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Abstract

In this paper, we propose a CNN-based framework for

online MOT. This framework utilizes the merits of single

object trackers in adapting appearance models and search-

ing for target in the next frame. Simply applying single

object tracker for MOT will encounter the problem in com-

putational efficiency and drifted results caused by occlu-

sion. Our framework achieves computational efficiency by

sharing features and using ROI-Pooling to obtain individual

features for each target. Some online learned target-specific

CNN layers are used for adapting the appearance model

for each target. In the framework, we introduce spatial-

temporal attention mechanism (STAM) to handle the drift

caused by occlusion and interaction among targets. The

visibility map of the target is learned and used for inferring

the spatial attention map. The spatial attention map is then

applied to weight the features. Besides, the occlusion status

can be estimated from the visibility map, which controls the

online updating process via weighted loss on training sam-

ples with different occlusion statuses in different frames. It

can be considered as temporal attention mechanism. The

proposed algorithm achieves 34.3% and 46.0% in MOTA

on challenging MOT15 and MOT16 benchmark dataset re-

spectively.

1. Introduction

Tracking objects in videos is an important problem in

computer vision which has attracted great attention. It

has various applications such as video surveillance, human

computer interface and autonomous driving. The goal of

multi-object tracking (MOT) is to estimate the locations of

multiple objects in the video and maintain their identities

consistently in order to yield their individual trajectories.

MOT is still a challenging problem, especially in crowded

scenes with frequent occlusion, interaction among targets

and so on.
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Figure 1. An example of drift caused by occlusion of other targets

when directly adopting single object trackers to MOT.

On the other hand, significant improvement has been

achieved on single object tracking problem, sometimes

called “visual tracking” in previous work. Most state-of-

the-art single object tracking methods aim to online learn

a strong discriminative appearance model and use it to find

the location of the target within a search area in next frame

[1, 17, 18, 9]. Since deep convolutional neural networks

(CNNs) are shown to be effective in many computer vi-

sion applications [27, 15, 36, 35, 57, 54], many works

[47, 19, 31, 48] have explored the usage of CNNs to learn

strong discriminative appearance model in single object

tracking and demonstrated state-of-the-art performance re-

cently. An intuitive thought is that applying the CNN based

single object tracker to MOT will make sense.

However, problems are observed when directly using

single object tracking approach for MOT.

First, single object tracker may learn from noisy sam-

ples. In single object tracking, the training samples for

learning appearance model are collected online, where la-

bels are based on tracking results. The appearance model

is then used for finding the target in the next frame. When

the target is occluded, the visual cue is unreliable for learn-

ing the appearance model. Consequently, the single object

tracker will gradually drift and eventually fail to track the

target. This issue becomes even more severe in MOT due to
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more frequent occlusion caused by interaction among tar-

gets. An example is shown in Figure 1, one target is oc-

cluded by another when they are close to each other, which

makes the visual cues of the occluded target contaminated

when this target is used for training. However, the tracking

score of the occluded target is still relatively high at the be-

ginning of occlusion. In this case, the corresponding single

object tracker updates the appearance model with the cor-

rupted samples and gradually drifts to the occluder.

Second, since a new single object tracker needs to be

added into MOT system once a new target appears, the com-

putational cost of applying single object trackers to MOT

may grow intolerably as the number of tracked objects in-

creases, which limits the application of computationally in-

tensive single object trackers in MOT such as deep learning

based methods.

In this work, we focus on handling the problems ob-

served above. To this end, we propose a dynamic CNN-

based framework with spatial-temporal attention mechanis-

m (STAM) for online MOT. In our framework, each object

has its own individual tracker learned online.

The contributions of this paper are as follows:

First, an efficient CNN-based online MOT framework. It

solves the problem in computational complexity when sim-

ply applying CNN based single object tracker for MOT by

sharing computation among multiple objects.

Second, in order to deal with the drift caused by occlu-

sion and interactions among targets, spatial-temporal atten-

tion of the target is learned online. In our design, the visi-

bility map of the target is learned and used for inferring the

spatial attention map. The spatial attention map is applied

to weight the features. Besides, the visibility map also indi-

cates occlusion status of the target which is an important cue

that needs to be considered in online updating process. The

more severe a target is occluded, the less likely it should be

used for updating corresponding individual tracker. It can

be considered as temporal attention mechanism. Both the

spatial and temporal attention mechanism help to help the

tracker to be more robust to drift.

We demonstrate the effectiveness of the proposed on-

line MOT algorithm, referred as STAM, using challenging

MOT15 [29] and MOT16 [32] benchmarks.

2. Related Work

Multi-object Tracking by Data Associtation. With the

development of object detection methods [8, 14, 15, 37, 38],

data association [22, 39, 33, 2] has become popular for

MOT. The main idea is that a pre-defined object detector

is applied to each frame, and then trajectories of objects

are obtained by associating object detection results. Most

of these works adopt an off-line way to process video se-

quences in which the future frames are also utilized to deal

with the problem. These off-line methods consider MOT as

a global optimization problem and focus on designing var-

ious optimization algorithm such as network flow [39, 58],

continuous energy minimization [33], max weight indepen-

dent set [6], k-partite graph [56, 10], subgraph multi-cut

[43, 44] and so on. However, offline methods are not suit-

able for causal applications such as autonomous driving. On

the contrary, online methods generate trajectories only us-

ing information up to the current frame which adopt prob-

abilistic inference [34] or deterministic optimization (e.g.

Hungarian algorithm used in [2]). One problem of such as-

sociation based tracking methods is the heavy dependency

on the performance of the pre-defined object detector. This

problem has more influence for online tracking methods, s-

ince they are more sensitive to noisy detections. Our work

focuses on applying online single object tracking method-

s to MOT. The target is tracked by searching for the best

matched location using online learned appearance model.

This helps to alleviate the limitations from imperfect detec-

tions, especially for missing detections. It is complemen-

tary to data association methods, since the tracking results

of single object trackers at current frame can be consider as

association candidates for data association.

Single Object Tracker in MOT. Some previous works

[51, 53, 5, 52, 59, 50] have attempted to adopt single object

tracking methods into MOT problem. However, single

object tracking methods are often used to tackle a small sub-

problem due to challenges mentioned in Sec. 1. For exam-

ple, single object trackers are only used to generate initial

tracklets in [51]. Yu et al. [50] partitions the state space of

the target into four subspaces and only utilizes single object

trackers to track targets in tracked state. There also exists a

few works that utilize single object trackers throughout the

whole tracking process. Breitenstein et al. [5] use target-

specific classifiers to compute the similarity for data associ-

ation in a particle filtering framework. Yan et al. [52] keep

both the tracking results of single object trackers and the

object detections as association candidates and select the

optimal candidate using an ensemble framework. All meth-

ods mentioned above do not make use of CNN based single

object trackers, so they can not update features during track-

ing. Besides, they do not deal with tracking drift caused by

occlusion. Different from these methods, our work adopts

online learned CNN based single object trackers into online

multi-object tracking and focuses on handling drift caused

by occlusion and interactions among targets.

Occlusion handling in MOT. Occlusion is a well-

known problem in MOT and many approaches are proposed

for handling occlusion. Most works [21, 49, 41, 23, 45]

aim at utilizing better detectors for handling partial occlu-

sion. In this work, we attempt to handle occlusion from the

perspective of feature learning, which is complementary to

these detection methods. Specifically, we focus on learn-

ing more robust appearance model for each target using the

single object tracker with the help of spatial and temporal

attention.
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Figure 2. Overview of the proposed algorithm STAM. Motion model provides the search area, where features of candidates are extracted

and then weighted by the spatial attention. The candidate state with the maximum classification score is used as the estimated target state.

The positive and negative training samples at current frame are collected according to the overlap with estimated target state. The historical

positive training samples of the target are also used for online updating. Temporal attention model is used for weighting the loss of positive

training samples in current and historical frames.

3. Online MOT Algorithm

3.1. Overview

The overview of the proposed algorithm is shown in Fig-

ure 2. The following steps are used for tracking objects:

Step 1. At the current frame t, the search area of each

target is obtained using motion model. The candidates are

sampled within the search area.

Step 2. The features of candidates for each target are

extracted using ROI-Pooling and weighted by spatial at-

tention. Then the binary classifier is used to find the best

matched candidate with the maximum score, which is used

as the estimated target state.

Step 3. The visibility map of each tracked target is in-

ferred from the feature of corresponding estimated target

state. The visibility map of the tracked target is then used

along with the spatial configurations of the target and its

neighboring targets to infer temporal attention.

Step 4. The target-specific CNN branch of each target is

updated according to the loss of training samples in current

and historical frames weighted by temporal attention. The

motion model of each target is updated according to corre-

sponding estimated target state.

Step 5. The object management strategy determines

the initialization of new targets and the termination of un-

tracked targets.

Step 6. If frame t is not the last frame, then go to Step 1

for the next frame t+ 1 .

3.2. Dynamic CNN­based MOT Framework

We propose a dynamic CNN-based framework for online

MOT, which consists of both shared CNN layers and target-

specific CNN branches. As shown in Figure 3, the shared

CNN layers encode the whole input frame as a large fea-

ture map, from which the feature representation of each tar-

get is extracted using ROI-Pooling [15]. For computational

efficiency, these shared layers are pre-trained on Imagenet

Classification task [11], and not updated during tracking.

All target-specific CNN branches share the same structure,

but are separately trained to capture the appearance of dif-

ferent targets. They can be viewed as a set of single-object

trackers.

The number of target-specific CNN branches varies with

the number of existing targets. Once a new target appears,

a new branch will be initialized and added to the model. If

a target is considered to be disappeared, its corresponding

branch will be removed from the entire model.

3.3. Online Tracking with STAM

The trajectory of an object can be represented by a

series of states denoted by {xt}t=1,2,3...,T , where xt =
[xt, yt, wt, ht]. xt and yt represent the center location of

the target at frame t. wt and ht denote the width and height

of the target, respectively. Multi-object tracking aims to ob-

tain the estimated states of all targets at each frame.

3.3.1 Candidate States

For the i-th target T i to be tracked, its estimated state x
i
t

at frame t is obtained by searching from a set of candidate

states denoted by Ci
t , which consists of two subsets:

Ci
t = {xs

t,n}
Ni

n=1

⋃

Di
t, (1)

{xs
t,n}

Ni

n=1 denotes the set of candidate states that are

drawn from a Gaussian distribution N (x̃i
t,Σ

i
t), where x̃

i
t

is the predicted state of target T i at frame t, and Σi
t =

diag
(

(σi
t,x)

2, (σi
t,y)

2, (σi
t,w)

2, (σi
t,h)

2

)

is a diagonal co-

variance matrix indicating the variance of target location

and scale. x̃
i
t and Σi

t are estimated by the motion model

(Sec. 3.4.3). Denote by Dt = {xd
t,m}Mm=1 the set of all

object detections provided by an off-line trained detector at
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Figure 3. (a) The framework of the proposed CNN model. It contains shared CNN layers and multiple target-specific CNN branches. The

shared layers are shared by all targets to be tracked. Each target has its own corresponding target-specific CNN branch which is learned

online. The target-specific CNN branch acts as a single object tracker and can be added to or removed from the whole model according to

the entrance of new target or exit of existing target. (b) The details of the target-specific CNN branch. Each target-specific CNN branch

consists of feature extraction using visibility map and spatial attention as described in Sec. 3.3.2 and binary classification (described in

Sec. 3.3.3). The initialization and online updating of the target-specific branch are described in Sec. 3.4.1 and Sec. 3.4.2 respectively.

frame t. Di
t = {xd

t,mi
}Mi

mi=1 ⊆ Dt are selected detection-

s that are close to the predicted state x̃
i
t in spatial location

(|(xd
t,mi

)k − (x̃i
t)k| < 3σi

t,k, ∀k = x, y, w, h).

3.3.2 Feature Extraction with Spatial Attention

The feature of candidate state is extracted from the shared

feature map using ROI-Pooling and spatial attention mech-

anism. The ROI-Pooling from the shared feature map ig-

nores the fact that the tracked targets could be occluded.

In this case, the pooled features would be distorted by the

occluded parts. To handle this problem, we propose a spa-

tial attention mechanism which pays more attention to un-

occluded regions for feature extraction.

Directly using spatial attention does not work well due to

limited training samples in the online learning process. In

our work, we first generate the visibility map which encodes

the spatial visibility of the input samples. Then the spatial

attention is derived from visibility map.

Visibility Map. Denote the ROI-Pooled feature rep-

resentation of the j-th candidate state x
i
t,j ∈ Ci

t as

Φroi(x
i
t,j) ∈ R

W×H×C , the visibility map of x
i
t,j is es-

timated as

V(xj
t ) = fvis(Φroi(x

j
t );w

i
vis), V(xj

t ) ∈ R
W×H (2)

where, wi
vis is the set of parameters. fvis(Φroi(x

i
t,j);w

i
vis)

is modeled as two layers interleaved with ReLU layer. The

first layer is a convolution layer which has the kernel size

of 3× 7 and produces a feature map with 32 channels. The

second layer is a fully connected layer with the output size

of (W ∗H). Then the output is reshaped to a map with the

size of W×H . Each element in visibility map V(xi
t,j) indi-

cates the visibility of corresponding location in feature map

Φroi(x
i
t,j). Some examples of generated visibility maps are

shown in Figure 4.

Spatial Attention. The spatial attention map Ψ(xi
t,j) ∈

R
W×H for candidate state x

i
t,j is obtained from visibility

map V(xi
t,j) as follows:

Ψ(xi
t,j)) = fatt(V(xi

t,j);w
i
att), (3)

where fatt is implemented by a local connected layer fol-

lowed by a spatial softmax layer and w
i
att denotes the pa-

rameters. Then the spatial attention map Ψ(xi
t,j) is applied

to weight the feature map Φroi(x
i
t,j) as

Φatt(x
i
t,j) = Φroi(x

i
t,j) ⋆Ψ(xi

t,j),

Φatt(x
i
t,j),Φroi(x

i
t,j) ∈ R

W×H×C

Ψ(xi
t,j) ∈ R

W×H

(4)

where ⋆ represents the channel-wise Hadamard produc-

t operation, which performs Hadamard product between

Ψ(xi
t,j) and each channel of Φroi(x

i
t,j).
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Figure 4. Examples of the generated visibility maps. The first four

columns show examples of the target occluded by other target or

background. The last column shows the failure case when targets

are too close. Best viewed in color.

3.3.3 Target State Estimation Using Binary Classifier

and Detection Results

Binary Classification. Given the refined feature represen-

tation Φatt(x
i
t,j), the classification score is obtained as fol-

lows:

pit,j = fcls(Φatt(x
i
t,j);w

i
cls), (5)

where pit,j ∈ [0, 1] is the output of binary classifier which

indicates the probability of candidate state x
i
t,j belonging

to target T i. w
i
cls is the parameter of the classifier for tar-

get T i. In our work, fcls(Φatt(x
i
t,j);w

i
cls) is modeled by

two layers interleaved with ReLU layer. The first layer is

a convolution layer which has the kernel size of 3 × 7 and

produces a feature map with 5 channels. The second layer

is a fully connected layer with the output size of 1. Then

a sigmoid function is applied to ensure the output to be in

[0, 1].
The primitive estimated state of target T i is obtained by

searching for the candidate state with the maximum classi-

fication score as follows:

x̂
i
t = argmax

x
i
t,j

∈Ci
t

fcls(Φatt(x
i
t,j);w

i
cls), (6)

State Refinement. The primitive estimated state with

too low classification score will bias the updating of the

model. To avoid model degeneration, if the score ŷit =
fcls(Φatt(x̂

i
t;w

i
cls) is lower than a threshold p0, the corre-

sponding target T i is considered as “untracked” in current

frame t. Otherwise, the primitive state x̂
i
t will be further

refined using the object detections states Dt = {xd
t,m}Mm=1.

Specifically, the nearest detection state for x̂i
t is obtained

as follows:

x
d,i
t = argmax

x
d
t,m∈Dt

IoU(x̂i
t,x

d
t,m), (7)

where IoU(x̂i
t,x

d
t,m) calculates the bounding box IoU over-

lap ratio between x̂
i
t and x

d
t,m. Then the final state of target

T i is refined as

x
i
t =

{

oit x
d,i
t + (1− oit)x̂

i
t, oit > o0

x̂
i
t, otherwise,

(8)

where oit = IoU(x̂i
t,x

d,i
t ) and o0 is a pre-defined threshold.

3.4. Model Initialization and Online Updating

Each target-specific CNN branch comprises of visibility

map, attention map and binary classifier. The parameters

for visibility map are initialized in the first frame when the

target appears and then all three modules are jointly learned.

3.4.1 Model Initialization

For the initialization of parameters in obtaining visibility

map, we synthetically generate training samples and the

corresponding ground truth based on initial target state.

Augmented Set. Denote the ROI-Pooled feature rep-

resentation of initial state of target T i as Φroi(x
i
0) ∈

R
W×H×C , a W ×H matrix with all elements equal to 1 is

used as the corresponding ground truth visibility map. An

augmented set is obtained via collecting samples that have

large overlap with initial target state xi
0. For each sample in

the augmented set, the ground truth visibility map for region

not overlapping with x
i
0 is set to 0.

Feature Replacement. We replace the features of the

sample with the features from another target or background

at some region and set the ground truth for replaced region

to 0. The replaced region is regarded as occluded. For

each sample in the augmented set, the feature replacement

is done using different targets/brackgrounds at different re-

gions.

Given these training samples and ground truth visibility

maps, the model is trained using cross-entropy loss.

3.4.2 Online Updating Appearance Model

After initialization in the initial frame, all three modules are

jointly updated during tracking using back-propagation al-

gorithm.

Training samples used for online updating are obtained

from current frame and historical states. For tracked target,

positive samples at current frame t are sampled around the

estimated target state xt with small displacements and scale

variations. Besides, historical states are also utilized as pos-

itive samples. If the target is considered as ”untracked” at

current frame, we only use historical states of the target as

positive samples. All negative samples are collected at cur-

rent frame t. The target-specific branch needs to have the

capability of discriminating the target from other targets and

background. So both the estimated states of other tracked

targets and the samples randomly sampled from background

are treated as the negative samples.

For target T i, given the current positive samples set

{xi+
t,j}

N
i+
t

j=1
, historical positive samples set {xi+

h,j}
N

i+

h

j=1
and

the negative samples set {xi−
t,j}

N
i−
t

j=1
, the loss function for

updating corresponding target-specific branch is defined as

Li
t = Li−

t + (1− αi
t)L

i+
t + αi

tL
i+
h , (9)
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Li−
t = −

1

N i−
t

N
i−
t

∑

j=1

log[1− fcls(Φatt(x
i−
t,j);w

i
cls)],

Li+
t = −

1

N i+
t

N
i+
t

∑

j=1

log fcls(Φatt(x
i+
t,j);w

i
cls),

Li+
h = −

1

N i+
h

N
i+

h
∑

j=1

log fcls(Φatt(x
i+
h,j);w

i
cls),

(10)

where, Li−
t , Li+

t , and Li+
h are losses from negative sam-

ples, positive samples at current frame, and positive sam-

ples in the history, respectively. αi
t is the temporal attention

introduced below.

Temporal Attention. A crucial problem for model up-

dating is to balance the relative importance between current

and historical visual cues. Historical samples are reliable

positive samples collected in the past frames, while samples

in current frame reflect appearance variations of the target.

In this work, we propose a temporal attention mechanism,

which dynamically pay attention to current and historical

samples based on occlusion status.

Temporal attention of target T i is inferred from visibility

map V(xi
t) and the overlap statuses with other targets

αi
t = σ(γisit + βioit + bi), (11)

where sit is the mean value of visibility map V(xi
t). oit

is the maximum overlap between T i and all other targets

in current frame t. γi, βi and bi are learnable parameters.

σ(x) = 1/(1 + e−x) is the sigmoid function.

Since αi
t indicates the occlusion status of target T i. If

αi
t is large, it means that target T i is undergoing severe oc-

clusion at current frame t. Consequently, the weight for

positive samples at current frame is small according to E-

q. 9. There, the temporal attention mechanism provides a

good balance between current and historical visual cues of

the target. Besides, if αi
t is smaller than a threshold α0, the

corresponding target state x
i
t will be added to the historical

samples set of target T i.

3.4.3 Updating Motion Model

Most single object trackers do not consider the motion mod-

el, while it is proved to be helpful in MOT. In our work,

a simple linear motion model with constant velocity and

Gaussian noise is applied to each target, which is used to

determine the center location and the size of search area for

tracking the target in next frame. The scale of the target is

considered as unchanged. Given the velocity v
i
t at frame t,

the predicted state of target T i at frame t + 1 is defined as

x̃
i
t+1 = x

i
t + [vi

t, 0, 0].

At frame t, the velocity of target T i is updated as

ṽ
i
t =

1

Tgap

(lit − l
i
t−Tgap

),

v
i
t = αi

tv
i
t−1 + (1− αi

t)ṽ
i
t,

(12)

where Tgap denotes the time gap for computing velocity.

l
i
t = [xi

t, y
i
t]
T is the center location of target T i at frame t.

The variance of Gaussian noise is defined as

σi
t,w = σi

t,h = 1

30
hi
t,

σi
t,x = σi

t,y = σi
t,

σi
t =



















1.05 · σi
t−1, Ñ i

t > 0

r · σi
t−1/0.75, Ñ i

t = 0 and r > 0.75

max( 1

20
hi
t,

1

2
σi
t−1), Ñ i

t = 0 and r < 0.25

σi
t−1, otherwise

r = ||lit − l̃
i

t||2/(3σ
i
t−1),

(13)

where l̃
i

t = l
i
t−1+v

i
t−1 is the center location of target T i at

frame t predicted by motion model. Ñ i
t denotes the length

of the successive untracked frames of target T i at frame t.
r measures the prediction error of linear motion model. If

target T i is tracked at frame t, the variance σi
t is related

to the prediction error r. Otherwise, the search area will

be extended as the length of successive untracked frames

grows.

3.5. Object Management

In our work, a new target T new is initialized when a new-

ly detected object with high detection score is not covered

by any tracked targets. To alleviate the influence of false

positive detections, the newly initialized target T new will

be discarded if it is considered as “untracked” (Sec. 3.3.3)

or not detected in any of the first Tinit frames. For target ter-

mination, we simply terminate the target if it is “untracked”

for over Tterm successive frames. Besides, targets that exit

the field of view are also terminated.

4. Experiments

In this section, we present the experimental results and

analysis for the proposed online MOT algorithm.

4.1. Implementation details

The proposed algorithm is implemented in MATLAB

with Caffe [24]. In our implementation, we use the first ten

convolutional layers of the VGG-16 network [42] trained on

Imagenet Classification task [11] as the shared CNN layer-

s. The threshold o0 is set to 0.5, which determines whether

the location found by single object tracker is covered by a

object detection. The thresholds p0 and α0 are set to 0.7
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and 0.3 respectively. For online updating, we collect posi-

tive and negative samples with ≥ 0.7 and ≤ 0.3 IoU over-

lap ratios with the target state at current frame, respectively.

The detection scores are normalized to the range of [0, 1]
and the detection score threshold in target initialization is

set to 0.25. Denote the frame rate of the video as F , we use

Tinit = 0.2F and Tterm = 2F in object management and

Tgap = 0.3F in motion model.

4.2. Datasets

We evaluate our online MOT algorithm on the pub-

lic available MOT15 [29] and MOT16 [32] benchmark-

s containing 22 (11 training, 11 test) and 14 (7 training,

7 test) video sequences in unconstrained environments re-

spectively. The ground truth annotations of the training

sequences are released. We use the training sequences in

MOT15 benchmark for performance analysis of the pro-

posed method. The ground truth annotations of test se-

quences in both benchmarks are not released and the track-

ing results are automatically evaluated by the benchmark.

So we use the test sequences in two benchmarks for com-

parison with various state-of-the-art MOT methods. In ad-

dition, these two benchmarks also provide object detections

generated by the ACF detector [13] and the DPM detector

[14] respectively. We use these public detections in all ex-

periments for fair comparison.

4.3. Evaluation metrics

To evaluate the performance of multi-object tracking

methods, we adopt the widely used CLEAR MOT metric-

s [4], including multiple object tracking precision (MOTP)

and multiple object tracking accuracy (MOTA) which com-

bines false positives (FP), false negatives (FN) and the iden-

tity switches (IDS). Additionally, we also use the metrics

defined in [30], which consists of the percentage of mostly

tracked targets (MT, a ground truth trajectory that are cov-

ered by a tracking hypothesis for at least 80% is regarded as

mostly tracked), the percentage of mostly lost targets (ML,

a ground truth trajectory that are covered by a tracking hy-

pothesis for at most 20% is regarded as mostly lost), and the

number of times a trajectory is fragmented (Frag).

4.4. Tracking Speed

The overall tracking speed of the proposed method on

MOT15 test sequences is 0.5 fps using the 2.4GHz CPU

and a TITAN X GPU, while the algorithm without feature

sharing runs at 0.1 fps with the same environment.

4.5. Performance analysis

To demonstrate the effectiveness of the proposed

method, we build five algorithms for components of differ-

ent aspects of our approach. The details of each algorithm

are described as follows:

Figure 5. The performance of different algorithms on training se-

quences of MOT15 in terms of MOTA.

p1: directly using single object trackers without the pro-

posed spatial-temporal attention or motion model, which is

the baseline algorithm;

p2: adding the motion model based on p1;

p3: adding the spatial attention based on p2;

p4: adding the temporal attention based on p2;

p5: adding the spatial-temporal attention based on p2,

which is the whole algorithm with all proposed components.

The performance of these algorithms on the training se-

quences of MOT15, in terms of MOTA which is a good ap-

proximation of the overall performance, are shown in Fig-

ure 5. The better performance of the algorithm p2 com-

pared to p1 shows the effect of the using motion model in

MOT. The advantages of the proposed spatial-temporal at-

tention can be seen by comparing the performance of algo-

rithm p5 and p2. Furthermore, compared to the algorithm

p2, the performance improvement of p3 and p4 shows the

effectiveness of spatial and temporal attention in improv-

ing tracking accuracy respectively. The improvement of p5

over both p3 and p4 shows that the spatial and temporal

attention are complementary to each other. Algorithm p5

with all the proposed components achieves the best perfor-

mance and improves 8% in terms of MOTA compared with

the baseline algorithm p1, which demonstrates the effec-

tiveness of our algorithm in handling the problems of using

single object trackers directly.

4.6. Comparisons with state­of­the­art methods

We compare our algorithm, denoted by STAM, with sev-

eral state-of-the-art MOT tracking methods on the test se-

quences of MOT15 and MOT16 benchmarks. All the com-

pared state-of-the-art methods and ours use the same public

detections provided by the benchmark for fair comparison.

Table 1 presents the quantitative comparison results 1.

MOT15 Results. Overall, STAM achieves the best per-

formance in MOTA, FP, and IDS among all the online

and offline methods. In terms of MOTA, which is the

1The quantitative tracking results of all these trackers are avail-

able at the website http://motchallenge.net/results/2D MOT 2015/ and

http://motchallenge.net/results/MOT16/.
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benchmark Mode Method MOTA ↑ MOTP ↑ MT ↑ ML ↓ FP ↓ FN ↓ IDS ↓ Frag ↓

MOT15

Offline

SMOT[12] 18.2% 71.2% 2.8% 54.8% 8780 40310 1148 2132

CEM[33] 19.3% 70.7% 8.5% 46.5% 14180 34591 813 1023

JPDA m[16] 23.8% 68.2% 5.0% 58.1% 4533 41873 404 792

SiameseCNN[28] 29.0% 71.2% 8.5% 48.4% 5160 37798 639 1316

CNNTCM[46] 29.6% 71.8% 11.2% 44.0% 7786 34733 712 943

MHT DAM[26] 32.4% 71.8% 16.0% 43.8% 9064 32060 435 826

NOMT[7] 33.7% 71.9% 12.2% 44.0% 7762 32547 442 823

Online

TC ODAL[2] 15.1% 70.5% 3.2% 55.8% 12970 38538 637 1716

RMOT[55] 18.6% 69.6% 5.3% 53.3% 12473 36835 684 1282

oICF[25] 27.1% 70.0% 6.4% 48.7% 7594 36757 454 1660

SCEA[20] 29.1% 71.1% 8.9% 47.3% 6060 36912 604 1182

MDP[50] 30.3% 71.3% 13.0% 38.4% 9717 32422 680 1500

STAM 34.3% 70.5% 11.4% 43.4% 5154 34848 348 1463

MOT16

Offline

JPDA m[16] 26.2% 76.3% 4.1% 67.5% 3689 130549 365 638

SMOT[12] 29.7% 75.2% 5.3% 47.7% 17426 107552 3108 4483

CEM[33] 33.2% 75.8% 7.8% 54.4% 6837 114322 642 731

MHT DAM[26] 45.8% 76.3% 16.2% 43.2% 6412 91758 590 781

JMC[44] 46.3% 75.7% 15.5% 39.7% 6373 90914 657 1114

NOMT[7] 46.4% 76.6% 18.3% 41.4% 9753 87565 359 504

Online

OVBT[3] 38.4% 75.4% 7.5% 47.3% 11517 99463 1321 2140

EAMTT[40] 38.8% 75.1% 7.9% 49.1% 8114 102452 965 1657

oICF[25] 43.2% 74.3% 11.3% 48.5% 6651 96515 381 1404

STAM 46.0% 74.9% 14.6% 43.6% 6895 91117 473 1422
Table 1. Quantitative results of our method (denoted by STAM) and several state-of-the-art MOT trackers on MOT15 and MOT16 test

sequences. Results are divided into two groups, i.e. online tracking and offline tracking. red and blue values in blod highlight the best

results of online and offline methods respectively. ’↑’ means that higher is better and ’↓’ represents that lower is better.

most important metric for MOT, STAM improves 4% com-

pared with MDP, the best online tracking method that is

peer-reviewed and published. Note that our method work-

s in pure online mode and dose not need any training data

with ground truth annotations. While MDP performs train-

ing with sequences in the similar scenario and its ground

truth annotations for different test sequences. Besides, our

method produce the lowest IDS among all methods, which

demonstrates that our method can handle the interaction a-

mong targets well. Note that the CNNTCM and SiameseC-

NN also utilize CNNs to handle MOT problem but in of-

fline mode. What’s more, their methods requir abundan-

t training data for learning siamese CNN. The better per-

formance compared to these CNN-based offline methods

provides strong support on the effectiveness of our online

CNN-based algorithm.

MOT16 Results. Similarly, STAM achieves the best

performance in terms of MOTA, MT, ML, and FN among

all online methods. Besides, the performance of our algo-

rithm in terms of MOTA is also on par with state-of-the-art

offline methods.

On the other hand, our method produces slightly more

Frag than some offline methods, which is a common defect

of online MOT methods due to long term occlusions and

severe camera motion fluctuation.

5. Conclusion

In this paper, we have proposed a dynamic CNN-based

online MOT algorithm that efficiently utilizes the merits of

single object trackers using shared CNN features and ROI-

Pooling. In addition, to alleviate the problem of drift caused

by frequent occlusions and interactions among targets, the

spatial-temporal attention mechanism is introduced. Be-

sides, a simple motion model is integrated into the algorith-

m to utilize the motion information. Experimental results

on challenging MOT benchmarks demonstrate the effective-

ness of the proposed online MOT algorithm.
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