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Abstract

We present a fully automatic pipeline to train 3D Mor-

phable Models (3DMMs), with contributions in pose nor-

malisation, dense correspondence using both shape and

texture information, and high quality, high resolution tex-

ture mapping. We propose a dense correspondence system,

combining a hierarchical parts-based template morphing

framework in the shape channel and a refining optical flow

in the texture channel. The texture map is generated us-

ing raw texture images from five views. We employ a pixel-

embedding method to maintain the texture map at the same

high resolution as the raw texture images, rather than us-

ing per-vertex color maps. The high quality texture map is

then used for statistical texture modelling. The Headspace

dataset used for training includes demographic information

about each subject, allowing for the construction of both

global 3DMMs and models tailored for specific gender and

age groups. We build both global craniofacial 3DMMs and

demographic sub-population 3DMMs from more than 1200

distinct identities. To our knowledge, we present the first

public 3DMM of the full human head in both shape and

texture: the Liverpool-York Head Model. Furthermore, we

analyse the 3DMMs in terms of a range of performance

metrics. Our evaluations reveal that the training pipeline

constructs state-of-the-art models.

1. Introduction

Morphable models of 3D shape have many applica-

tions in creative media, medical image analysis and biomet-

rics. Traditional model building pipelines have used man-

ual landmarking to initialise surface alignment. However,

this is extremely time-consuming and laborious for large-

scale datasets. Here we present a fully automatic approach

and apply it to a large dataset of 3D images of the human

head, thus generating the first public shape-and-texture 3D

morphable model (3DMM) of the full human head: the

Liverpool-York Head Model (LYHM).

A full head model opens up new opportunities not af-

forded by existing 3D face models [21]. For example: (i) we

can reconstruct the most likely full head shape from partial

data. This allows the modelling of different hair styles onto

a correctly proportioned cranium (cranial shape usually can-

not be directly observed). (ii) any part of the head shape can

be matched against population norms thus facilitating tools

for craniofacial diagnoses and surgical intervention evalu-

ation, and (iii) the ability to complete partial views of the

head may be exploited in biometric applications.

Contributions: (i) We propose a fully automatic

pipeline to build 3DMMs, with contributions in pose nor-

malisation and dense correspondence - in particular we pro-

pose a hierarchical parts-based template morphing frame-

work with optical flow correspondence refinement. (ii) We

propose a high quality texture map from several views of

cameras for the morphed template and use the texture map

for texture modelling. (iii) We build both global cranio-

facial 3DMMs and demographic sub-population 3DMMs

from more than 1200 distinct identities in the Headspace

dataset [1, 16] and we will make them publicly available
1. Fig. 1 illustrates the principal components of the global

and child model. To our best knowledge, our models are

the first public shape-and-texture craniofacial 3DMMs of

the full human head. (iv) We demonstrate flexibility modes

of our model such that, when given a fixed face shape, we

compute the range of possible cranial shapes and vice-versa.

After discussing literature, we describe our dataset and

3DMM training pipeline, while the following sections

present details of the proposed methods. Section 8 provides

an extensive evaluation of the 3DMMs, and a final section

is used for conclusions.

2. Related work

In the late 1990s, Blanz and Vetter built a 3DMM from

3D face scans [7] and employed it in 2D face recogni-

tion [8]. Two hundred scans were used to build the model

(young adults, 100 males and 100 females). Dense corre-

spondences were computed using optical flow with an en-

ergy dependent on both shape and texture.

There are very few publicly available morphable models

1https://www-users.cs.york.ac.uk/˜nep/research/LYHM/
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Figure 1. The proposed Liverpool-York Head Model. 1st block - shape compared to the Basel Face Model (BFM) [25] and Large Scale

Face Model (LSFM) [10]; 2nd-4th blocks: the central head is the mean and the first four principal modes of variation are shown.

of the human face and, to our knowledge, none that include

the full cranium. The Basel Face Model (BFM) is the most

well-known and widely used and was developed by Paysan

et al. [25]. Again 200 scans were used, but the method of

determining corresponding points was improved. Instead of

optical flow, a set of hand-labelled feature points is marked

on each of the 200 training scans. The corresponding points

on a template mesh are known, which is then morphed

onto the training scan using under-constrained per-vertex

affine transformations, which are constrained by regularisa-

tion across neighbouring points [3]. The technique is known

as optimal-step Non-Rigid Iterative Closest Points (NICP).

In the method of De Smet et al. [15], they found the seg-

mentation automatically by clustering the vertices, which is

based on features derived from their displacements. In order

to address the potential discontinuities at the boundaries of

the segments, they smoothly weight the segments to obtain

regionalised basis functions for the training data. Recently

Booth et al. [10] built a Large Scale Facial Model (LSFM),

using the same NICP template morphing approach, fol-

lowed by Generalised Procrustes Analysis (GPA) for align-

ment, and Principal Component Analysis (PCA) for the

model construction.

Existing 3DMMs employ either deformable template

methods [25, 15, 10, 28, 9, 27] or optical flow [7, 13, 24] to

establish dense correspondence. The former has the advan-

tage of good correspondence over most of the mesh. How-

ever, it often ends up with bad correspondences in local

regions. In contrast, optical flow requires a good initiali-

sation and the weighting between shape and texture costs

is ad hoc. However, it is successful when employed in a

refinement step to make small adjustments to local region

correspondence. The small displacement version of optical

flow is well suited to this.

Other deformable template methods could be used to

build 3DMMs and include the work of Li et al. [22]. Their

global correspondence optimization method solves simul-

taneously for both the deformation parameters as well as

the correspondence positions. Myronenko et al. [23] con-

sider the alignment of two point sets as a probability density

estimation using Expectation-Maximisation (EM) and they

call the method Coherent Point Drift (CPD). This remains a

highly competitive template morphing algorithm.

Template morphing methods need an automatic initial-

isation to bring them within the convergence basin of the

global minimum of alignment and morphing. To this end,

Active Appearance Models (AAMs) [12] and elastic graph

matching [35] are the classic approaches of facial land-

mark and pose estimation. Many improvements over AAM

have been proposed [32, 17]. Recent work has focused on

global spatial models built on top of local part detectors,

sometimes known as Constrained Local Models (CLMs)

[30, 36]. Zhu and Ramanan [37] use a tree structured part

model of the face, which both detects faces and locates fa-

cial landmarks. One of the major advantages of their ap-

proach is that it can handle extreme head poses even at rela-

tively low image resolutions, and we exploit these qualities

directly in our model building pipeline.

For optical flow, the variational framework [19], together

with coarse-to-fine refinement [4], is widely used in opti-

cal flow estimation [11]. On the Middlebury optical flow

evaluation website [5], almost all top-ranked methods adopt

this scheme. Wedel et al. [34] proposed a structure-texture

decomposition method to reduce the discrepancy between

two frames caused by illumination change. Lempitsky et

al. [20] computed the matching cost only using high fre-

quency components.

3. Database Overview

This work uses the Headspace dataset of approximately

1.5K subjects, all of whom are wearing tight fitting latex

caps [1, 16]. We excluded some subjects due to either ex-
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Figure 2. Age distribution of subjects

cessive hair bulge or declared craniofacial surgery/trauma

condition and employed around 1.2K subjects in the global

model build. A 3dMD five-camera system was employed,

creating a 3D triangular surface for each subject composed

of typically 180K vertices joined into typically 360K trian-

gles, along with a high-resolution texture image.

FRGC [26], MeIn3D [10] and FaceBase [29] are large

3D face datasets, but the full cranium is not included. In

contrast, the Size China project [6] does include the cra-

nium, but it is a commercial dataset and 3DMMs have not

been built. Our Headspace dataset is the only full head

dataset for academic use and will be made publicly avail-

able (both the trained models and raw data).

Subjects were imaged at Alder Hey Hospital, Liverpool,

and provided metadata including gender, age, ethnicity, eye

color, and any craniofacial surgery/trauma condition. This

information allows for the construction of models for tar-

geted populations, such as within a defined age range or

gender. The dataset covers a wide variety of age (see Fig.2),

and is balanced in gender.

4. Model construction

Our 3DMM training pipeline, illustrated in Fig.3, oper-

ates in three main functional blocks. These are outlined be-

low and detailed in the following three sections.

Data preprocessing: We use automatic 2D landmarking

and map to 3D using the known 2D-to-3D registration sup-

plied by the 3D camera system. These 3D landmarks can

then be used for pose normalisation.

Dense correspondence: A collection of 3D scans are

reparametrised into a form where each scan has the same

number of points joined into a triangulation that is shared

across all scans. Furthermore, the semantic or anatomical

meaning of each point is shared across the collection, as

defined by a template mesh.

Alignment and statistical modelling: The collection of

scans in dense correspondence are subjected to Generalised

Procrustes Analysis (GPA) to remove similarity effects (ro-

tation, translation, scale), leaving only shape information.

The processed meshes are statistically analysed, typically

with Principal Component Analysis (PCA), generating a

3DMM as a linear basis of shapes. This allows for the gen-

eration of novel shape instances.

5. Data preprocessing

Data preprocessing includes 2D landmarking, projection

to 3D landmarks and pose normalisation.

5.1. Automatic 2D/3D facial landmarking

We use the method of Zhu and Ramanan [37] to localise

facial landmarks on the texture channel of each 3D image.

This 2D image contains all 5 viewpoints of the capture sys-

tem and usually two face detections are found, 15-45 de-

grees yaw from frontal pose, corresponding to the left and

right side of the face. Detected 2D points are in a tree struc-

ture and are projected to 3D using OBJ texture coordinates.

5.2. Pose normalisation

Each face detection employs one of thirteen tree mod-

els [37] and we automatically learn how to orientate each of

these to frontal pose, based on their 3D structure. To do this,

we apply GPA to each collection of 3D trees (11 of the 13

models are used by the dataset) and find the nearest-to-mean

tree shape in a scale-normalised setting. We then apply a 3D

face landmarker [14] to the 3D data of the nearest-to-mean

tree shape (11 of these), which generates a set of 14 land-

marks with clear semantic meaning. Finally, we find the

alignment that moves the symmetry plane of these 14 land-

marks to the Y-Z plane with the nasion above the subnasale

(larger Y coordinate) and at the same Z-coordinate, in order

to normalise the tilt (X rotation). To complete the training

phase, the mean 3D tree points for each of the 13 trees are

then carried into this canonical frontal pose using the same

rotation, and are used as reference points for the frontal pose

normalisation of the 3D trees.

In around 1% of the dataset, only one tree is detected and

that is used for pose normalisation, and in the rest 2-3 im-

ages are detected. In the cases where 3 trees are detected,

the lowest scoring tree is always false positive and can be

discarded. For the remaining two trees, a weighted combi-

nation of the two rotations is computed using quaternions,

where the weighting is based on the mean Euclidean error

to the mean tree, in the appropriate tree component.

6. Dense correspondence

In this section, we propose a new template morphing

framework along with optical flow correspondence refine-

ment. Both shape information and texture information are

used for correspondence establishment.
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Figure 3. The fully-automatic 3DMM training pipeline used to construct the Liverpool-York Head Model. Left block shows landmarking

and pose normalisation, central block shows dense correpondence establishment, right block shows statistical modelling.

6.1. Template morphing

Compared to NICP, CPD can avoid tangential point slid-

ing and over-fitting, resulting in a good fit and good sym-

metry preservation. But standard CPD fails to resolve the

under-fitting problem, where convergence terminates before

good correspondence is established over the ears. This is

because there are relatively few points on the ears and the

facial/cranial points dominate. To avoid under-fitting, we

propose a two-stage approach that consists of CPD followed

by mutual nearest neighbour projection regularised by the

Laplace-Beltrami (LB) operator. This two-stage approach

is then applied within a parts-based framework.

Two-stage CPD-LB approach: When CPD has de-

formed the template close to the scan, point projection is re-

quired to eliminate any (normal) shape distance error. Point

projection is a potentially fragile process. If the scan data

is incomplete or noisy then projecting vertices from the de-

formed template to their nearest vertex or surface position

on the scan may cause large artefacts. We overcome this

by treating the projection operation as a mesh editing prob-

lem with two ingredients. First, position constraints are pro-

vided by those vertices with mutual nearest neighbours be-

tween the deformed template and raw scan. Using mutual

nearest neighbours reduces sensitivity to missing data. Sec-

ond, regularisation constraints are provided by the LB oper-

ator which acts to retain the local structure of the mesh.

Thus we optimise two cost functions in a sequential man-

ner. The Expectation-Maximization (EM) algorithm is used

to solve the CPD cost function ECPD. For this cost func-

tion, we refer to [23]. For the second stage, we write the LB

mesh editing problem as a linear system of equations. Given

the vertices of a scan stored in the matrix Xscan ∈ R
n×3 and

the deformed template obtained by CPD whose vertices are

stored in the matrix Xdeformed ∈ R
p×3, we define the selec-

tion matrices S1 ∈ [0, 1]m×p and S2 ∈ [0, 1]m×n as those

that select the m vertices with mutual nearest neighbours

from deformed template and scan respectively. This linear

system can be written as:
(

λL

S1

)

Xproj =

(

λLXdeformed

S2Xscan

)

(1)

where L ∈ R
p×p is the cotangent Laplacian approxima-

tion to the LB operator and Xproj ∈ R
p×3 are the projected

vertex positions that we wish to solve for. The parameter

λ weights the relative influence of the position and regu-

larisation constraints, effectively determining the ‘stiffness’

of the projection. As λ → 0, the projection tends towards

nearest neighbour projection. As λ → ∞, the deformed

template will only be allowed to rigidly transform.

Hierarchical parts-based CPD-LB framework: Our

template fitting algorithm, using temporary splitting of the

template into parts and multiple applications of the two-

stage CPD-LB deformation process is illustrated in the cen-

tral panel of Fig.3 and consists of the following six steps:

1. CPD-affine deforms the full-head template to fit the

pose-normalised input until it converges to a global

minimum according to the convergence criterion.

2. The template is then divided into two parts: cranial

(red part in Fig.3) and facial (blue part in Fig.3) using

a predetermined manual mesh segmentation. The in-

put mesh is also divided into two corresponding parts

using nearest neighbours.
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3. The segmentation in step 2 releases the two individ-

ual parts from the global minimum in step 1 and CPD

affine continues on the two parts separately to re-

establish convergence. In practice, the cranial part is

already very close to its global minimum, but the facial

part continues to deform over many more iterations.

4. After convergence, the two parts of the template are

updated using LB-regularised projection; however,

there may exist a gap or an overlap between the two

parts, due to the separate deformation processes.

5. The deformed full template from step 1 is now used

to deform towards the two deformed parts-based tem-

plates from the previous step. Note that we now have

a known one-to-one correspondence between the full

template and the two template parts. Under these cir-

cumstances CPD-nonrigid performs well and is used.

6. After CPD-nonrigid converges, a final stage of LB-

regularised projection is used to give the final morphed

template of the full head, which is devoid of any over-

laps or discontinuities that appear between the two sep-

arate parts in step 4 and is superior to the initial defor-

mation from step 1 (standard CPD-affine).

7. Morphed template mesh subdivision followed by LB-

regularised projection is used to upscale resolution.

6.2. Texture map

It is preferable to store texture information in a UV space

texture map where resolution is unconstrained rather than

store only per-vertex colours where resolution is limited by

mesh resolution. To do so requires the texture information

from each scan to be transformed into a standard UV texture

space for which the embedding of the template is known.

After template morphing, the deformed template has

the same number of points joined into a triangulation that

is shared across all scans. Thus in UV coordinates, UV

faces of the morphed template are shared with the template.

Given the morphed vertex positions Xmorphed ∈ R
p×3 from

template morphing stage, we can first compute the UV co-

ordinates for each point of the morphed template in original

texture image:

[u,v] = g(S3Xscan) (2)

where S3 ∈ R
p×n is the selection matrix that select the

p vertices with nearest neighbours from morphed template

Xmorphed to the scan Xscan and g is the UV coordinates map-

ping from the raw mesh to texture image. The UV coordi-

nates mapping from texture image to raw mesh is a surjec-

tion but not an injection. Thus the points from the raw mesh

may have several sets of UV coordinates [u,v]cand in the

texture image, depending on the number of capture view-

points. To overcome this, we minimise the face area of UV

face UV
k
faces to find the exact UV coordinates:

[u∗

i ,v
∗

i ] = argmin
ui,vi

h([ui,vi], [uj1,vj1], [uj2,vj2]) (3)

where [ui,vi] ∈ [u,v]cand, [uj1,vj1] and [uj2,vj2] ∈

UV
k
face, and h is the face area computation.

Due to multiple capture viewpoints, the minimization of

face area is not enough to guarantee that all the UV coor-

dinates are in the image of same view (see Fig.4 (2)). To

overcome this, we employ affine transformations to refine

the UV coordinates. If the UV coordinates in one mesh

face are placed in different views, we compute the affine

transformation T from its adjacent face to the correspond-

ing face in the template UV faces. Then its corresponding

face is inverted by T
−1 to find the correct position (see blue

point in Fig.4 (1)). The outcome of affine transformation re-

finement is shown in Fig.4 (2), (3).

6.3. Optical flow and correspondence refinement

Optical flow algorithms are based on the assumption that

objects in image sequences I(x; y; t) retain their bright-

nesses as they move across the image at a velocity (vx; vy)
T

[5]. A unique solution for both components of (vx; vy)
T

can be obtained if v is assumed to be constant over each

neighborhood R(x0; y0), and the following energy function

is minimized in each point (x0; y0):

E =
∑

x,y∈R

(

vx
dI(x, y)

dx
+ vy

dI(x, y)

dy
+∆I(x, y)

)

(4)

We use a 10 × 10 pixel neighborhood R(x0; y0). To deal

with small displacements, we use the three image RGB

channels, two image gradient channels and the surface nor-

mal along with a coarse-to-fine refinement framework to

solve the system:

Esum = ERGB +E
x,y
grad +Enormal (5)

In order to refine the dense correspondence in shape, we

compute the 2D UV coordinates to 3D mesh projection for

the warped image. We treat this projection as the interpola-

tion from the original image to the warped image. Given the

2D UV coordinates to 3D points position (ai,bi, ci) pro-

jection for the original image, we can infer the interpolation

relation f from:

f(ui, vi) → (ai,bi, ci)i∈UV k
face

(6)

So, for the warped image, the 3D point position is:

(a,b, c) = fi∈UV k
face

(ui +∆u, vi +∆v). (7)

When the correspondence is updated, a new texture map can

be generated from the updated correspondence.

7. Alignment and statistical modelling

We use GPA to align our deformed templates before ap-

plying PCA-based statistical modelling. This generates a
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Figure 4. Texture map flow: (1) Pixel embedding, (2) UV coordinates of mesh facets before affine refinement, here we are unable to use

facets that straddle viewpoints, (3) After affine refinement, all facet UV coordinates can be used.

3DMM as a linear basis of shapes, allowing for the gener-

ation of novel shape instances. Note that we may select all

of the full head template vertices for this modelling, or any

subset. For example, we select the cranial vertices when we

build models to analyse cranial medical conditions.

In many applications, vertex resolution is not uniform

across the mesh. For example, we may use more vertices

to express detail around facial features of high curvature.

However, standard PCA attributes the same weight to all

points in its covariance analysis, making it difficult to han-

dle shape variance modelling over such meshes. To counter

this, we employ weighted PCA in our statistical modelling.

7.1. Weighted PCA

The first step of Weighted PCA (WPCA) is to con-

struct the symmetric positive-definite matrix Y
T
MY for

Y = X−X. The first k eigenvectors Vk

i
solving

Y
T
MYV

k

i
= λiV

k

i
(8)

are computed. For the entries of the mass matrix M, we

refer to [33]. From [18], the relation between the left sin-

gular vector Uk

i
and the right singular vector Vk

i
of SVD

decomposition is Uk

i
= ( 1

σk

i

)M
1

2YV
k

i
. For 1 ≤ i ≤ k, we

infer that the weighted PCA Ψ
k

i
is obtained by multiplying

the eigenvectors with Y and normalisation(w.r.t‖.‖) of the

result:

Ψ
k

i
= M

−
1

2U
k

i
= (

1

σk

i

)YV
k

i
(9)

7.2. Reconstruction

In an analogous fashion to Euclidean PCA, WPCA can

also be used for reconstructing shapes.

Complete data reconstruction: Given the average X,

the basis matrix U
k

i
, the mass matrix M and some (possibly

unseen) shape X ∈ R
3n, we first compute the zero mean

U = X−X. Then U is projected to WPCA space:

P
k : U → P

k
Ψ

k = P
k
M

−
1

2U
k

i
(10)

Finally we are able to reconstruct X by:

X = X+P
k
Ψ

k = X+P
k
M

−
1

2U
k

i
(11)

Incomplete data reconstruction: Given partial data, we

can divide the shape components into two parts: one for the

partial data Ψa and the other for missing data Ψb [2]. The

zero mean for the partial data is Ua = Xa −Xa:

P : Ua → PΨa = PaM
−

1

2Ua (12)

Then P can be used to reconstruct the complete data. The

aim is to model the remaining flexibility of the variable

points Xa when the fixed points Xb. The deformation is

give as PΨa and PΨb. We formulate the aim as a con-

strained maximization problem:

maxPΨaΨ
T
aP

T , subject to PΨbΨ
T
b P

T = c (13)

where c quantifies the amount of change allowed in the fixed

shape principle components. Introducing a Lagrangian mul-

tiplier µ and differentiating with respect to P leads to the

eigenvalue decomposition of:

PΨaΨ
T
a = µPΨbΨ

T
b (14)

where for each parameter in P, ‖PiΨb‖
2 = PiΨbΨ

T
b P

T
i .

8. Results

We select 1212 individuals (606 males and 606 fe-

males) to derive our global 3DMM by applying our fully-

automatic 3DMM construction pipeline. Subpopulations

are employed to build gender-specific models, LYHM-

male, LYHM-female, and six age-specific models (LYHM-

age-X), focusing on demographic-specific shape variation.

8.1. Correspondence comparison

Qualitative evaluation: The proposed method is com-

pared with NICP [3], LSFM pipeline [10], Li’s method [22]

and standard CPD [23]. Expression rendering with texture

is used to validate correspondence accuracy. Fig. 5 shows

that the proposed method is qualitatively superior to other

methods with respect to accuracy of the symmetry line, cor-

respondence accuracy, and shape preservation relative to

the input scan. Note that, the symmetry line slides to one

side on the cranium for several methods due to over-fitting.
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Figure 5. Left box - deformation results and their expression rendering with texture; Right box - subdivision and optical flow (OF).

Figure 6. Proportion of subjects with < Euclidean distance error:

left-landmark error, right-shape error. The higher, the better.

Figure 7. Average gradient magnitude of pre-OF (left, 4.663) and

post-OF (right, 5.617). The higher, the better (sharper).

Figure 8. The flexibility of reconstruction from incomplete data:

(a) example; (b) crop (incomplete data); (c)-(g) are the flexibility

modes, and (e) is the mean

NICP overfits in both the eye and mouth regions. Although,

the (normal) shape error is low, the registered mouth is not

Figure 9. Age regression from 4 years to 70 years

Figure 10. Top: compactness; Center: generalisation; Bottom:

specificity. Left column - (a) different methods. Right column

- (b) demographic-specific 3DMMs.

in the correct position. Li’s method also overfits in the ear

region. In contrast, CPD underfits that region in both affine

and nonrigid versions. Fig. 5 (right box) shows that the

proposed method with subdivision improves the quality of
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texture and captures more shape detail. But it also causes

over-fitting in the eye region. The texture map with optical

flow improves that by tuning the correspondence thus mak-

ing the texture sharper, as exemplified by the edge of the

cap. It also keeps more shape detail (see Fig. 5 (11)).

Quantitative evaluation: We use 14 manual facial land-

marks over 100 subjects to measure landmark error of each

template deformation method. As shown in Fig. 6-left, 80%

of landmark errors are less than 6 mm for our method. Fig.

6-right shows that 60% of shape errors from our method are

under 1.7 mm. The shape error is computed by measuring

the nearest point distance from deformed template to raw

scan. Overall, the proposed method outperforms all others.

8.2. Optical flow refinement

We warp all texture maps to the average using optical

flow (OF). As shown in Fig. 7, the optical flow corrects

small misalignments of features such as the eyebrows, chin

and forehead. We computed image sharpness using aver-

age gradient magnitude averaged over 72 pre-OF and post-

OF images. The 1st row of Fig. 5 (10) (11) demonstrates

the outcome of the proposed correspondence refinement.

The optical flow refinement clearly improves the correspon-

dence in the eye regions, yet retains the shape-texture detail.

8.3. Reconstruction and age regression

The task of reconstruction of an unseen example with

missing parts can validate the correspondence quality,

model fitting and generalisation ability. In the first row of

Fig. 8, we fix the shape of the cranium and reconstruct the

full head from that shape, while permitting the shape of the

face to vary. Here we found that most variation occurs over

the chin region. The second row of Fig. 8 is the recon-

struction from the face only, and we note that the princi-

pal variation in reconstructed cranium is from high/short to

low/long. This offers a way to augment existing face models

with a cranium. Reconstruction from one side of the sagit-

tal symmetry plane demonstrates asymmetrical variation of

the head. This application can aid shape-from-shading us-

ing 2D profile images to predict the 3D shape of the self-

occluded half of the face.

Model regression can validate the model’s generalisation

ability on some property (eg. age, gender). Fig. 9 demon-

strates a sequence of 3D images generated from age regres-

sion of the proposed model, ranging from 4 to 70 years.

Note that the cranium develops before the face in children,

and the shape of the cranium is not changing in adults.

8.4. Model evaluation

For quantitative model evaluation, Styner et al [31] give

detailed descriptions of three metrics: compactness, gener-

alisation and specificity. The compactness of the model de-

scribes the number of parameters required to express some

fraction of the variance in the training set, fewer is better.

We use the same subjects as in Sec.8.1 to build 3DMMs.

As can be from Fig.10 (a), the proposed method has bet-

ter compactness than other methods. The proposed method

has the lowest generalisation error, which implies that pro-

posed method has the best performance in describing un-

seen examples. LSFM [10] is comparable with the proposed

method in generalisation ability. Specificity measures how

well a model is able to generate instances that are similar

to real data. The proposed method has the lowest distance

error, which implies that the proposed method is best at gen-

erating instances close to real data.

In Fig.10 (b), LYHM-global is built using 1212 sub-

jects along with several demographic-specific 3DMMs. The

LYHM-(age 0-16) is the most compact 3DMM. When up

to 30 principle components are used, this also has the best

generalisation ability. When more than 30 principle com-

ponents are used, LYHM-global, LYHM-male and LYHM-

female are superior to others in generalisation. The LYHM-

male is best in specificity when up to 30 PCs are used.

9. Conclusion

We proposed a fully-automatic 3DMM training pipeline

and used it to build the first shape-texture 3DMM of the full

head. The correspondence framework avoids over-fitting

and under-fitting in template morphing, and captures high

quality texture in a refinement stage. The proposed 3DMMs

have a powerful ability in reconstruction of incomplete data

and model regression to observe the influence of age on

craniofacial growth. The flexibility of reconstruction from

incomplete craniofacial data helps in many computer vision

applications.
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