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Abstract

Super resolution is the problem of artificially enlarging a

low resolution photograph to recover a plausible high res-

olution version. In the regime of high magnification fac-

tors, the problem is dramatically underspecified and many

plausible, high resolution images may match a given low

resolution image. In particular, traditional super resolution

techniques fail in this regime due to the multimodality of the

problem and strong prior information that must be imposed

on image synthesis to produce plausible high resolution im-

ages. In this work we propose a new probabilistic deep net-

work architecture, a pixel recursive super resolution model,

that is an extension of PixelCNNs to address this problem.

We demonstrate that this model produces a diversity of plau-

sible high resolution images at large magnification factors.

Furthermore, in human evaluation studies we demonstrate

how previous methods fail to fool human observers. How-

ever, high resolution images sampled from this probabilistic

deep network do fool a naive human observer a significant

fraction of the time.

1. Introduction

The problem of super resolution entails artificially en-

larging a low resolution photograph to recover a cor-

responding plausible image with higher resolution [31].

When a small magnification is desired (e.g., 2×), super res-

olution techniques achieve satisfactory results [42, 8, 16, 40,

22] by building statistical prior models of images [36, 2, 52]

that capture low-level characteristics of natural images.

This paper studies super resolution with particularly

small inputs and large magnification ratios, where the

amount of information available to accurately construct a

high resolution image is very limited (Figure 1, left col-

umn). Thus, the problem is underspecified and many plau-

sible, high resolution images may match a given low reso-

lution input image. Building improved models for state-of-

the-art in super resolution in the high magnification regime

∗Work done as a member of the Google Brain Residency program

(g.co/brainresidency).

8×8 input 32×32 samples ground truth

Figure 1: Illustration of our probabilistic pixel recursive

super resolution model trained end-to-end on a dataset of

celebrity faces. The left column shows 8×8 low resolution

inputs from the test set. The middle and last columns show

32×32 images as predicted by our model vs. the ground

truth. Our model incorporates strong face priors to synthe-

size realistic hair and skin details.

is significant for improving the state-of-art in super reso-

lution, and more generally for building better conditional

generative models of images [45, 33, 30, 44].

As the magnification ratio increases, a super resolution

model need not only account for textures, edges, and other

low-level statistics [16, 40, 22], but must increasingly ac-

count for complex variations of objects, viewpoints, illumi-

nation, and occlusions. At increasing levels of magnifica-

tion, the details do not exist in the source image anymore,

and the predictive challenge shifts from recovering details

(e.g., deconvolution [23]) to synthesizing plausible novel
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details de novo [33, 45].

Consider a low resolution image of a face in Figure 1,

left column. In such 8×8 pixel images the fine spatial de-

tails of the hair and the skin are missing and cannot be faith-

fully restored with interpolation techniques [15]. However,

by incorporating prior knowledge of faces and their typical

variations, a sketch artist might be able to imagine and draw

believable details using specialized software packages [25].

In this paper, we show how a fully probabilistic model

that is trained end-to-end using a log-likelihood objective

can play the role of such an artist by synthesizing 32×32 face

images depicted in Figure 1, middle column. We find that

drawing multiple samples from this model produces high

resolution images that exhibit multi-modality, resembling

the diversity of images that plausibly correspond to a low

resolution image. In human evaluation studies we demon-

strate that naive human observers can easily distinguish real

images from the outputs of sophisticated super resolution

models using deep networks and mean squared error (MSE)

objectives [21]. However, samples drawn from our proba-

bilistic model are able fool a human observer up to 27.9%
of the time – compared to a chance rate of 50%.

In summary, the main contributions of the paper include:

• Characterization of the underspecified super resolution

problem in terms of multi-modal prediction.

• Proposal of a new probabilistic model tailored to the

super resolution problem, which produces diverse,

plausible non-blurry high resolution samples.

• Proposal of a new loss term for conditional probabilis-

tic models with powerful autoregressive decoders to

avoid the conditioning signal to be ignored.

• Human evaluation demonstrating that traditional met-

rics in super resolution (e.g., pSNR and SSIM) fail to

capture sample quality in the regime of underspecified

super resolution.

We proceed by describing related work, followed by ex-

plaining how the multi-modal problem is not addressed us-

ing traditional objectives. Then, we propose a new prob-

abilistic model building on top of ResNet [14] and Pixel-

CNN [44]. The paper highlights the diversity of high reso-

lution samples generated by the model and demonstrates the

quality of the samples through human evaluation studies.

2. Related work

Super resolution has a long history in computer vi-

sion [31]. Methods relying on interpolation [15] are easy

to implement and widely used, however these methods suf-

fer from a lack of expressivity since linear models cannot

express complex dependencies between the inputs and out-

puts. In practice, such methods often fail to adequately pre-

dict high frequency details leading to blurry high resolution

outputs.

Enhancing linear methods with rich image priors such

as sparsity [2] or Gaussian mixtures [52] have substantially

improved the quality of the methods; likewise, leveraging

low-level image statistics such as edge gradients improves

predictions [48, 42, 8, 16, 40, 22]. Much work has been

done on algorithms that search a database of patches and

combine them to create plausible high frequency details in

zoomed images [9, 17]. Recent patch-based work has fo-

cused on improving basic interpolation methods by building

a dictionary of pre-learned filters on images and selecting

the appropriate patches by an efficient hashing mechanism

[35]. Such dictionary methods have improved the inference

speed while being comparable to state-of-the-art.

Another approach for super resolution is to abandon in-

ference speed requirements and focus on constructing the

high resolution images at increasingly higher magnification

factors. Convolutional neural networks (CNNs) represent

an approach to the problem that avoids explicit dictionary

construction, but rather implicitly extracts multiple layers

of abstractions by learning layers of filter kernels. Dong et

al. [7] employed a three layer CNN with MSE loss. Kim et

al. [21] improved accuracy by increasing the depth to 20
layers and learning only the residuals between the high res-

olution image and an interpolated low resolution image.

Most recently, SRResNet [26] uses many ResNet blocks to

achieve state of the art pSNR and SSIM on standard super

resolution benchmarks–we employ a similar design for our

conditional network and catchall regression baseline.

Instead of using a per-pixel loss, Johnson et al.[18]

use Euclidean distance between activations of a pre-trained

CNN for model’s predictions vs. ground truth images. Us-

ing this so-called preceptual loss, they train feed-forward

networks for super resolution and style transfer. Bruna et

al. [4] also use perceptual loss to train a super resolution

network, but inference is done via gradient propagation to

the low-res input (e.g., [12]).

Another promising direction has been to employ an ad-

versarial loss for training a network. A super-resolution net-

work is trained in opposition to a secondary network that

attempts to discriminate whether or not a synthesized high

resolution image is real or fake. Networks trained with tra-

ditional Lp losses (e.g. [21, 7]) suffer from blurry images,

where as networks employing an adversarial loss predict

compelling, high frequency detail [26, 50]. Sønderby et

al. [19] employed networks trained with adversarial losses

but constrained the network to learn affine transformations

that ensures the model only generate images that down-

scale back to the low resolution inputs. Sønderby et al. [19]

also explore a masked autoregressive model but without the

gated layers and using a mixture of gaussians instead of a

multinomial distribution. Denton et al. [5] use a multi-scale

adversarial network for image synthesis that is amenable for

super-resolutions tasks.
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Although generative adversarial networks (GANs) [13]

provide a promising direction, such networks suffer from

several drawbacks: first, training an adversarial network is

unstable [33] and many methods are being developed to in-

crease the robustness of training [29]. Second, GANs suffer

from a common failure case of mode collapse [29] where

by the resulting model produces samples that do not cap-

ture the diversity of samples available in the training data.

Finally, tracking the performance of adversarial networks

is challenging because it is difficult to associate a proba-

bilistic interpretation to their results. These points motivate

approaching the problem with a distinct approach to permit

covering of the full diversity of the training dataset.

PixelRNN and PixelCNN [44, 45] are probabilistic gen-

erative models that impose an order on image pixels in or-

der to represent them as a long sequence. The probability

of subsequent pixels is conditioned on previously observed

pixels. One variant of PixelCNN [45] obtained state-of-the-

art predictive ability in terms of log-likelihood on academic

benchmarks such as CIFAR-10 and MNIST. Since Pixel-

CNN uses log-likelihood for training, the model is penal-

ized if negligible probability is assigned to any of the train-

ing examples. By contrast, adversarial networks only learn

enough to fool a non-stationary discriminator. This latter

point suggests that a PixelCNN might be able to predict a

large diversity of high resolution images that might be as-

sociated with a given low resolution image. Further, us-

ing log-likelihood as the training objective allows for hyper

parameter search to find models within a model family by

simply comparing their log probabilities on a validation set.

3. Probabilistic super resolution

We aim to learn a probabilistic super resolution model

that discerns the statistical dependencies between a high

resolution image and a corresponding low resolution im-

age. Let x and y denote a low resolution and a high resolu-

tion image, and let y∗ represent a ground-truth high res-

olution image. In order to learn a parametric model of

pθ(y | x), we exploit a large dataset of pairs of low res-

olution inputs and ground-truth high resolution outputs, de-

noted D ≡ {(x(i),y∗(i))}Ni=1. One can easily collect such a

large dataset by starting from some high resolution images

and lowering the resolution as much as needed. To opti-

mize the parameters θ of the conditional distribution p, we

maximize a conditional log-likelihood objective defined as,

O(θ | D) =
∑

(x,y∗)∈D

log p(y∗ | x) . (1)

The key problem discussed in this paper is the exact form

of p(y | x) that enables efficient learning and inference,

while generating realistic non-blurry outputs. We first dis-

cuss pixel-independent models that assume that each output

pixel is generated with an independent stochastic process

given the input. We elaborate why these techniques result

in sub-optimal blurry super resolution results. Then, we de-

scribe our pixel recursive super resolution model that gen-

erates output pixels one at a time to enable modeling the

statistical dependencies between the output pixels, result-

ing in sharp synthesized images given very low resolution

inputs.

3.1. Pixel independent super resolution

The simplest form of a probabilistic super resolution

model assumes that the output pixels are conditionally in-

dependent given the inputs. As such, the conditional dis-

tribution of p(y | x) factors into a product of independent

pixel predictions. Suppose an RGB output y has M pixels

each with three color channels, i.e., y ∈ R
3M . Then,

log p(y | x) =
3M
∑

i=1

log p(yi | x) . (2)

Two general forms of pixel prediction models have been ex-

plored in the literature: Gaussian and multinomial distribu-

tions to model continuous and discrete pixel values respec-

tively. In the Gaussian case,

log p(yi | x) = − 1

2σ2
‖yi − Ci(x)‖22 − log

√
2σ2π , (3)

where Ci(x) denotes the ith element of a non-linear trans-

formation of x via a convolutional neural network. Ac-

cordingly, Ci(x) is the estimated mean for the ith output

pixel yi, and σ2 denotes the variance. Often the variance

is not learned, in which case maximizing the conditional

log-likelihood of (1) reduces to minimizing the MSE be-

tween yi and Ci(x) across the pixels and channels through-

out the dataset. Super resolution models based on MSE re-

gression fall within this family of pixel independent models

[7, 21, 26]. Implicitly, the outputs of a neural network pa-

rameterize a set of Gaussians with fixed variance. It is easy

to verify that the joint distribution p(y | x) is unimodal as it

forms an isotropic multi-variate Gaussian.

Alternatively, one could discrete the output dimensions

into K possible values (e.g., K = 256), and use a multino-

mial distribution as the predictive model for each pixel [51],

where yi ∈ {1, . . . ,K}. The pixel prediction model based

on a multinomial softmax operator is represented as,

p(yi = k | x) = exp{Cik(x)}
∑K

v=1 exp{Civ(x)}
, (4)

where a network with a set of softmax weights,

{wjk}3,Kj=1,k=1, for each value per color channel is used to

induce Cik(x). Even though p(yi | x) in (4) can express

multimodal distributions, the conditional dependency be-

tween the pixels cannot be captured, i.e., the model cannot

choose between drawing an edge at one position vs. another

since that requires coordination between the samples.
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How the dataset was created

50%

50%

Samples from trained model

L2 regression

cross-entropy

PixelCNN

Figure 2: Simulated dataset demonstrates challenge of mul-

timodal prediction. Top: Synthesized dataset in which sam-

ples are randomly translated to top-left or bottom-right cor-

ners. Bottom: Example predictions for various algorithms

trained on this dataset. The pixel independent L2 regression

and cross-entropy models fail to predict a single mode but

instead predict a blend of two spatial locations even though

such samples do not exist in the training set. Conversely, the

PixelCNN stochastically predicts the location of the digit at

either corner with mutual exclusion.

3.2. Synthetic multimodal task

To demonstrate how pixel independent models fail at

conditional image modeling, we create a synthetic dataset

that explicitly requires multimodal prediction. For many

dense image predictions tasks, e.g. super resolution [31],

colorization [51, 6], and depth estimation [38], models that

are able to predict a single mode are heavily preferred over

models that blend modes together. For example, in the task

of colorization selecting a strong red or green for an apple

is better than selecting a brown-toned color that reflects the

smeared average of all of the apple colors observed in the

training set.

We construct a simple multimodal MNIST corners

dataset to demonstrate the challenge of this problem.

MNIST corners is constructed by randomly placing an

MNIST digit in either the top-left or bottom-right corner

(Figure 2, top). Several networks are trained to predict indi-

vidual samples from this dataset to demonstrate the unique

challenge of this simple example.

The challenge behind this toy example is for a network to

exclusively predict an individual digit in a corner of an im-

age. Training a moderate-sized 10-layer convolutional neu-

ral network (∼ 100K parameters) with an L2 objective (i.e.

MSE regression) results in blurry image samples in which

the two modes are blended together (Figure 2, L2 regres-

sion). That is, never in the dataset does an example image

contain a digit in both corners, yet this model incorrectly

predicts a blend of such samples. Replacing the loss with

a discrete, per-pixel cross-entropy produces sharper images

but likewise fails to stochastically predict a digit in a corner

of the image (Figure 2, cross-entropy). However, by using

the chain rule to factor the multi-modal joint distribution

into a product of sequential, conditional distributions, Pix-

elCNN is able to learn dependencies between pixel values

and generate good examples.

Other models like GANs or markov random fields could

solve this task. GANs would likely produce both modes

here correctly, but studies have quantified a significant de-

gree of mode dropping in GANs when the number of modes

is numerous [29], and we expect that the latter situation

is the realm in which the under-specified super resolution

problem lies. Pairwise MRFs with connections between

pixels in the two corners of the output could learn mutual

exclusion between the two sets of pixels for this dataset, but

we did not explore MRFs experimentally due to intractabil-

ity of high order potentials necessary for super resolution.

4. Pixel recursive super resolution

The lack of conditional independence between predicted

pixels is a significant failure mode for the previous prob-

abilistic objectives in the synthetic example (Equations 3

and 4). One approach to this problem is to define the con-

ditional distribution of the output pixels jointly as a mul-

tivariate Gaussian mixture [53] or an undirected graphical

model [10]. Both of these conditional distributions require

constructing a statistical dependency between output pixels

for which inference may be computationally expensive.

A second approach is to factorize the joint distribution

using the chain rule by imposing an order on image pixels,

log p(y | x) =
M
∑

i=1

log p(yi | x,y<i) , (5)

where the generation of each output dimension is condi-

tioned on the input and previous output pixels [24, 43].

We denote the conditioning1 up to pixel i by y<i where

{y1, . . . ,yi−1}. The benefits of this approach are that the

exact form of the conditional dependencies is flexible and

the inference is straightforward.

PixelCNN is a stochastic model that provides an ex-

plicit model for log p(yi |x,y<i) as a gated, hierarchical

1Note that in color images one must impose an order on both spatial

locations as well as color channels. In a color image the conditioning is

based on the the input and previously outputted pixels at previous spatial

locations as well as pixels at the same spatial location.
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chain of cleverly masked convolutions [44, 45, 37]. The

goal of PixelCNN is to capture multi-modality and capture

pixel correlations in an image. Indeed, training a PixelCNN

on the MNIST corners dataset successfully captures the bi-

modality of the problem and produces sample in which dig-

its reside exclusively in a single corner (Figure 2, Pixel-

CNN). Importantly, the model never predicts both digits si-

multaneously.

Applying the PixelCNN to a super-resolution problem

is a straightforward application that requires modifying the

architecture to supply a conditioning on a low resolution

version of the image. In early experiments we found the

auto-regressive distribution of the model largely ignore the

conditioning of the low resolution image. This phenomenon

referred to as “optimization challenges” has been readily

documented in the context of sequential autoencoder mod-

els [3] (see also [39, 41] for more discussion).

To address this issue we modify the architecture of Pix-

elCNN to more explicitly depend on the conditioning of a

low resolution image. In particular, we propose a late fusion

model [20] that factors the problem into auto-regressive and

conditioning components (Figure 3). The auto-regressive

portion of the model, termed a prior network captures the

serial dependencies of the pixels while the conditioning

component, termed a conditioning network captures the

global structure of the low resolution image. Specifically,

we formulate the prior network to be a PixelCNN and the

conditioning network to be a deep convolutional network

employed previously for super resolution [26].

Given an input x ∈ R
L, let Ai(x) : RL → R

K denote

a conditioning network predicting a vector of logit values

corresponding to the K possible values that the ith output

pixel can take. Similarly, let Bi(y<i) : R
i−1 → R

K denote

a prior network predicting a vector of logit values for the ith

output pixel. Our probabilistic model predicts a distribution

over the ith output pixel by simply adding the two sets of

logits and applying a softmax operator on them,

p(yi | x,y<i) = softmax(Ai(x) +Bi(y<i)) . (6)

To optimize the parameters of A and B jointly, we per-

form stochastic gradient ascent to maximize the conditional

log likelihood in (1). That is, we optimize a cross-entropy

loss between the model’s predictions in (6) and discrete

ground truth labels y∗i ∈ {1, . . . ,K},

O1 =
∑

(x,y∗)∈D

M
∑

i=1

(

1[y∗
i ]

T
(Ai(x) +Bi(y

∗
<i))

− lse(Ai(x) +Bi(y
∗
<i))

)

,

(7)

where lse(·) is the log-sum-exp operator corresponding to

the log of the denominator of a softmax, and 1[k] denotes a

prior network!

(PixelCNN)

logitsHR!

image

conditioning!

network (CNN)!

+
HR!

image

logits

Figure 3: The proposed network comprises a condition-

ing network and a prior network. The conditioning net-

work is a CNN that receives a low resolution image as input

and outputs logits predicting the conditional log-probability

of each high resolution (HR) image pixel. The prior net-

work, a PixelCNN [45], makes predictions based on previ-

ous stochastic predictions (indicated by dashed line). The

model’s probability distribution is computed as a softmax

operator on top of the sum of the two sets of logits from the

two networks.

K-dimensional one-hot indicator vector with its kth dimen-

sion set to 1.

Our preliminary experiments indicate that models

trained with (7) tend to ignore the conditioning network

as the statistical correlation between a pixel and previous

high resolution pixels is stronger than its correlation with

low resolution inputs. To mitigate this issue, we include

an additional loss in our objective to enforce the condition-

ing network to be optimized. This additional loss measures

the cross-entropy between the conditioning network’s pre-

dictions via softmax(Ai(x)) and ground truth labels. The

total loss that is optimized in our experiments is a sum of

two cross-entropy losses formulated as,

O2 =
∑

(x,y∗)∈D

M
∑

i=1

(

1[y∗
i ]

T
(2Ai(x) +Bi(y

∗
<i))

− lse(Ai(x) +Bi(y
∗
<i))− lse(Ai(x))

)

.

(8)

Once the network is trained, sampling from the model

is straightforward. Using (6), starting at i = 1, first we

sample a high resolution pixel. Then, we proceed pixel by

pixel, feeding in the previously sampled pixel values back

into the network, and draw new high resolution pixels. The

three channels of each pixel are generated sequentially in

turn.

We additionally consider greedy decoding, where one al-

ways selects the pixel value with the largest probability and
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sampling from a tempered softmax, where the concentra-

tion of a distribution p is adjusted by using a temperature

parameter τ > 0,

pτ =
p(1/τ)

‖p(1/τ)‖1
.

To control the concentration of our sampling distribution

p(yi | x,y<i), it suffices to divide the logits from A and

B by a parameter τ . Note that as τ goes towards 0, the

distribution converges to the mode.

4.1. Implementation details

We summarize the network architecture for the pixel re-

cursive super resolution model. The conditioning architec-

ture is similar in design to SRResNet [26]. The condition-

ing network is a feed-forward convolutional neural network

that takes a low resolution image through a series of 18−30
ResNet blocks [14] and transposed convolution layers [32].

The last layer uses a 1×1 convolution to increase the num-

ber of channels to predict a multinomial distribution over

256 possible color channel values for each sub-pixel. The

prior network architecture consists of 20 gated PixelCNN

blocks with 32 channels at each layer [45]. The final layer

of the super-resolution network is a softmax operation over

the sum of the activations from the conditioning and prior

networks. The model is built by using TensorFlow [1] and

trained across 8 GPUs with synchronous SGD updates. For

training details and a complete list of architecture parame-

ters, please see Supp. material.

5. Experiments

We assess the effectiveness of the proposed pixel recur-

sive super resolution method on two datasets containing

centrally cropped faces (CelebA [27]) and bedroom images

(LSUN Bedrooms [49]). In both datasets we resize the im-

ages to 8×8 and 32×32 pixels with bicubic interpolation to

provide the input x and output y for training and evaluation.

We compare our technique against three baselines in-

cluding (1) Nearest N.; a nearest neighbor search baseline

inspired by previous work on example-based super resolu-

tion [9], (2) ResNet L2; a deep neural network using Resnet

blocks trained with MSE objective, and (3) GAN; a GAN

based super resolution model implemented by [11] similar

to [50]. We exclude the results of the GANbaseline on bed-

rooms dataset as they are not competitive, and the model

was developed specifically for faces.

The Nearest N. baseline computes y for a sample x by

searching the training set D = {(x(i),y∗(i))}Ni=1 for the

nearest example indexed by i∗ = argmini‖x(i) − x‖22, and

returns the high resolution counterpart y∗(i∗). The Near-

est N. baseline is a representative result of exemplar based

super resolution approaches, and helps us test whether the

model performs a naive lookup from the training dataset.

8×8 input 32×32 samples ground truth

Figure 4: Illustration of our probabilistic pixel recursive

super resolution model trained end-to-end on LSUN Bed-

rooms dataset.

The ResNet L2 baseline employs a design similar to SR-

ResNet [26] that reports state-of-the-art in terms of image

similarity metrics2. Most significantly, we alter the network

to compute the residuals with respect to a bicubic interpo-

lation of the input [21]. The L2 regression provides a com-

parison to a state-of-the-art convolutional network that per-

forms a unimodal pixel independent prediction.

The GAN super resolution baseline [11] exploits a con-

ditional GAN architecture, and combines an adversarial

loss with a consistency loss, which encourages the low-

resolution version of predicted y to be close to x as mea-

sures by L1. There is a weighting between the two losses

specified by [11] as 0.9 for the consistency and 0.1 for the

adversarial loss, and we keep them the same in our face ex-

periments.

5.1. Super resolution samples

High resolution samples generated by the pixel recursive

super resolution capture the rich structure of the dataset and

appear perceptually plausible (Figure 1 and 4; Supp. ma-

terial). Sampling from the super resolution model multiple

times results in different high resolution images for a given

low resolution image (Figure 5 and Supp. material). Qual-

itatively, the samples from the model identify many plausi-

ble high resolution images with distinct qualitative features

that correspond to a given lower resolution image. Note that

the differences between samples for the faces dataset are far

2 Note that the regression architecture is nearly identical to the condi-

tioning network in Section 4.1. The slight change is to force the network

to predict bounded values in RGB space. To enforce this behavior, the top

layer is outputs three channels instead of one and employ a tanh(·) instead

of a ReLU(·) nonlinearity.
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Figure 5: Diversity of samples from our model. Left col-

umn: Low resolution input. Right columns: Multiple sam-

ples at τ = 0.8 conditioned upon low resolution input.

less drastic than seen in our synthetic dataset, where failure

to cleanly predict modes indicated complete failure.

The quality of samples is sensitive to the temperature

(Figure 6, right columns). Greedy decoding (τ = 0) results

in poor quality samples that are overly smooth and contain

horizontal and vertical line artifacts. Samples from the de-

fault temperature (τ = 1.0) are perceptually more plausible,

although they tend to contain undesired high frequency con-

tent. Tuning the temperature (τ ) between 0.9 and 0.8 proves

beneficial for improving the quality of the samples.

It’s worth noting that sampling is a relatively expensive

task. A naive PixelCNN implementation performs full im-

age convolutions for every generated pixel (quadratic com-

plexity), and generating a 32x32 image takes about 40 sec-

onds. Recent work [34] has shown that caching intermedi-

ate activation states can improve sample time dramatically.

5.2. Quantitative evaluation of image similarity

Many methods exist for quantifying image similarity that

attempt to measure human perception judgements of simi-

larity [46, 47, 28]. We quantified the prediction accuracy

of our model compared to ground truth using pSNR and

MS-SSIM (Table 1). We found that our own visual assess-

ment of the predicted image quality did not correspond to

these image similarities metrics. For instance, bicubic in-

terpolation achieved relatively high metrics even though the

samples appeared quite poor. This result matches recent ob-

servations that suggest that pSNR and SSIM provide poor

judgements of super resolution quality when new details are

synthesized [26, 18]. In addition, Figure 6 highlights how

the perceptual quality of model samples do not necessarily

correspond to negative log likelihood (NLL). Smaller NLL

means the model has assigned that image a larger proba-

bility mass. The greedy, bicubic, and regression faces are

preferred by the model despite exhibiting worse perceptual

quality.

We next measured how well the high resolution sam-

ples corresponded to the low resolution input by measuring

the consistency. The consistency is quantified as L2 dis-

tance between the low-resolution input image and a bicu-

bic downsampled version of the high resolution estimate.

Lower consistencies indicate superior correspondence with

the low-resolution image. Note that this is an explicit ob-

jective the GAN [11]. The pixel recursive model achieved

consistencies on par with the L2 regression model and bicu-

bic interpolation indicating that even though the model was

producing diverse samples, the samples were largely con-

strained by the low-resolution image. Most importantly, the

pixel recursive model achieved superior consistencies then

the GAN [11] even though the model does not explicitly

optimize for this criterion.3

The consistency measure additionally provided an im-

portant control experiment to determine if the pixel recur-

sive model were just naively copying the nearest training

sample. If the pixel recursive model were just copying the

nearest training sample, then the consistency of the Nearest

N. model would be equivalent to the pixel recursive model.

We instead find that the pixel recursive model has supe-

rior consistency values indicating that the model is not just

naively copying the closest training examples.

5.3. Perceptual evaluation with humans

Given that automated quantitative measures did not

match our perceptual judgements, we conducted a human

study to assess the effectiveness of the super resolution al-

gorithm. In particular, we performed a forced choice ex-

periment on crowd-sourced workers in order to determine

how plausible a given high resolution sample is from each

model. Following [51], each worker was presented a true

image and a corresponding prediction from a model, and

asked “Which image, would you guess, is from a camera?”.

We performed this study across 283 workers on Ama-

zon Mechanical Turk and statistics were accrued across 40

unique workers for each super resolution algorithm.4

3Note that one may improve the consistency of the GAN by increasing

its weight in the objective. Increasing the weight for the consistency term

will likely lead to decreased perceptual quality in the images but improved

consistency. Regardless, the images generated by the pixel recursive model

are superior in both consistency and perceptual quality as judged humans

for a range of temperatures.
4Specifically, each worker was given one second to make a forced

choice decision. Workers began a session with 10 practice questions dur-

ing which they received feedback. The practice pairs were not counted in

the results. After the practice pairs, each worker was shown 45 additional

pairs. A subset of the pairs were simple, golden questions designed to con-

stantly check if the worker was paying attention. Data from workers that

answered golden questions incorrectly were thrown out.
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Input G. Truth Nearest N. GAN [11] Bicubic ResNet L2 Greedy τ = 1.0 τ = 0.9 τ = 0.8

– 2.85 2.74 – 1.76 2.34 1.82 2.94 2.79 2.69

– 2.96 2.71 – 1.82 2.17 1.77 3.18 3.09 2.95

– 2.76 2.63 – 1.80 2.35 1.64 2.99 2.90 2.64

Figure 6: Comparison of super resolution models. Columns from left to right include input, Ground truth, Nearest N. (nearest

neighbor super resolution), GAN, bicubic upsampling, ResNet L2(neural network optimized with MSE), greedy decoding

is pixel recursive model, followed by sampling with various temperatures (τ ) controlling the concentration of the predictive

distribution. Negative log-probabilities are reported below the images. Note that the best log-probability is associated with

bicubic upsampling and greedy decoding even though the images are poor quality.

CelebA pSNR SSIM MS-SSIM Consistency % Fooled

Bicubic 28.92 0.84 0.76 0.006 –

Nearest N. 28.18 0.73 0.66 0.024 –

ResNet L2 29.16 0.90 0.90 0.004 4.0± 0.2

GAN [11] 28.19 0.72 0.67 0.029 8.5± 0.2

τ = 1.0 29.09 0.84 0.86 0.008 11.0±0.1

τ = 0.9 29.08 0.84 0.85 0.008 10.4± 0.2

τ = 0.8 29.08 0.84 0.86 0.008 10.2± 0.1

LSUN pSNR SSIM MS-SSIM Consistency % Fooled

Bicubic 28.94 0.70 0.70 0.002 –

Nearest N. 28.15 0.49 0.45 0.040 –

ResNet L2 28.87 0.74 0.75 0.003 2.1± 0.1

τ = 1.0 28.92 0.58 0.60 0.016 17.7± 0.4

τ = 0.9 28.92 0.59 0.59 0.017 22.4± 0.3

τ = 0.8 28.93 0.59 0.58 0.018 27.9±0.3

Table 1: Test results on the cropped CelebA (top) and

LSUN Bedroom (bottom) datasets magnified from 8×8 to

32×32. We report pSNR, SSIM, and MS-SSIM between

samples and the ground truth. Consistency measures the

MSE between the low-resolution input and a corresponding

downsampled output. % Fooled reports measures how of-

ten the algorithms’ outputs fool a human in a crowd sourced

study; 50% would be perfectly confused.

Table 1 reports the percentage of samples for a given al-

gorithm that a human incorrectly believed to be a real im-

age. Note that a perfect algorithm would fool a human at

rate of 50%. The L2 regression model fooled humans 2-

4% of the time and the GAN [11] fooled humans 8.5% of

the time. The pixel recursive model fooled humans 11.0%

and 27.9% of the time for faces and bedrooms, respectively

– significantly above the state-of-the-art regression model.

Importantly, we found that the selection of the sampling

temperature τ greatly influenced the quality of the samples

and in turn the fraction of time that humans were fooled.

Nevertheless the pixel recursive model outperformed the

strongest baseline model, the GAN, across all temperatures.

A ranked list of the best and worst fooling examples is re-

produced in the Supp. material along with the fool rates.

6. Conclusion

We present a fully probabilistic method that tackles su-

per resolution with small inputs, demonstrating that even

8×8 images can be enlarged to sharp 32×32 images. Our

technique outperforms several strong baselines including

the ones optimizing a regression objective or an adversar-

ial loss. We perform human evaluation studies showing that

samples from the pixel recursive model look more plausible

to humans, and more generally, common metrics like pSNR

and SSIM do not correlate with human judgment when the

magnification ratio is large.
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