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Abstract

We present a Temporal Context Network (TCN) for pre-

cise temporal localization of human activities. Similar

to the Faster-RCNN architecture, proposals are placed at

equal intervals in a video which span multiple temporal

scales. We propose a novel representation for ranking these

proposals. Since pooling features only inside a segment is

not sufficient to predict activity boundaries, we construct

a representation which explicitly captures context around

a proposal for ranking it. For each temporal segment in-

side a proposal, features are uniformly sampled at a pair

of scales and are input to a temporal convolutional neural

network for classification. After ranking proposals, non-

maximum suppression is applied and classification is per-

formed to obtain final detections. TCN outperforms state-

of-the-art methods on the ActivityNet dataset and the THU-

MOS14 dataset.

1. Introduction

Recognizing actions and activities in videos is a long

studied problem in computer vision [2, 10, 3]. An action

is defined as a short duration movement such as jumping,

throwing, kicking. In contrast, activities are more complex.

An activity has a beginning, which is triggered by an ac-

tion or an event, which involves multiple actions, and an

end, which involves another action or an event. For ex-

ample, an activity like “assembling a furniture” could start

with unpacking boxes, continue by putting different parts

together and end when the furniture is ready. Since videos

can be arbitrarily long, they may contain multiple activities

and therefore, temporal localization is needed. Detecting

human activities in videos has several applications in con-

tent based video retrieval for web search engines, reducing

the effort required to browse through lengthy videos, mon-

itoring suspicious activity in video surveillance etc. While

localizing objects in images is an extensively studied prob-

lem, localizing activities has received less attention. This is

primarily because performing localization in videos is com-

putationally expensive [6] and well annotated large datasets

[5] were unavailable until recently.

Current object detection pipelines have three major com-

ponents - proposal generation, object classification and

bounding box refinement [25]. In [6, 29] this pipeline was

adopted for deep learning based action detection as well.

LSTM is used to embed a long video into a single feature

vector which is then used to score different segment propos-

als in the video [6]. While a LSTM is effective for captur-

ing local context in a video [31], learning to predict the start

and end positions for all activity segments using the hidden

state of a LSTM is challenging. In fact, in our experiments

we show that even a pre-defined set of proposals at multi-

ple scales obtains better recall than the temporal segments

predicted by a LSTM on the ActivityNet dataset.

In [29], a ranker was learned on multiple segments of a

video based on overlap with ground truth segments. How-

ever, a feature representation which does not integrate infor-

mation from a larger temporal scale than a proposal lacks

sufficient information to predict whether a proposal is a

good candidate or not. For example, in Figure 1, the red

and green solid segments are two proposals which are both

completely included within an activity. While the red seg-

ment is a good candidate, the green is not. So, although a

single scale representation for a segment captures sufficient

information for recognition, it is inadequate for detection.

To capture information for predicting activity boundaries,

we propose to explicitly sample features both at the scale of

the proposal and also at a higher scale while ranking pro-

posals. We experimentally demonstrate that this has signifi-

cant impact on performance when ranking temporal activity

proposals.

By placing proposals at equal intervals in a video which

span multiple temporal scales, we construct a set of pro-

posals which are then ranked using features sampled from a

pair of scales. A temporal convolution network is applied

over these features to learn background and foreground

probabilities. The top ranked proposals are then input to a

classification network which assigns individual class prob-

abilities to each segment proposal.
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Figure 1. Given a video, a two stream network is used to extract features. A pair-wise sampling layer samples features at two different

resolutions to construct the feature representation for a proposal. This pairwise sampling helps to obtain a better proposal ranking. A

typical sliding window approach (Green line box) can miss the context boundary information when it lies inside the activity. However, the

proposed pairwise sampling with a larger context window (Red line box) will capture such information and yield better proposal ranking.

These pair-wise features are then input to a ranker which selects proposals for classification. The green boxes on the left represent K

different proposals which are placed uniformly in a video.

2. Related Work

Wang and Schmidt [33] introduced Dense Trajectories

(DT), which have been widely applied in various video

recognition algorithms. For trimmed activity recognition,

extracting dense trajectories and encoding them by using

Fisher Vectors has been widely used [1, 34, 14, 12, 23, 37].

For action detection, [41] constructed a pyramid of score

distribution features (PSDF) as a representation for ranking

segments of a video in a dense trajectories based pipeline.

However, for large datasets, these methods require signif-

icant computational resources to extract features and build

the feature representation after features are extracted. Be-

cause deep learning based methods provide better accuracy

with much less computation, hand-crafted features have be-

come less popular.

For object detection in images, proposals are a criti-

cal elements for obtaining efficient and accurate detections

[26, 25]. Motivated by this approach, Jain et al. [13] intro-

duced action proposals which extends object proposals to

videos. For spatio-temporal localization of actions, multiple

methods use spatio-temporal region proposals [9, 22, 7, 39].

However, these methods are typically applied to datasets

containing short videos, and hence the major focus has

been on spatial localization rather than temporal localiza-

tion. Moreover, spatio-temporal localization requires train-

ing data containing frame level bounding box annotations.

For many applications, simply labeling the action bound-

aries in the video is sufficient, which is a significantly less

cumbersome annotation task.

Very recently, studies focusing on temporal segments

which contain human actions have been introduced [18, 4,

29, 17, 31]. Similar to grouping techniques for retrieving

object proposals, Heilbron et al. [4] used a sparse dictio-

nary to encode discriminative information for a set of action

classes. Mettes et al. [18] introduced a fragment hierarchy

based on semantic visual similarity of contiguous frames by

hierarchical clustering, which was later used to efficiently

encode temporal segments in unseen videos. In [31], a

multi-stream RNN was employed along with tracking to

generate frame level predictions to which simple grouping

was applied at multiple detection thresholds for obtaining

detections.

Methods using category-independent classifiers to obtain

many segments in a long video are more closely related to

our approach. For example, Shou et al. [29] exploit three

segment-based 3D ConvNets: a proposal network for iden-

tifying candidate clips that may contain actions, a classi-

fication network for learning a classification model and a

localization network for fine-tuning the learned classifica-

tion network to localize each action instance. Escorcia et

al. [6] introduce Deep Action Proposals (DAPs) and use a

LSTM to encode information in a fixed clip (512 frames) of
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a video. After encoding information in the video clip, the

LSTM scores K (64) predefined start and end positions in

that clip. The start and end positions are selected based on

statistics of the video dataset. We show that our method per-

forms better than global representations like LSTMs which

create a single feature representation for all scales in a

video for localization of activities. In contemporary work,

Shou et al. [28] proposed a convolutional-de-convolutional

(CDC) network by combing temporal upsampling and spa-

tial downsampling for activity detection. Such an architec-

ture helps in precise localization of activity boundaries. We

show that the activity proposals generated by our method

can further improve CDC’s performance.

Context has been widely used in various computer vision

algorithms. For example, it helps in tasks like object detec-

tion [8], semantic segmentation [21], referring expressions

[40] etc. In videos it has been used for action and activ-

ity recognition [11, 38]. However, for temporal localization

of activities, existing methods do not employ temporal con-

text, which we show is critical for solving this problem.

3. Approach

Given a video V , consisting of T frames, TCN gener-

ates a ranked list of segments s1, s2, ..., sN , each associated

with a score. Each segment sj is a tuple tb, te, where tb
and te denote the beginning and end of a segment. For each

frame, we compute a D dimensional feature vector repre-

sentation which is generated using a deep neural network.

An overview of our method is shown in Figure 2.

3.1. Proposal Generation

Our goal in this step is to use a small number of propos-

als to obtain high recall. First, we employ a temporal slid-

ing window of a fixed length of L frames with 50% overlap.

Suppose each video V has M window positions. For each

window at position i (i ∈ [0,M ]), its duration is specified

as a tuple (bi, ei), where bi and ei denote the beginning and

end of a segment. We then, generate K proposal segments

(at K different scales) at each position i. For k ∈ [1,K], the

segments are denoted by (bki , e
k
i ). Also, the duration of each

segment, Lk, increases as a power of two, i.e Lk+1 = 2Lk.

This allows us to cover all candidate activity locations that

are likely to contain activities of interests, and we refer

them as activity proposals, P = {(bki , eki )}M,K
i=0,k=1

. Fig-

ure 1 illustrates temporal proposal generation. When a pro-

posal segment meets the boundary of a video, we use zero-

padding.

3.2. Context Feature Representation

We next construct a feature representation for ranking

proposals. We use all the features F = {f1, f2, ..., fm}
of the untrimmed video as a feature representation for the

video. For the kth proposal at window position i (Pi,k), we

uniformly sample from F to obtain a D dimensional feature

representation Zi,k = {z1, z2, ..., zn}. Here, n is the num-

ber of features which are sampled from each segment. To

capture temporal context, we again uniformly sample fea-

tures from F , but this time, from Pi,k+1 — the proposal at

the next scale and centered at the same scale. Note that we

do not perform average or max-pooling but instead sample

a fixed number of frames regardless of the duration of Pi,k.

Logically, a proposal can fall into one of four categories:

• It is disjoint from a ground-truth interval and therefore,

the next scale’s (larger) label is irrelevant

• It includes a ground-truth interval and the next-scale

has partial overlap with that ground truth interval.

• It is included in a ground-truth interval and the next

level has significant overlap with the background (i.e.,

it is larger than the ground truth interval).

• It is included in a ground-truth interval and so is the

next level.

A representation which only considers features inside

a proposal would not consider the last two cases. Hence,

whenever a proposal is inside an activity interval, it would

not be possible to determine where the activity ends by only

considering the features inside the proposal. Therefore, us-

ing a context based representation is critical for temporal

localization of activities. Additionally, based on how much

background the current and next scales cover, it becomes

possible to determine if a proposal is a good candidate.

3.3. Sampling and Temporal Convolution

To train the proposal network, we assign labels to pro-

posals based on their overlap with ground truth, as follows,

Label(Sj) =

{

1, iou(Sj , GT ) > 0.7

0, iou(Sj , GT ) < 0.3
(1)

where iou(·) is intersection over union overlap and GT is a

ground truth interval. During training, we construct a mini

batch with 1024 proposals with a positive to negative ratio

of 1:1.

Given a pair of features Zi,k, Zi,k+1, from two consecu-

tive scales, we apply temporal convolution to features sam-

pled from each temporal scale separately to capture context

information between scales, as shown in Figure 2. A tem-

poral Convolutional Neural Network [16] enforces temporal

consistency and obtains consistent performance improve-

ments over still-image detections. To aggregate informa-

tion across scales, we concatenate the two features to obtain

a fixed dimensional representation. Finally, two fully con-

nected layers are used to capture context information across

scales. A two-way Softmax layer followed by cross-entropy

5795



Figure 2. Temporal Context Network applies a two stream CNN on a video for obtaining an intermediate feature representation.

loss is used at the end to map the predictions to labels (pro-

posal or not).

3.4. Classification

Given a proposal with a high score, we need to predict

its action class. We use bilinear pooling by computing the

outer product of each segment feature, and average pool

them to obtain the bilinear matrix bilinear(·). Given fea-

tures Ẑ = [z1, z2, ...zl] within a proposal, we conduct bilin-

ear pooling as follows:

bilinear(Ẑ) =

l
∑

i=1

ẐT
i Ẑi (2)

For classification, we pool all the features l which are in-

side the segment and do not perform any temporal sampling.

We pass this vectorized bilinear feature x = bilinear(Ẑ)
through a mapping function with signed square root and l2

normalization [24]:

φ(x) =
sign(x)

√
x

||sign(x)√x||2
(3)

We finally apply a fully connected layer and use a 201-

way (200 action classes plus background) Softmax layer at

the end to predict class labels. We again use the cross en-

tropy loss function for training. During training, we sample

1024 proposals to construct a mini batch. To balance train-

ing, 64 samples are selected as background in each mini-

batch. For assigning labels to video segments, we use the

same function which is used for generating proposals,

Label(Sj) =

{

lb, iou(Sj , GT ) > 0.7

0, iou(Sj , GT ) < 0.3
(4)

where iou(·) is intersection over union overlap, GT is

ground truth and lb is the most dominant class with in pro-

posal Sj . We use this classifier for the ActivityNet dataset

but this can be replaced with other classifiers as well.

4. Experiments

In this section, we provide analysis of our proposed tem-

poral context network. We perform experiments on the Ac-

tivityNet and THUMOS14 datasets.

4.1. Implementation details

We implement the network based on a customized Caffe

repository with Python interface. All evaluation exper-

iments are performed on a workstation with a Titan X

(Maxwell) GPU. We initialize our network with pre-trained

TSN models [35] and fine-tune them on both action la-

bels and foreground/background labels to capture “action-

ness” and ”backgroundness”. Later, we concatenate these

together as high-level features input to our proposal ranker

and classifier. For the proposal ranker, we use temporal

convolution with a kernel size of 5 and a stride of 1, fol-

lowed by ReLU activation and average pooling with size

3 and stride 1. The temporal convolution responses are

then concatenated and mapped to a fully connected layer

with 500 hidden units, which is used to predict the proposal

score. To evaluate our method on the detection task, we

generate top K proposals (K is set to 20, we apply non-

maximum suppression to filter out similar proposals, using

an NMS threshold set as 0.45) and classify them separately.

While classifying proposals, we also fuse two global video

level priors using ImageNet shuffle features [19] and “ac-

tionness” features to further improve classification perfor-

mance, as shown in [32]. We also perform an ablation study

for different components of classification. For training the

proposal network, we use a learning rate 0.1. For the classi-

fication network, we set learning the rate to 0.001. For both

cases, we use a momentum of 0.9 and 5e-5 weight decay.

4.2. ActivityNet Dataset

ActivityNet [5] is a recently released dataset which con-

tains 203 distinct action classes and a total of 849 hours of

videos collected from YouTube. It consists of both trimmed
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Figure 3. Performance of our proposal ranker on ActivityNet validation set. (a) The Recall vs IoU for pyramid proposal anchors; (b) The

Recall vs IoU for our ranker at 1, 5, 20 proposals; (c) Recall vs number of proposals for our ranker at IoU 0.5, 0.75 and 0.95

Figure 4. The effectiveness of context-based proposal ranker is shown in these plots. The Recall vs IoU plots show ranker performance at

1, 5, 20 proposals with and without context on ActivityNet validation set

and untrimmed videos. Each trimmed video contains a spe-

cific action with annotated segments. Untrimmed videos

contain one or more activities with background involved.

On average, each activity category has 137 untrimmed

videos. Each video on average has 1.41 activities which are

annotated with beginning and end points. This benchmark

is designed for three applications: untrimmed video classi-

fication, trimmed activity classification, and untrimmed ac-

tivity detection. Here, we evaluate our performance on the

detection task in untrimmed videos. We use the mean aver-

age precision (mAP) averaged over multiple overlap thresh-

olds to evaluate detection performance. Since test labels of

ActivityNet are not released, we perform ablation studies on

the validation data and test our full model on the evaluation

server.

Proposal anchors We sample pair-wise proposals

within a temporal pyramid. In Figure 3(a), we present the

recall for the pyramid proposal anchors on ActivityNet val-

idation set with three different levels. This figure shows the

theoretical best recall one can obtain using such a pyramid.

Notice that even with a 4-level pyramid with 64 proposals

in total, the coverage is already better than the baseline pro-

vided in the challenge, which uses 90 proposals. This en-

sures our proposal ranker’s performance is high with a low

number of proposals.

Performance of our ranker We evaluate our ranker

with different numbers of proposals. Figure 3(b) shows the

average recall at various overlap thresholds with top 1, top

5 and top 20 proposals. Even when using one proposal,

mAP@.5 mAP@.75 mAP@.95

without context 15.91 3.11 0.13

with context 36.17 21.12 3.89
Table 1. Evaluation on the influence with and without context on

ActivityNet validation set

our ranker outperforms the ActivityNet proposal baseline

by a significant margin when the overlap threshold is greater

than 0.5. With top 20 proposals, our ranker can squeeze out

most of the performance from pyramid proposal anchors.

We also evaluate the performance of our ranker by mea-

suring recall as the number of proposals varies (shown in

Figure 3(c)). Recall at IoU 0.5 increases to 90% with just

20 proposals. At higher IoU, increasing the number of pro-

posals does not increase recall significantly.

Effectiveness of temporal context We contend that tem-

poral context for ranking proposals is critical for localiza-

tion. To evaluate this claim, we conduct several experi-

ments. In Figure 4, we compare the performance of the

ranker with and without temporal context. Using only the

best proposal, without context, the recall drops significantly

at high IoU (IoU > 0.5). This shows that for precise lo-

calization of boundaries, temporal context is critical. Using

top 5 and top 20 proposals, without context, the recall is

marginally worse. This is expected because as the num-

ber of proposals increases, there is a higher likelihood of

one having a good overlap with a ground-truth. Therefore,

recall results using a single proposal are most informative.
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Figure 5. Comparing the ranker performance using different relative scale for context based proposals on ActivityNet validation set

Context Scale mAP@.5 mAP@.75 mAP@.95

1 15.91 3.11 0.13

1.5 30.51 15.56 2.23

2 36.17 21.12 3.89

2.5 36.04 17.08 0.92

3 33.29 14.35 1.03
Table 2. Impact of varying temporal context at different overlap

thresholds on ActivityNet validation set

We also compute detection metrics on the ActivityNet vali-

dation set to evaluate the influence of context. Table 1 also

shows that detection mAP is much higher when using the

ranker with context based proposals. These experiments

demonstrate the effectiveness of our method.

Varying context window for ranking proposals An-

other important component for ranking proposals is the

scale of context features which are associated with the pro-

posal. Consider a case in which a proposal is contained

within the ground truth interval. If the context scale is large,

the ranker may not be able to distinguish between good and

bad proposals, as it always see a significant amount of back-

ground . If the scale is small, there may be not enough

context to determine if the proposal is contained within the

ground truth or not. Therefore, we conduct an experimental

study by varying the scale of context features while rank-

ing proposals. In Figure 5, we observe that the performance

improves up to a scale of 2. We evaluate the performance

of the ranker at different scales on the ActivityNet valida-

tion set. In Table 2 we show the impact of varying temporal

context at different overlap thresholds, which validates our

claim that adding more temporal context would hurt per-

formance, but not using context at all would reduce perfor-

mance by a much larger margin. For example, changing the

scale from 2 to 3 only drops the performance by 3% but

changing it from 1.5 to 1 decreases mAP by 15% and 12%

respectively.

Influence of number of proposals We also evaluate the

influence of the number of proposals on detection perfor-

mance. Table 3, shows that our method doesn’t requires a

large number of proposals to improve its highest mAP. This

demonstrates the advantages of both our proposal ranker

#Proposal/Video mAP@.5 mAP@.75 mAP@.95

1 25.70 16.08 2.80

5 34.13 20.72 3.89

10 35.52 21.02 3.89

20 36.17 21.12 3.89

50 36.44 21.15 3.90
Table 3. Impact of number proposals on mAP on ActivityNet val-

idation set

Components mAP@.5 mAP@.75 mAP@.95

B. F. G.

X X X 36.17 21.12 3.89

X X × 33.83 20.05 3.77

X × × 30.31 17.80 2.82

× × × 26.35 15.27 2.66
Table 4. Ablation study for detection performance using top 20

proposals on the ActivityNet validation set. B - Bilinear, F - Flow,

G - Global prior

Evaluation Server

Method mAP@.5 mAP@.75 mAP@.95 Average

QCIS[36] 42.48 2.88 0.06 14.62

UPC[20] 22.37 14.88 4.45 14.81

UMD[31] 28.67 17.78 2.88 17.68

Oxford[32] 36.40 11.05 0.14 17.83

Ours 37.49 23.47 4.47 23.58

Table 5. Comparison with state-of-the-art methods on the Activi-

tyNet evaluation sever using top 20 proposals

and classifier.

Ablation study We conduct a series of ablation studies

to evaluate the importance of each component used in our

classification model. Table 4 considers three components:

”B” stands for “using bilinear pooling”; “F” stands for “us-

ing flow” and “G” stands for “using global priors”. We can

see from the table that each component plays a significant

role in improving performance.

Comparison with state-of-the-art We compare our

method with state-of-the-art methods [36, 20, 32, 32] sub-

mitted during the CVPR 2016 challenge. We submit our

results on the evaluation server to measure performance on

the test set. At 0.5 overlap, our method is only worse than
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[36]. However, this approach was optimized for 0.5 overlap

and its performance degrades significantly (to 2%) when

mAP at 0.75 or 0.95 overlap is measured. Even though

frame level predictions using a Bi-directional LSTM are

used in [31], our performance is better when mAP is mea-

sured at 0.75 overlap. This is because [31] only performs

simple grouping of contiguous segments which are obtained

at multiple detection thresholds, instead of a proposal based

approach. Hence, it is likely to perform worse on longer

action segments.

4.3. The THUMOS14 Dataset

We also evaluate our framework on the THUMOS14

dataset[14], which contains 20 action categories from

sports. The validation set contains 1010 untrimmed videos

with 200 videos as containing positive samples. The test-

ing set contains 1574 untrimmed videos, where only 213

of them have action instances. We exclude the remaining

background videos from our experiments.

Note that solutions for action and activity detection could

be different in general, as activities could be very long (min-

utes) while actions last just a few seconds. Due to their

long duration, evaluation at high overlap (0.8 e.g.) makes

sense for activities, but not for actions. Nevertheless, we

also train our proposed framework on the validation set of

THUMOS14 and test on the testing set. Our model also out-

performs state-of-the-art methods on proposal metrics by

a significant margin, which shows the good generalization

ability of our approach.

Performance of our ranker Our proposal ranker out-

performs existing algorithms like SCNN[30] and DAPs[6].

We show proposal performance on both average recall cal-

culated using IoU thresholds from 0.5 to 1 at a step 0.05

(shown in Table 6) and recall at IoU 0.5 (shown in Table 7)

using 10, 50, 100, 500 proposals. Our proposal ranker per-

forms consistently better than previous methods, especially

using small number of proposals.

In Table 8, it is clear that, the proposal ranker perfor-

mance improves significantly when using a pair of context

windows as input. Hence, it is important to use context

features for localization in videos, which has been largely

ignored in previous state-of-the-art activity detection meth-

ods.

Comparison with state-of-the-art Using off the shelf

classifiers and our proposals, we also demonstrate no-

ticeable improvement in detection performance on THU-

MOS14. Here, we compare our temporal context network

with DAPs[6], PSDF[15], FG[27] SCNN[30] and CDC[28].

We replace the S-CNN proposals originally used in CDC

with our proposals. For scoring the detections in CDC,

we multiply our proposal scores with CDC’s classification

score. We show that our proposals further benefit CDC

and improve detection performance consistently at different

Method
Avg.Recall [0.5:0.05:1]

@10 @50 @100 @500

DAPs 3.0 11.7 20.1 46.7

SCNN 5.5 16.6 24.8 48.3

Ours 7.7 20.5 29.6 49.2
Table 6. Average Recall from IoU 0.5 to 1 with step size 0.05 for

our proposals and other methods on the THUMOS14 testing set

Method
Recall(IoU=0.5)

@10 @50 @100 @500

DAPs 8.4 29.2 46.9 85.5

SCNN 13.0 35.2 49.6 84.1

Ours 17.1 42.8 59.8 88.7
Table 7. Recall evaluation at IoU 0.5 between our proposals and

state-of-the-art methods on THUMOS14 testing set

Method Avg.Recall@100 mAP@0.5

Ours w/o Context 22.5 20.5

Ours w/ Context 29.6 25.6
Table 8. Evaluation on the influence with and without context on

THUMOS14 testing set

Method mAP@.4 mAP@.5 mAP@.6 mAP@.7

DAPs[6] —- 13.9 —- —-

FG[27] 26.4 17.1 —- —-

PSDF[15] 26.1 18.8 —- —-

SCNN[30] 28.7 19.0 —- —-

SCNN+CDC[28] 29.4 23.3 13.1 7.9

Ours+CDC 33.3 25.6 15.9 9.0

Table 9. Performance of state-of-the-art detectors on the THU-

MOS14 testing set

overlap thresholds.

5. Qualitative Results

We show some qualitative results for TCN, with and

without context. Note that only top 5 proposals are shown.

The ground truth is shown in blue while predictions are

shown in green. It is evident that when context is not used,

multiple proposals are present inside or just at the boundary

of ground truth intervals. Therefore, although the location

is near the actual interval (when context is not used), the

boundaries are inaccurate. Hence, when detection metrics

are computed, these nearby detections get marked as false

positives leading to a drop in average precision. However,

when context is used, the proposals boundaries are signifi-

cantly more accurate compared to the case when context is

not used.

6. Conclusion

We demonstrated that temporal context is helpful for per-

forming localization of activities in videos. Analysis was

performed to study the impact of temporal proposals in
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Figure 6. Visualization of top 5 ranking results, the blue bar denotes the ground-truth while the green one represents proposals.

videos by studying precision recall characteristics at mul-

tiple overlap thresholds. We also vary the context window

to study the importance of temporal context for localiza-

tion. Finally, we demonstrated state-of-the-art performance

on two challenging public datasets.
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