single-object
trackers.

The number of target-specific CNN branches varies with
the number of existing targets. Once a new target appears,
a new branch will be initialized and added to the model. If
a target is considered to be disappeared, its corresponding
branch will be removed from the entire model.

3.3. Online Tracking with STAM

The trajectory of an object can be represented by a
series of states denoted by {x¢};=123... 7, where x; =
[xt, yt, wt, he]. 2¢ and y; represent the center location of
the target at frame ¢. w; and h; denote the width and height
of the target, respectively. Multi-object tracking aims to ob-
tain the estimated states of all targets at each frame.

3.3.1 Candidate States

For the i-th target 7° to be tracked, its estimated state x.
at frame ¢ is obtained by searching from a set of candidate
states denoted by C;, which consists of two subsets:

¢l ={x;, e D 1)

{xf)n}f;l denotes the set of candidate states that are
drawn from a Gaussian distribution A/ (X%, X¢), where X!
is the predicted state of target 7 at frame ¢, and X! =
diag (0 ,)2, (01 )% (01.)° (0 )?) is @ diagonal co-
variance matrix indicating the variance of target location
and scale. x! and X! are estimated by the motion model
(Sec. . Denote by D; = {x{, }M_, the set of all
object detections provided by an off-line trained detector at
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Figure 3. (a) The framework of the proposed CNN model. It contains shared CNN layers and multiple target-specific CNN branches. The
shared layers are shared by all targets to be tracked. Each target has its own corresponding target-specific CNN branch which is learned
online. The target-specific CNN branch acts as a single object tracker and can be added to or removed from the whole model according to
the entrance of new target or exit of existing target. (b) The details of the target-specific CNN branch. Each target-specific CNN branch
consists of feature extraction using visibility map and spatial attention as described in Sec. and binary classification (described in
Sec. [3:33). The initialization and online updating of the target-specific branch are described in Sec. [3.4.1]and Sec. [3.:4-2]respectively.

frame t. D! = {xf,mi}%jzl C D are selected detection-
s that are close to the predicted state X! in spatial location

(|(X;51,ml)k - (i%)k| < 3Jz,k7Vk =Z,Y,w, h)

3.3.2 Feature Extraction with Spatial Attention

The feature of candidate state is extracted from the shared
feature map using ROI-Pooling and spatial attention mech-
anism. The ROI-Pooling from the shared feature map ig-
nores the fact that the tracked targets could be occluded.
In this case, the pooled features would be distorted by the
occluded parts. To handle this problem, we propose a spa-
tial attention mechanism which pays more attention to un-
occluded regions for feature extraction.

Directly using spatial attention does not work well due to
limited training samples in the online learning process. In
our work, we first generate the visibility map which encodes
the spatial visibility of the input samples. Then the spatial
attention is derived from visibility map.

Visibility Map. Denote the ROI-Pooled feature rep-
resentation of the j-th candidate state xj; € C} as
@roi(xi’j) € RWXHXC the visibility map of xf‘;,j is es-
timated as

V(x1) = fois(Proi(x)iwy,), V(x) e RV ()

Vs

where, wi,. is the set of parameters. fyis(®roi(X} ;); wh;,)

is modeled as two layers interleaved with ReLU layer. The
first layer is a convolution layer which has the kernel size
of 3 x 7 and produces a feature map with 32 channels. The
second layer is a fully connected layer with the output size
of (W x H). Then the output is reshaped to a map with the
size of W x H. Each element in visibility map V (x; ;) indi-
cates the visibility of corresponding location in feature map
@m(xi, j). Some examples of generated visibility maps are
shown in Figure [

Spatial Attention. The spatial attention map ¥(x} ;) €
RW>H for candidate state x] ; is obtained from visibility
map V(x; ;) as follows:

\I/(X;j)) = fatt(v(xi,j);witt)? (3)

where fq is implemented by a local connected layer fol-
lowed by a spatial softmax layer and wy,, denotes the pa-
rameters. Then the spatial attention map W (x; ;) is applied

to weight the feature map ®,.,; (xg ;) as

Pare(x} ;) = (I)roi(xi,j) x \I](Xi,j)’
Dure(x} ), Proi(x] ;) € RV *HXC 4)

U(x; ;) € RV*H

%
t
%
t

where x represents the channel-wise Hadamard produc-
t operation, which performs Hadamard product between
W(x; ;) and each channel of ®,.,;(x} ;).
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Figure 4. Examples of the generated visibility maps. The first four
columns show examples of the target occluded by other target or
background. The last column shows the failure case when targets
are too close. Best viewed in color.

3.3.3 Target State Estimation Using Binary Classifier
and Detection Results

Binary Classification. Given the refined feature represen-
tation @4 (x} ;), the classification score is obtained as fol-
lows: ' _ _
pzlt,j = fcls(q)att(xij);wlcls)? (5)

where p] ; € [0,1] is the output of binary classifier which
indicates the probability of candidate state x; ; belonging
to target 7. w’,, is the parameter of the classifier for tar-
get T*. In our work, fes(®are (X} ;); wl;,) is modeled by
two layers interleaved with ReLU layer. The first layer is
a convolution layer which has the kernel size of 3 x 7 and
produces a feature map with 5 channels. The second layer
is a fully connected layer with the output size of 1. Then
a sigmoid function is applied to ensure the output to be in
[0,1].

The primitive estimated state of target 7 is obtained by
searching for the candidate state with the maximum classi-
fication score as follows:

Xt = arg max fcls( att (Xi,j); wlcls)7 (6)
Ect

State Refinement. The primitive estimated state with
too low classification score will bias the updating of the
model. To avoid model degeneration, if the score g}z =
Jeis(Pare (X% w?,,) is lower than a threshold py, the corre-
sponding target 7 is considered as “untracked” in current
frame ¢. Otherwise, the primitive state fci will be further
refined using the object detections states D, = {x{ , }}_,
Specifically, the nearest detection state for X! is obtained

as follows:
x{" = argmax ToU (X}, x¢, ), (7

t,m
xfym €Dy
where ToU (X, vam) calculates the bounding box IoU over-

lap ratio between X} and xﬁm. Then the final state of target
T is refined as

. { xP 4 (1 — o})%i,

0y > 0g
Xy = vy _
X, otherwise,

®)

where o} = IoU (X%, xt ) and oy is a pre-defined threshold.
3.4. Model Initialization and Online Updating

Each target-specific CNN branch comprises of visibility
map, attention map and binary classifier. The parameters
for visibility map are initialized in the first frame when the
target appears and then all three modules are jointly learned.

3.4.1 Model Initialization

For the initialization of parameters in obtaining visibility
map, we synthetically generate training samples and the
corresponding ground truth based on initial target state.

Augmented Set. Denote the ROI-Pooled feature rep-
resentation of initial state of target 7% as ®,,;(x}) €
RWXHXC 3 W x H matrix with all elements equal to 1 is
used as the corresponding ground truth visibility map. An
augmented set is obtained via collecting samples that have
large overlap with initial target state x}. For each sample in
the augmented set, the ground truth visibility map for region
not overlapping with x is set to 0.

Feature Replacement. We replace the features of the
sample with the features from another target or background
at some region and set the ground truth for replaced region
to 0. The replaced region is regarded as occluded. For
each sample in the augmented set, the feature replacement
is done using different targets/brackgrounds at different re-
gions.

Given these training samples and ground truth visibility
maps, the model is trained using cross-entropy loss.

3.4.2 Online Updating Appearance Model

After initialization in the initial frame, all three modules are
jointly updated during tracking using back-propagation al-
gorithm.

Training samples used for online updating are obtained
from current frame and historical states. For tracked target,
positive samples at current frame t are sampled around the
estimated target state x; with small displacements and scale
variations. Besides, historical states are also utilized as pos-
itive samples. If the target is considered as “untracked” at
current frame, we only use historical states of the target as
positive samples. All negative samples are collected at cur-
rent frame ¢. The target-specific branch needs to have the
capability of discriminating the target from other targets and
background. So both the estimated states of other tracked
targets and the samples randomly sampled from background
are treated as the negative samples.

For target T, given the current positive samples set

{X; i 1, historical positive samples set {th} h1 and

the negative samples set {Xt ]}jv 1 » the loss function for

updating corresponding target-specific branch is defined as

Li=L +(1—a)Lit +alLit, )
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Nli

Li- = — fers(Pare (X1); wiy)],
N1+
Li+ = N11+ Z log fes(® att(XtJ;) wly,), (10)
t =1
Nt
L;';F — N1z+ Zlogfcls( att(xhi) wly,),
j=1

where, Li~, Li+, and L'ﬁllJr are losses from negative sam-
ples, positive samples at current frame, and positive sam-
ples in the history, respectively. ! is the temporal attention
introduced below.

Temporal Attention. A crucial problem for model up-
dating is to balance the relative importance between current
and historical visual cues. Historical samples are reliable
positive samples collected in the past frames, while samples
in current frame reflect appearance variations of the target.
In this work, we propose a temporal attention mechanism,
which dynamically pay attention to current and historical
samples based on occlusion status.

Temporal attention of target 7 is inferred from visibility
map V (x!) and the overlap statuses with other targets

oy = o(y'sp + Blof +bY), (11)

where s¢ is the mean value of visibility map V(x!). o!
is the maximum overlap between 7 and all other targets
in current frame ¢. %, 3% and b’ are learnable parameters.
o(x) =1/(1+ e*) is the sigmoid function.

Since o} indicates the occlusion status of target 7°. If
! is large, it means that target 7 is undergoing severe oc-
clusion at current frame ¢. Consequently, the weight for
positive samples at current frame is small according to E-
q. [0 There, the temporal attention mechanism provides a
good balance between current and historical visual cues of
the target. Besides, if a,ﬁ is smaller than a threshold «, the
corresponding target state x¢ will be added to the historical
samples set of target 7.

3.4.3 Updating Motion Model

Most single object trackers do not consider the motion mod-
el, while it is proved to be helpful in MOT. In our work,
a simple linear motion model with constant velocity and
Gaussian noise is applied to each target, which is used to
determine the center location and the size of search area for
tracking the target in next frame. The scale of the target is
considered as unchanged. Given the velocity v¢ at frame ¢,
the predicted state of target 7 at frame ¢ + 1 is defined as
Xj =X} + [v},0,0].

At frame t, the velocity of target 7 is updated as

i 1
vy = Tyap (lt

Y i\
vy = oy + (1 — ap)vy,

b Tyep):

12)

where Ty, denotes the time gap for computing velocity.
Iy = [z, 4T is the center location of target 7 at frame ¢.
The variance of Gaussian noise is defined as

i i 13
Ut,w - Ut,h — 30 ht7

i i _ i
Otx = Oty = Ot

)

1.05-oi_,, Ni>0
ol — oo 1/075 N =0andr > 0.75
. ma’x( hilfv 501;_1)7 Nf =0andr <0.25
oi_1, otherwise
r= [t} = L]l2/(30]_,),

13)

where i; =1,_, +wv}_, is the center location of target 7" at
frame ¢ predicted by motion model. Nf denotes the length
of the successive untracked frames of target 7° at frame t.
r measures the prediction error of linear motion model. If
target 7 is tracked at frame ¢, the variance o} is related
to the prediction error 7. Otherwise, the search area will
be extended as the length of successive untracked frames
Srows.

3.5. Object Management

In our work, a new target 7 "% is initialized when a new-
ly detected object with high detection score is not covered
by any tracked targets. To alleviate the influence of false
positive detections, the newly initialized target 7™ will
be discarded if it is considered as “untracked” (Sec. [3.3.3)
or not detected in any of the first 75,,;; frames. For target ter-
mination, we simply terminate the target if it is “untracked”
for over Ty¢,m successive frames. Besides, targets that exit
the field of view are also terminated.

4. Experiments

In this section, we present the experimental results and
analysis for the proposed online MOT algorithm.

4.1. Implementation details

The proposed algorithm is implemented in MATLAB
with Caffe [24]. In our implementation, we use the first ten
convolutional layers of the VGG-16 network [42] trained on
Imagenet Classification task [[11] as the shared CNN layer-
s. The threshold oy is set to 0.5, which determines whether
the location found by single object tracker is covered by a
object detection. The thresholds py and o are set to 0.7
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and 0.3 respectively. For online updating, we collect posi-
tive and negative samples with > 0.7 and < 0.3 IoU over-
lap ratios with the target state at current frame, respectively.
The detection scores are normalized to the range of [0, 1]
and the detection score threshold in target initialization is
set to 0.25. Denote the frame rate of the video as F', we use
Tinit = 0.2F and Tierp, = 2F in object management and
Tyap = 0.3F in motion model.

4.2. Datasets

We evaluate our online MOT algorithm on the pub-
lic available MOT15 [29] and MOT16 [32] benchmark-
s containing 22 (11 training, 11 test) and 14 (7 training,
7 test) video sequences in unconstrained environments re-
spectively. The ground truth annotations of the training
sequences are released. We use the training sequences in
MOT15 benchmark for performance analysis of the pro-
posed method. The ground truth annotations of test se-
quences in both benchmarks are not released and the track-
ing results are automatically evaluated by the benchmark.
So we use the test sequences in two benchmarks for com-
parison with various state-of-the-art MOT methods. In ad-
dition, these two benchmarks also provide object detections
generated by the ACF detector [13] and the DPM detector
[[14]] respectively. We use these public detections in all ex-
periments for fair comparison.

4.3. Evaluation metrics

To evaluate the performance of multi-object tracking
methods, we adopt the widely used CLEAR MOT metric-
s [4]], including multiple object tracking precision (MOTP)
and multiple object tracking accuracy (MOTA) which com-
bines false positives (FP), false negatives (FN) and the iden-
tity switches (IDS). Additionally, we also use the metrics
defined in [30], which consists of the percentage of mostly
tracked targets (MT, a ground truth trajectory that are cov-
ered by a tracking hypothesis for at least 80% is regarded as
mostly tracked), the percentage of mostly lost targets (ML,
a ground truth trajectory that are covered by a tracking hy-
pothesis for at most 20% is regarded as mostly lost), and the
number of times a trajectory is fragmented (Frag).

4.4. Tracking Speed

The overall tracking speed of the proposed method on
MOTIS5 test sequences is 0.5 fps using the 2.4GHz CPU
and a TITAN X GPU, while the algorithm without feature
sharing runs at 0.1 fps with the same environment.

4.5. Performance analysis

To demonstrate the effectiveness of the proposed
method, we build five algorithms for components of differ-
ent aspects of our approach. The details of each algorithm
are described as follows:

Performance Analysis

35 33.4% 34.6%
31.4%

Il boscine

lp2: pl+motion model
lp3: p2+spatial attention
Dp4: p2+temporal attention

lpS: Pp2+spatial-temporal attention

pl p2 p3 p4 ps
Algorithm

Figure 5. The performance of different algorithms on training se-
quences of MOT15 in terms of MOTA.

pl: directly using single object trackers without the pro-
posed spatial-temporal attention or motion model, which is
the baseline algorithm;

p2: adding the motion model based on pl;

p3: adding the spatial attention based on p2;

p4: adding the temporal attention based on p2;

pS: adding the spatial-temporal attention based on p2,
which is the whole algorithm with all proposed components.

The performance of these algorithms on the training se-
quences of MOT15, in terms of MOTA which is a good ap-
proximation of the overall performance, are shown in Fig-
ure 5} The better performance of the algorithm p2 com-
pared to pl shows the effect of the using motion model in
MOT. The advantages of the proposed spatial-temporal at-
tention can be seen by comparing the performance of algo-
rithm p5 and p2. Furthermore, compared to the algorithm
p2, the performance improvement of p3 and p4 shows the
effectiveness of spatial and temporal attention in improv-
ing tracking accuracy respectively. The improvement of p5
over both p3 and p4 shows that the spatial and temporal
attention are complementary to each other. Algorithm p5
with all the proposed components achieves the best perfor-
mance and improves 8% in terms of MOTA compared with
the baseline algorithm pl, which demonstrates the effec-
tiveness of our algorithm in handling the problems of using
single object trackers directly.

4.6. Comparisons with state-of-the-art methods

We compare our algorithm, denoted by STAM, with sev-
eral state-of-the-art MOT tracking methods on the test se-
quences of MOT15 and MOT 16 benchmarks. All the com-
pared state-of-the-art methods and ours use the same public
detections provided by the benchmark for fair comparison.
Table presents the quantitative comparison results El

MOT15 Results. Overall, STAM achieves the best per-
formance in MOTA, FP, and IDS among all the online
and offline methods. In terms of MOTA, which is the

IThe quantitative tracking results of all these trackers are avail-
able at the website http://motchallenge.net/results/2D_MOT_2015/ and
http://motchallenge.net/results/MOT16/.
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benchmark | Mode \ Method \ MOTA t \ MOTP 1 \ MT 1t \ ML | \ FP | \ FN | \ IDS | \ Frag | ‘

SMOTI[12] 18.2% 71.2% 2.8% | 54.8% | 8780 | 40310 | 1148 | 2132

CEM[33] 19.3% 70.7% 85% | 46.5% | 14180 | 34591 813 1023

JPDA_m[16] 23.8% 68.2% 50% | 58.1% | 4533 | 41873 404 792

Offline | SiameseCNN[28] | 29.0% 71.2% 85% | 48.4% | 5160 | 37798 639 1316
CNNTCM[40] 29.6% 71.8% 11.2% | 44.0% | 7786 | 34733 712 943

MHT_DAMI26] 32.4% 71.8% | 16.0% | 43.8% | 9064 | 32060 435 826

MOT15 NOMT[7] 33.7% 71.9% 122% | 44.0% | 7762 | 32547 442 823
TC_ODAL[2] 15.1% 70.5% 32% | 55.8% | 12970 | 38538 637 1716

RMOT[55]] 18.6% 69.6% 53% | 53.3% | 12473 | 36835 684 1282

Online olCF[25] 27.1% 70.0% 6.4% | 48.7% | 7594 | 36757 454 1660

SCEA[20] 29.1% 71.1% 89% | 47.3% | 6060 | 36912 604 1182
MDP[50] 30.3% 713% | 13.0% | 384% | 9717 | 32422 680 1500

STAM 34.3% 70.5% 114% | 43.4% | 5154 | 34848 348 1463

JPDA _m[16] 26.2% 76.3% 4.1% | 67.5% | 3689 | 130549 | 365 638

SMOTI[12] 29.7% 75.2% 53% | 47.7% | 17426 | 107552 | 3108 | 4483

Offline CEM|[33] 33.2% 75.8% 7.8% | 54.4% | 6837 | 114322 | 642 731
MHT_DAMI26] 45.8% 76.3% 16.2% | 43.2% | 6412 | 91758 590 781
MOTI6 IMCJ44] 46.3% 75.7% 155% | 39.7% | 6373 | 90914 657 1114
NOMT[7] 46.4% 76.6% | 183% | 41.4% | 9753 | 87565 359 504
OVBT[3] 38.4% 75.4% 7.5% | 473% | 11517 | 99463 | 1321 | 2140

Online EAMTTI[40] 38.8% 75.1% 79% | 49.1% | 8114 | 102452 | 965 1657
oICF[25] 43.2% 74.3% 11.3% | 48.5% | 6651 | 96515 381 1404
STAM 46.0% 749% | 14.6% | 43.6% | 6895 | 91117 473 1422

Table 1. Quantitative results of our method (denoted by STAM) and several state-of-the-art MOT trackers on MOT15 and MOT16 test
sequences. Results are divided into two groups, i.e. online tracking and offline tracking. red and blue values in blod highlight the best

results of online and offline methods respectively. *1” means that higher is better and °|’ represents that lower is better.

most important metric for MOT, STAM improves 4% com-
pared with MDP, the best online tracking method that is
peer-reviewed and published. Note that our method work-
s in pure online mode and dose not need any training data
with ground truth annotations. While MDP performs train-
ing with sequences in the similar scenario and its ground
truth annotations for different test sequences. Besides, our
method produce the lowest IDS among all methods, which
demonstrates that our method can handle the interaction a-
mong targets well. Note that the CNNTCM and SiameseC-
NN also utilize CNNs to handle MOT problem but in of-
fline mode. What’s more, their methods requir abundan-
t training data for learning siamese CNN. The better per-
formance compared to these CNN-based offline methods
provides strong support on the effectiveness of our online
CNN-based algorithm.

MOT16 Results. Similarly, STAM achieves the best
performance in terms of MOTA, MT, ML, and FN among
all online methods. Besides, the performance of our algo-
rithm in terms of MOTA is also on par with state-of-the-art
offline methods.

On the other hand, our method produces slightly more
Frag than some offline methods, which is a common defect
of online MOT methods due to long term occlusions and
severe camera motion fluctuation.

5. Conclusion

In this paper, we have proposed a dynamic CNN-based
online MOT algorithm that efficiently utilizes the merits of
single object trackers using shared CNN features and ROI-
Pooling. In addition, to alleviate the problem of drift caused
by frequent occlusions and interactions among targets, the
spatial-temporal attention mechanism is introduced. Be-
sides, a simple motion model is integrated into the algorith-
m to utilize the motion information. Experimental results
on challenging MOT benchmarks demonstrate the effective-
ness of the proposed online MOT algorithm.
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