
Deep Clustering via Joint Convolutional Autoencoder Embedding and Relative

Entropy Minimization

Kamran Ghasedi Dizaji†, Amirhossein Herandi‡, Cheng Deng♯, Weidong Cai♮, Heng Huang†∗

†Electrical and Computer Engineering, University of Pittsburgh, USA
‡Computer Science and Engineering, University of Texas at Arlington, USA

♯School of Electronic Engineering, Xidian University, China
♮School of Information Technologies, University of Sydney, Australia

kamran.ghasedi@gmail.com, amirhossein.herandi@uta.edu, chdeng@mail.xidian.edu.cn

tom.cai@sydney.edu.au, heng.huang@pitt.edu

Abstract

In this paper, we propose a new clustering model,

called DEeP Embedded RegularIzed ClusTering (DE-

PICT), which efficiently maps data into a discriminative

embedding subspace and precisely predicts cluster assign-

ments. DEPICT generally consists of a multinomial logistic

regression function stacked on top of a multi-layer convolu-

tional autoencoder. We define a clustering objective func-

tion using relative entropy (KL divergence) minimization,

regularized by a prior for the frequency of cluster assign-

ments. An alternating strategy is then derived to optimize

the objective by updating parameters and estimating clus-

ter assignments. Furthermore, we employ the reconstruc-

tion loss functions in our autoencoder, as a data-dependent

regularization term, to prevent the deep embedding func-

tion from overfitting. In order to benefit from end-to-end

optimization and eliminate the necessity for layer-wise pre-

training, we introduce a joint learning framework to mini-

mize the unified clustering and reconstruction loss functions

together and train all network layers simultaneously. Ex-

perimental results indicate the superiority and faster run-

ning time of DEPICT in real-world clustering tasks, where

no labeled data is available for hyper-parameter tuning.

1. Introduction

Clustering is one of the fundamental research topics in

machine learning and computer vision research, and it has

gained significant attention for discriminative representa-

tion of data points without any need for supervisory sig-

nals. The clustering problem has been extensively studied in

∗Corresponding Author. This work was partially supported by U.S.

NIH R01 AG049371, NSF IIS 1302675, IIS 1344152, DBI 1356628, IIS

1619308, IIS 1633753.

(a) Raw Data (b) NonJoint DEPICT (c) Joint DEPICT

Figure 1: Visualization to show the discriminative capa-

bility of embedding subspaces using MNIST-test data. (a)

The space of raw data. (b) The embedding subspace of

non-joint DEPICT using standard stacked denoising au-

toencoder (SdA). (c) The embedding subspace of joint DE-

PICT using our joint learning approach (MdA).

various applications; however, the performance of standard

clustering algorithms is adversely affected when dealing

with high-dimensional data, and their time complexity dra-

matically increases when working with large-scale datasets.

Tackling the curse of dimensionality, previous studies of-

ten initially project data into a low-dimensional manifold,

and then cluster the embedded data in this new subspace

[36, 42, 49]. Handling large-scale datasets, there are also

several studies which select only a subset of data points to

accelerate the clustering process [39, 21, 19].

However, dealing with real-world image data, existing

clustering algorithms suffer from different issues: 1) Using

inflexible hand-crafted features, which do not depend on the

input data distribution; 2) Using shallow and linear embed-

ding functions, which are not able to capture the non-linear

nature of data; 3) Non-joint embedding and clustering pro-

cesses, which do not result in an optimal embedding sub-

space for clustering; 4) Complicated clustering algorithms

that require tuning the hyper-parameters using labeled data,

which is not feasible in real-world clustering tasks.

To address the mentioned challenging issues, we propose

5736

a new clustering algorithm, called deep embedded regular-

ized clustering (DEPICT), which exploits the advantages of

both discriminative clustering methods and deep embedding

models. DEPICT generally consists of two main parts, a

multinomial logistic regression (soft-max) layer stacked on

top of a multi-layer convolutional autoencoder. The soft-

max layer along with the encoder pathway can be consid-

ered as a discriminative clustering model, which is trained

using the relative entropy (KL divergence) minimization.

We further add a regularization term based on a prior dis-

tribution for the frequency of cluster assignments. The reg-

ularization term penalizes unbalanced cluster assignments

and prevents allocating clusters to outlier samples.

Although this deep clustering model is flexible enough

to discriminate the complex real-world input data, it can

easily get stuck in non-optimal local minima during train-

ing and result in undesirable cluster assignments. In order

to avoid overfitting the deep clustering model to spurious

data correlations, we utilize the reconstruction loss function

of autoencoder models as a data-dependent regularization

term for training parameters.

In order to benefit from a joint learning framework for

embedding and clustering, we introduce a unified objective

function including our clustering and auxiliary reconstruc-

tion loss functions. We then employ an alternating approach

to efficiently update the parameters and estimate the clus-

ter assignments. It is worth mentioning that in the stan-

dard learning approach for training a multi-layer autoen-

coder, the encoder and decoder parameters are first pre-

trained layer-wise using the reconstruction loss, and the

encoder parameters are then fine-tuned using the objective

function of the main task [45]. However, it has been ar-

gued that the non-joint fine-tuning step may overwrite the

encoder parameters entirely and consequently cancel out the

benefit of the layer-wise pretraining step [65]. To avoid this

problem and achieve optimal joint learning results, we si-

multaneously train all of the encoder and decoder layers to-

gether along with the soft-max layer. To do so, we sum up

the squared error reconstruction loss functions between the

decoder and their corresponding (clean) encoder layers and

add them to the clustering loss function.

Figure 1 demonstrates the importance of our joint learn-

ing strategy by comparing different data representations

of MNIST-test data points [16] using principle component

analysis (PCA) visualization. The first figure indicates the

raw data representation; The second one shows the data

points in the embedding subspace of non-joint DEPICT, in

which the model is trained using the standard layer-wise

stacked denoising autoencoder (SdA); The third one visu-

alizes the data points in the embedding subspace of joint

DEPICT, in which the model is trained using our multi-

layer denoising autoencoder learning approach (MdA). As

shown, joint DEPICT using MdA learning approach pro-

vides a significantly more discriminative embedding sub-

space compared to non-joint DEPICT using standard SdA

learning approach.

Moreover, experimental results show that DEPICT

achieves superior or competitive results compared to the

state-of-the-art algorithms on the image benchmark datasets

while having faster running times. In addition, we com-

pared different learning strategies for DEPICT, and con-

firm that our joint learning approach has the best results.

It should also be noted that DEPICT does not require any

hyper-parameter tuning using supervisory signals, and con-

sequently is a better candidate for the real-world clustering

tasks. Thus, we summarize the advantages of DEPICT as:

• Providing a discriminative non-linear embedding sub-

space via the deep convolutional autoencoder;

• Introducing an end-to-end joint learning approach,

which unifies the clustering and embedding tasks, and

avoids layer-wise pretraining;

• Achieving superior or competitive clustering results

on high-dimensional and large-scale datasets with no

need for hyper-parameter tuning using labeled data.

2. Related Works

There is a large number of clustering algorithms in litera-

ture, which can be grouped into different perspectives, such

as hierarchical [9, 51], centroid-based [20, 3, 27], graph-

based [38, 28, 48, 25], sequential (temporal) [11, 37, 66],

regression model based [7, 47], and subspace clustering

models [1, 10, 6, 26]. In another sense, they are generally

divided into two subcategories, generative and discrimina-

tive clustering algorithms. The generative algorithms like

K-means and Gaussian mixture model [4] explicitly repre-

sent the clusters using geometric properties of the feature

space, and model the categories via the statistical distri-

butions of input data. Unlike the generative clustering al-

gorithms, the discriminative methods directly identify the

categories using their separating hyperplanes regardless of

data distribution. Information theoretic [18, 2, 14], max-

margin [64, 55], and spectral graph [24] algorithms are ex-

amples of discriminative clustering models. Generally it has

been argued that the discriminative models often have bet-

ter results compared to their generative counterparts, since

they have fewer assumptions about the data distribution and

directly separate the clusters, but their training can suffer

from overfitting or getting stuck in undesirable local min-

ima [14, 24, 32]. Our DEPICT algorithm is also a discrim-

inative clustering model, but it benefits from the auxiliary

reconstruction task of autoencoder to alleviate this issues in

training of our discriminative clustering algorithm.

There are also several studies regarding the combina-

tion of clustering with feature embedding learning. Ye et

al. introduced a kernelized K-means algorithm, denoted

by DisKmeans, where embedding to a lower dimensional

5737

subspace via linear discriminant analysis (LDA) is jointly

learned with K-means cluster assignments [59]. [46] pro-

posed to a new method to simultaneously conduct both clus-

tering and feature embedding/selection tasks to achieve bet-

ter performance. But these models suffer from having shal-

low and linear embedding functions.

A joint learning framework for updating code books and

estimating image clusters was proposed in [54] while SIFT

features are used as input data. A deep structure, named

TAGnet was introduced in [49], where two layers of sparse

coding followed by a clustering algorithm are trained with

an alternating learning approach. Similar work is presented

in [50] that formulates a joint optimization framework for

discriminative clustering and feature extraction using sparse

coding. However, the inference complexity of sparse cod-

ing forces the model in [50] to reduce the dimension of

input data with PCA and the model in [49] to use an ap-

proximate solution. Hand-crafted features and dimension

reduction techniques degrade the clustering performance by

neglecting the distribution of input data.

Tian et al. learned a non-linear embedding of the affinity

graph using a stacked autoencoder, and then obtained the

clusters in the embedding subspace via K-means [42]. Tri-

georgis et al. extended semi non-negative matrix factoriza-

tion (semi-NMF) to stacked multi-layer (deep) semi-NMF

to capture the abstract information in the top layer. After-

wards, they run K-means over the embedding subspace for

cluster assignments [43]. More recently, Xie et al. em-

ployed denoising stacked autoencoder learning approach,

and first pretrained the model layer-wise and then fine-tuned

the encoder pathway stacked by a clustering algorithm us-

ing Kullback-Leibler divergence minimization [53]. Unlike

these models that require layer-wise pretraining as well as

non-joint embedding and clustering learning, DEPICT uti-

lizes an end-to-end optimization for training all network

layers simultaneously using the unified clustering and re-

construction loss functions.

Yang et al. introduced a new clustering model, named

JULE, based on a recurrent framework, where data is rep-

resented via a convolutional neural network and embedded

data is iteratively clustered using an agglomerative cluster-

ing algorithm [57]. They derived a unified loss function

consisting of the merging process for agglomerative cluster-

ing and updating the parameters of the deep representation.

While JULE achieved good results using the joint learning

approach, it requires tuning of a large number of hyper-

parameters, which is not practical in real-world clustering

tasks. In contrast, our model does not need any supervisory

signals for hyper-parameter tuning.

3. Deep Embedded Regularized Clustering

In this section, we first introduce the clustering objec-

tive function and the corresponding optimization algorithm,

which alternates between estimating the cluster assignments

and updating model parameters. Afterwards, we show

the architecture of DEPICT and provide the joint learning

framework to simultaneously train all network layers using

the unified clustering and reconstruction loss functions.

3.1. DEPICT Algorithm

Let’s consider the clustering task of N samples, X =
[x1, ...,xn], into K categories, where each sample xi ∈
R

dx . Using the embedding function, ϕW : X → Z, we

are able to map raw samples into the embedding subspace

Z = [z1, ..., zn], where each zi ∈ R
dz has a much lower di-

mension compared to the input data (i.e. dz ≪ dx). Given

the embedded features, we use a multinomial logistic re-

gression (soft-max) function fθ : Z → Y to predict the

probabilistic cluster assignments as follows.

pik = P (yi = k|zi,Θ) =
exp(θTk zi)

K
∑

k′=1

exp(θTk′zi)

, (1)

where Θ = [θ1, ...,θk] ∈ R
dz×K are the soft-max func-

tion parameters, and pik indicates the probability of the i-th
sample belonging to the k-th cluster.

In order to define our clustering objective function, we

employ an auxiliary target variable Q to refine the model

predictions iteratively. To do so, we first use Kullback-

Leibler (KL) divergence to decrease the distance between

the model prediction P and the target variable Q.

L= KL(Q‖P) =
1

N

N
∑

i=1

K
∑

k=1

qik log
qik
pik

, (2)

In order to avoid degenerate solutions, which allocate most

of the samples to a few clusters or assign a cluster to outlier

samples, we aim to impose a regularization term to the tar-

get variable. To this end, we first define the empirical label

distribution of target variables as:

fk = P (y = k) =
1

N

∑

i

qik , (3)

where fk can be considered as the soft frequency of cluster

assignments in the target distribution. Using this empiri-

cal distribution, we are able to enforce our preference for

having balanced assignments by adding the following KL

divergence to the loss function.

L= KL(Q‖P) +KL(f‖u) (4)

=
[1

N

N
∑

i=1

K
∑

k=1

qik log
qik
pik

]

+
[1

N

K
∑

k=1

fk log
fk
uk

]

=
1

N

N
∑

i=1

K
∑

k=1

qik log
qik
pik

+ qik log
fk
uk

,

5738

where u is the uniform prior for the empirical label distri-

bution. While the first term in the objective minimizes the

distance between the target and model prediction distribu-

tions, the second term balances the frequency of clusters

in the target variables. Utilizing the balanced target vari-

ables, we can force the model to have more balanced pre-

dictions (cluster assignments) P indirectly. It is also simple

to change the prior from the uniform distribution to any ar-

bitrary distribution in the objective function if there is any

extra knowledge about the frequency of clusters.

An alternating learning approach is utilized to optimize

the objective function. Using this approach, we estimate the

target variables Q via fixed parameters (expectation step),

and update the parameters while the target variables Q are

assumed to be known (maximization step). The problem to

infer the target variable Q has the following objective:

min
Q

1

N

N
∑

i=1

K
∑

k=1

qik log
qik
pik

+ qik log
fk
uk

, (5)

where the target variables are constrained to
∑

k
qik = 1.

This problem can be solved using first order methods, such

as gradient descent, projected gradient descent, and Nes-

terov optimal method [23], which only require the objective

function value and its (sub)gradient at each iteration. In the

following equation, we show the partial derivative of the

objective function with respect to the target variables.

∂L

∂qik
∝ log

(qikfk
pik

)

+
qik

N
∑

i′=1

qi′k

+ 1 , (6)

Investigating this problem more carefully, we approximate

the gradient in Eq.(6) by removing the second term, since

the number of samples N is often big enough to ignore the

second term. Setting the gradient equal to zero, we are now

able to compute the closed form solution for Q accordingly.

qik =
pik/(

∑

i′
pi′k)

1

2

∑

k′

pik′/(
∑

i′
pi′k′)

1

2

, (7)

For the maximization step, we update the network parame-

ters ψ = {Θ,W} using the estimated target variables with

the following objective function.

min
ψ

−
1

N

N
∑

i=1

K
∑

k=1

qik log pik , (8)

Interestingly, this problem can be considered as a standard

cross entropy loss function for classification tasks, and the

parameters of soft-max layer Θ and embedding function W

can be efficiently updated by backpropagating the error.

3.2. DEPICT Architecture

In this section, we extend our general clustering loss

function using a denoising autoencoder. The deep embed-

ding function is useful for capturing the non-linear nature

of input data; However, it may overfit to spurious data cor-

relations and get stuck in undesirable local minima dur-

ing training. To avoid this overfitting, we employ autoen-

coder structures and use the reconstruction loss function as

a data-dependent regularization for training the parameters.

Therefore, we design DEPICT to consist of a soft-max layer

stacked on top of a multi-layer convolutional autoencoder.

Due to the promising performance of strided convolutional

layers in [31, 60], we employ convolutional layers in our en-

coder and strided convolutional layers in the decoder path-

ways, and avoid deterministic spatial pooling layers (like

max-pooling). Strided convolutional layers allow the net-

work to learn its own spatial upsampling, providing a better

generation capability.

Unlike the standard learning approach for denoising au-

toencoders, which contains layer-wise pretraining and then

fine-tuning, we simultaneously learn all of the autoencoder

and soft-max layers. As shown in Figure 2, DEPICT con-

sists of the following components:

1) Corrupted feedforward (encoder) pathway maps the

noisy input data into the embedding subspace using a few

convolutional layers followed by a fully connected layer.

The following equation indicates the output of each layer in

the noisy encoder pathway.

z̃l = Dropout
[

g(Wl

ez̃
l−1)

]

, (9)

where z̃l are the noisy features of the l-th layer, Dropout
is a stochastic mask function that randomly sets a subset of

its inputs to zero [41], g is the activation function of con-

volutional or fully connected layers, and Wl
e indicates the

weights of the l-th layer in the encoder. Note that the first

layer features, z̃0, are equal to the noisy input data, x̃.

2) Followed by the corrupted encoder, the decoder pathway

reconstructs the input data through a fully connected and

multiple strided convolutional layers as follows,

ẑl−1 = g(Wl

dẑ
l) , (10)

where ẑl is the l-th reconstruction layer output, and Wl

d

shows the weights for the l-th layer of the decoder. Note

that input reconstruction, x̂, is equal to ẑ0.

3) Clean feedforward (encoder) pathway shares its weights

with the corrupted encoder, and infers the clean embedded

features. The following equation shows the outputs of the

clean encoder, which are used in the reconstruction loss

functions and obtaining the final cluster assignments.

zl = g(Wl

ez
l−1) , (11)

5739

1x32x32

50x17x17

4x4 50x9x9

5x5

68 68

68 68

Dropout

Dropout

Dropout

~
x

~z1

~p

x̂

z3

p

z1

z2

S = 2

P = 2 S = 2

P = 2 ~z2

~z3

ẑ2

ẑ1

1x32x32

50x17x17

4x4 50x9x9

5x5

S = 2

C = 2 S = 2

C = 2

1x32x32

50x17x17

50x9x9

5x5

S = 2

P = 2 S = 2

P = 2

Noisy Encoder

Clean Encoder

Deccoder

L
E

L2

L2

Softmax Layer

Softmax Layer

Figure 2: Architecture of DEPICT for CMU-PIE dataset. DEPICT consists of a soft-max layer stacked on top of a multi-

layer convolutional autoencoder. In order to illustrate the joint learning framework, we consider the following four pathways

for DEPICT: Noisy (corrupted) encoder, Decoder, Clean encoder and Soft-max layer. The clustering loss function, LE , is

applied on the noisy pathway, and the reconstruction loss functions, L2, are between the decoder and clean encoder layers.

The output size of convolutional layers, kernel sizes, strides (S), paddings (P) and crops (C) are also shown.

where zl is the clean output of the l-th layer in the encoder.

Consider the first layer features z0 equal to input data x.

4) Given the top layer of the corrupted and clean encoder

pathways as the embedding subspace, the soft-max layer

obtains the cluster assignments using Eq.(1).

Note that we compute target variables Q using the clean

pathway, and model prediction P̃ via the corrupted path-

way. Hence, the clustering loss function KL(Q‖P̃) forces

the model to have invariant features with respect to noise.

In other words, the model is assumed to have a dual role:

a clean model, which is used to compute the more accu-

rate target variables; and a noisy model, which is trained to

achieve noise-invariant predictions.

As a crucial point, DEPICT algorithm provides a joint

learning framework that optimizes the soft-max and autoen-

coder parameters together.

min
ψ

−
1

N

N
∑

i=1

K
∑

k=1

qik log p̃ik +
1

N

N
∑

i=1

L−1
∑

l=0

1

|zl
i
|
‖zli − ẑli‖

2
2 ,

(12)

where |zl
i
| is the output size of the l-th hidden layer (input

for l = 0), and L is the depth of the autoencoder model.

The benefit of joint learning frameworks for train-

ing multi-layer autoencoders is also reported in semi-

supervised classification tasks [33, 65]. However, DEPICT

is different from previous studies, since it is designed for the

Algorithm 1: DEPICT Algorithm

1 Initialize Q using a clustering algorithm

2 while not converged do

3 min
ψ

− 1
N

∑

ik

qik log p̃ik + 1
N

∑

il

1
|zl

i
|
‖zl

i
− ẑl

i
‖22

4 p
(t)
ik

∝ exp(θTk z
L
i
)

5 q
(t)
ik

∝ pik/(
∑

i′
pi′k)

1

2

6 end

unsupervised clustering task, it also does not require max-

pooling switches used in stacked what-where autoencoder

(SWWAE) [65], and lateral (skip) connections between en-

coder and decoder layers used in ladder network [33]. Al-

gorithm 1 shows a brief description of DEPICT algorithm.

4. Experiments

In this section, we first evaluate DEPICT1 in comparison

with state-of-the-art clustering methods on several bench-

mark image datasets. Then, the running speed of the best

clustering models are compared. Moreover, we examine

different learning approaches for training DEPICT. Finally,

we analyze the performance of DEPICT model on semi-

supervised classification tasks.

1Our code is available in https://github.com/herandy/

DEPICT

5740

https://github.com/herandy/DEPICT
https://github.com/herandy/DEPICT

Datasets: In order to show that DEPICT works well with

various kinds of datasets, we have chosen the following

handwritten digit and face image datasets. Considering that

clustering tasks are fully unsupervised, we concatenate the

training and testing samples when applicable. MNIST-full:

A dataset containing a total of 70,000 handwritten digits

with 60,000 training and 10,000 testing samples, each be-

ing a 32 by 32 monochrome image [16]. MNIST-test: A

dataset which only consists of the testing part of MNIST-full

data. USPS: It is a handwritten digits dataset from the USPS

postal service, containing 11,000 samples of 16 by 16 im-

ages. CMU-PIE: A dataset including 32 by 32 face images

of 68 people with 4 different expressions [40]. Youtube-

Face (YTF): Following [57], we choose the first 41 subjects

of YTF dataset. Faces inside images are first cropped and

then resized to 55 by 55 sizes [52]. FRGC: Using the 20

random selected subjects in [57] from the original dataset,

we collect 2,462 face images. Similarly, we first crop the

face regions and resize them into 32 by 32 images. Table 1

provides a brief description of each dataset.

Dataset # Samples # Classes # Dimensions

MNIST-full 70,000 10 1×28×28
MNIST-test 10,000 10 1×28×28
USPS 11,000 10 1×16×16
FRGC 2,462 20 3×32×32
YTF 10,000 41 3×55×55
CMU-PIE 2,856 68 1×32×32

Table 1: Dataset Descriptions

Clustering Metrics: We have used 2 of the most popular

evaluation criteria widely used for clustering algorithms, ac-

curacy (ACC) and normalized mutual information (NMI).

The best mapping between cluster assignments and true la-

bels is computed using the Hungarian algorithm [15] to

measure accuracy. NMI calculates the normalized mea-

sure of similarity between two labels of the same data [56].

Results of NMI do not change by permutations of clusters

(classes), and they are normalized to have [0, 1] range, with

0 meaning no correlation and 1 exhibiting perfect correla-

tion.

4.1. Evaluation of Clustering Algorithm

Alternative Models: We compare our clustering model,

DEPICT, with several baseline and state-of-the-art cluster-

ing algorithms, including K-means, normalized cuts (N-

Cuts) [38], self-tuning spectral clustering (SC-ST) [61],

large-scale spectral clustering (SC-LS) [5], graph degree

linkage-based agglomerative clustering (AC-GDL) [62], ag-

glomerative clustering via path integral (AC-PIC) [63],

spectral embedded clustering (SEC) [29], local discrimi-

nant models and global integration (LDMGI) [58], NMF

with deep model (NMF-D) [43], task-specific clustering

with deep model (TSC-D) [49], deep embedded clustering

(DEC) [53], and joint unsupervised learning (JULE) [57].

Implementation Details: We use a common architecture

for DEPICT and avoid tuning any hyper-parameters using

the labeled data in order to provide a practical algorithm

for real-world clustering tasks. For all datasets, we con-

sider two convolutional layers followed by a fully connected

layer in encoder and decoder pathways. While for all con-

volutional layers, the feature map size is 50 and the kernel

size is about 5 × 5, the dimension of the embedding sub-

space is set equal to the number of clusters in each dataset.

We also pick the proper stride, padding and crop to have

an output size of about 10 × 10 in the second convolu-

tional layer. Inspired by [31], we consider leaky rectified

(leaky RELU) non-linearity [22] as the activation function

of convolutional and fully connected layers, except in the

last layer of encoder and first layer of decoder, which have

Tanh non-linearity functions. Consequently, we normalize

the image intensities to be in the range of [−1, 1]. Moreover,

we set the learning rate and dropout to 10−4 and 0.1 respec-

tively, adopt adam as our optimization method with the de-

fault hyper-parameters β1 = 0.9, β2 = 0.999, ǫ = 1e − 08
[12]. The weights of convolutional and fully connected lay-

ers are all initialized by Xavier approach [8]. Since the clus-

tering assignments in the first iterations are random and not

reliable for clustering loss, we first train DEPICT without

clustering loss function for a while, then initialize the clus-

tering assignment qik by clustering the embedding subspace

features via simple algorithms like K-means or AC-PIC.

Quantitative Comparison: We run DEPICT and other

clustering methods on each dataset. We followed the im-

plementation details for DEPICT and report the average re-

sults from 5 runs. For the rest, we present the best reported

results either from their original papers or from [57]. For

unreported results on specific datasets, we run the released

code with hyper-parameters mentioned in the original pa-

pers, these results are marked by (∗) on top. But, when the

code is not publicly available, or running the released code

is not practical, we put dash marks (-) instead of the cor-

responding results. Moreover, we mention the number of

hyper-parameters that are tuned using supervisory signals

(labeled data) for each algorithm. Note that this number

only shows the quantity of hyper-parameters, which are set

differently for various datasets for better performance.

Table 2 reports the clustering metrics, normalized mu-

tual information (NMI) and accuracy (ACC), of the algo-

rithms on the aforementioned datasets. As shown, DEPICT

outperforms other algorithms on four datasets and achieves

competitive results on the remaining two. It should be noted

that we think hyper-parameter tuning using supervisory sig-

nals is not feasible in real-world clustering tasks, and hence

DEPICT is a significantly better clustering algorithm com-

pared to the alternative models in practice. For example,

5741

Dataset MNIST-full MNIST-test USPS FRGC YTF CMU-PIE # tuned

HPsNMI ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC

K-means 0.500∗ 0.534∗ 0.501∗ 0.547∗ 0.450∗ 0.460∗ 0.287∗ 0.243∗ 0.776∗ 0.601∗ 0.432∗ 0.223∗ 0

N-Cuts 0.411 0.327 0.753 0.304 0.675 0.314 0.285 0.235 0.742 0.536 0.411 0.155 0

SC-ST 0.416 0.311 0.756 0.454 0.726 0.308 0.431 0.358 0.620 0.290 0.581 0.293 0

SC-LS 0.706 0.714 0.756 0.740 0.681 0.659 0.550 0.407 0.759 0.544 0.788 0.549 0

AC-GDL 0.017 0.113 0.844 0.933 0.824 0.867 0.351 0.266 0.622 0.430 0.934 0.842 1

AC-PIC 0.017 0.115 0.853 0.920 0.840 0.855 0.415 0.320 0.697 0.472 0.902 0.797 0

SEC 0.779∗ 0.804∗ 0.790∗ 0.815∗ 0.511∗ 0.544∗ - - - - - - 1

LDMGI 0.802∗ 0.842∗ 0.811∗ 0.847∗ 0.563∗ 0.580∗ - - - - - - 1

NMF-D 0.152∗ 0.175∗ 0.241∗ 0.250∗ 0.287∗ 0.382∗ 0.259∗ 0.274∗ 0.562∗ 0.536∗ 0.920∗ 0.810∗ 0

TSC-D 0.651 0.692 - - - - - - - - - - 2

DEC 0.816∗ 0.844∗ 0.827∗ 0.859∗ 0.586∗ 0.619∗ 0.505∗ 0.378∗ 0.446∗ 0.371∗ 0.924∗ 0.801∗ 1

JULE-SF 0.906 0.959 0.876 0.940 0.858 0.922 0.566 0.461 0.848 0.684 0.984 0.980 3

JULE-RC 0.913 0.964 0.915 0.961 0.913 0.950 0.574 0.461 0.848 0.684 1.00 1.00 3

DEPICT 0.917 0.965 0.915 0.963 0.927 0.964 0.610 0.470 0.802 0.621 0.974 0.883 0

Table 2: Clustering performance of different algorithms on image datasets based on accuracy (ACC) and normalized mutual

information (NMI). The numbers of tuned hyper-parameters (# tuned HPs) using the supervisory signals are also shown for

each algorithm. The results of alternative models are reported from original papers, except the ones marked by (∗) on top,

which are obtained by us running the released code. We put dash marks (-) for the results that are not practical to obtain.

DEC, SEC, and LDMGI report their best results by tuning

one hyper-parameter over nine different options, and JULE-

SF and JULE-RC achieve their good performance by tweak-

ing several hyper-parameters over various datasets. How-

ever, we do not tune any hyper-parameters for DEPICT us-

ing the labeled data and only report the result with the same

(default) hyper-parameters for all datasets.

4.2. Running Time Comparison

In order to evaluate the efficiency of our clustering al-

gorithm in dealing with large-scale and high dimensional

data, we compare the running speed of DEPICT with its

competing algorithms, JULE-SF and JULE-RC. Moreover,

the fast versions of JULE-SF and JULE-RC are also eval-

uated. Note that JULE-SF(fast) and JULE-RC(fast) both

require tuning one extra hyper-parameter for each dataset

to achieve results similar to the original JULE algorithms

in Table 2 [57]. We run DEPICT and the released code for

JULE algorithms2 on a machine with one Titan X pascal

GPU and a Xeon E5-2699 CPU.

Figure 3 illustrates the running time for DEPICT and

JULE algorithms on all datasets. Note that running times

of JULE-SF and JULE-RC are shown linearly from 0 to

30,000 and logarithmically for larger values for the sake of

readability. In total, JULE-RC, JULE-SF, JULE-RC(fast),

JULE-SF(fast) and DEPICT take 66.1, 35.5, 11.0, 6.6 and

4.7 hours respectively to run over all datasets. While all

algorithms have approximately similar running times on

small datasets (FRGC and CMU-PIE), when dealing with

the large-scale and high-dimensional datasets (MNIST-full

and YTF), DEPICT almost shows a linear increase in the

2https://github.com/jwyang/JULE-Torch

MNIST-full MNIST-test USPS FRGC YTF CMU-PIE
0

10000

20000

30000

100000

150000

R
u
n
ti
m
e
(s
)

Datasets

L
o
g
a
ri
th
m
ic

JULE-RC

JULE-SF

JULE-RC(fast)

JULE-SF(fast)

DEPICT

Figure 3: Running time comparison of DEPICT and JULE

clustering algorithms on image datasets.

running time, but the running times of original JULE algo-

rithms dramatically grow with the size and number of in-

put data. This outcome again emphasizes the practicality of

DEPICT for real-world clustering tasks.

4.3. Evaluation of Learning Approach

In order to evaluate our joint learning approach, we com-

pare several strategies for training DEPICT. For training a

multi-layer convolutional autoencoder, we analyze the fol-

lowing three approaches : 1) Standard stacked denoising au-

toencoder (SdA), in which the model is first pretrained us-

ing the reconstruction loss function in a layer-wise manner,

and the encoder pathway is then fine-tuned using the clus-

tering objective function [45]. 2) Another approach (RdA)

is suggested in [53] to improve the SdA learning approach,

in which all of the autoencoder layers are retrained after the

pretraining step, only using the reconstruction of input layer

while data is not corrupted by noise. The fine-tuning step is

also done after the retraining step. 3) Our learning approach

5742

https://github.com/jwyang/JULE-Torch

Dataset MNIST-full MNIST-test USPS FRGC YTF CMU-PIE

NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC

Deep-ConvAE +

AC-PIC

SdA 0.255 0.348 0.313 0.345 0.223 0.290 0.120 0.230 0.414 0.302 0.354 0.266

RdA 0.615 0.455 0.859 0.900 0.886 0.866 0.443 0.363 0.597 0.425 0.912 0.817

MdA 0.729 0.506 0.876 0.942 0.906 0.878 0.583 0.427 0.640 0.448 0.931 0.883

DEPICT

SdA 0.365 0.427 0.353 0.390 0.328 0.412 0.211 0.300 0.414 0.302 0.354 0.266

RdA 0.808 0.677 0.899 0.950 0.901 0.923 0.551 0.444 0.652 0.450 0.951 0.926

MdA 0.917 0.965 0.915 0.963 0.927 0.964 0.610 0.470 0.802 0.621 0.974 0.883

Table 3: Clustering performance of different learning approaches, including SdA, RdA and MdA, for training DEPICT and

Deep-ConvAE+AC-PIC models.

(MdA), in which the whole model is trained simultaneously

using the joint reconstruction loss functions from all layers

along with the clustering objective function.

Furthermore, we also examine the effect of clustering

loss (through error back-prop) in constructing the embed-

ding subspace. To do so, we train a similar multi-layer

convolutional autoencoder (Deep-ConvAE) only using the

reconstruction loss function to generate the embedding sub-

space. Then, we run the best shallow clustering algorithm

(AC-PIC) on the embedded data. Hence, this model (Deep-

ConvAE+AC-PIC) differs from DEPICT in the sense that

its embedding subspace is only constructed using the re-

construction loss and does not involve the clustering loss.

Table 3 indicates the results of DEPICT and Deep-

ConvAE+AC-PIC when using the different learning ap-

proaches. As expected, DEPICT trained by our joint learn-

ing approach (MdA) consistently outperforms the other al-

ternatives on all datasets. Interestingly, MdA learning ap-

proach shows promising results for Deep-ConvAE+AC-PIC

model, where only reconstruction losses are used to train

the embedding subspace. Thus, our learning approach is an

efficient strategy for training autoencoder models due to its

superior results and fast end-to-end training.

4.4. Semi­Supervised Classification Performance

Representation learning in an unsupervised manner or

using a small number of labeled data has recently attracted

great attention. Due to the potential of our model in learn-

ing a discriminative embedding subspace, we evaluate DE-

PICT in a semi-supervised classification task. Following

the semi-supervised experiment settings [33, 65], we train

our model using a small random subset of MNIST-training

dataset as labeled data and the remaining as unlabeled data.

The classification error of DEPICT is then computed us-

ing the MNIST-test dataset, which is not seen during train-

ing. Compared to our unsupervised learning approach, we

only utilize the clusters corresponding to each labeled data

in training process. In particular, only for labeled data, the

cluster labels (assignments) are set using the best map tech-

nique from the original classification labels once, and then

they will be fixed during the training step.

Table 4 shows the error results for several semi-

Model 100 1000 3000

T-SVM [44] 16.81 5.38 3.45

CAE [35] 13.47 4.77 3.22

MTC [34] 12.03 3.64 2.57

PL-DAE [17] 10.49 3.46 2.69

AtlasRBF [30] 8.10 3.68 -

M1+M2 [13] 3.33±0.14 2.40±0.05 2.18±0.04

SWWAE [65] 8.71±0.34 2.83±0.10 2.10±0.22

Ladder [33] 1.06±0.37 0.84±0.08 -

DEPICT 2.65±0.35 2.10±0.11 1.91±0.06

Table 4: Comparison of DEPICT and several semi-

supervised classification models in MNIST dataset with dif-

ferent numbers of labeled data.

supervised classification models using different numbers of

labeled data. Surprisingly, DEPICT achieves comparable

results with the state-of-the-art, despite the fact that the

semi-supervised classification models use 10,000 validation

data to tune their hyper-parameters, DEPICT only employs

the labeled training data (e.g. 100) and does not tune any

hyper-parameters. Although DEPICT is not mainly de-

signed for classification tasks, it outperforms several mod-

els including SWWAE [65], M1+M2 [13], and AtlasRBF

[30], and has comparable results with the complicated Lad-

der network [33]. These results further confirm the discrim-

inative quality of the embedding features of DEPICT.

5. Conclusion

In this paper, we proposed a new deep clustering model,

DEPICT, consisting of a soft-max layer stacked on top of a

multi-layer convolutional autoencoder. We employed a reg-

ularized relative entropy loss function for clustering, which

leads to balanced cluster assignments. Adopting our au-

toencoder reconstruction loss function enhanced the embed-

ding learning. Furthermore, a joint learning framework was

introduced to train all network layers simultaneously and

avoid layer-wise pretraining. Experimental results showed

that DEPICT is a good candidate for real-world clustering

tasks, since it achieved superior or competitive results com-

pared to alternative methods while having faster running

speed and not needing hyper-parameter tuning. Efficiency

of our joint learning approach was also confirmed in clus-

tering and semi-supervised classification tasks.

5743

References

[1] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Au-

tomatic subspace clustering of high dimensional data for

data mining applications, volume 27. ACM, 1998.

[2] D. Barber and F. V. Agakov. Kernelized infomax cluster-

ing. In Advances in neural information processing systems

(NIPS), pages 17–24, 2005.

[3] J. C. Bezdek, R. Ehrlich, and W. Full. Fcm: The fuzzy

c-means clustering algorithm. Computers & Geosciences,

10(2-3):191–203, 1984.

[4] C. Biernacki, G. Celeux, and G. Govaert. Assessing a mix-

ture model for clustering with the integrated completed like-

lihood. IEEE transactions on pattern analysis and machine

intelligence, 22(7):719–725, 2000.

[5] X. Chen and D. Cai. Large scale spectral clustering with

landmark-based representation. In AAAI, 2011.

[6] H. Gao, F. Nie, X. Li, and H. Huang. Multi-view subspace

clustering. International Conference on Computer Vision

(ICCV 2015), pages 4238–4246, 2015.

[7] H. Gao, X. Wang, and H. Huang. New robust clustering

model for identifying cancer genome landscapes. IEEE In-

ternational Conference on Data Mining (ICDM 2016), pages

151–160, 2016.

[8] X. Glorot and Y. Bengio. Understanding the difficulty of

training deep feedforward neural networks. In Aistats, vol-

ume 9, pages 249–256, 2010.

[9] K. A. Heller and Z. Ghahramani. Bayesian hierarchical clus-

tering. In Proceedings of the 22nd international conference

on Machine learning (ICML). ACM, 2005.

[10] K. Kailing, H.-P. Kriegel, and P. Kröger. Density-connected

subspace clustering for high-dimensional data. In Proceed-

ings of the 2004 SIAM International Conference on Data

Mining, pages 246–256. SIAM, 2004.

[11] E. Keogh, S. Chu, D. Hart, and M. Pazzani. An online al-

gorithm for segmenting time series. In Data Mining, 2001.

ICDM 2001, Proceedings IEEE International Conference

on, pages 289–296. IEEE, 2001.

[12] D. Kingma and J. Ba. Adam: A method for stochastic opti-

mization. arXiv preprint arXiv:1412.6980, 2014.

[13] D. P. Kingma, S. Mohamed, D. J. Rezende, and M. Welling.

Semi-supervised learning with deep generative models. In

Advances in Neural Information Processing Systems (NIPS),

pages 3581–3589, 2014.

[14] A. Krause, P. Perona, and R. G. Gomes. Discriminative

clustering by regularized information maximization. In Ad-

vances in neural information processing systems (NIPS),

pages 775–783, 2010.

[15] H. W. Kuhn. The hungarian method for the assignment prob-

lem. Naval research logistics quarterly, 2(1-2):83–97, 1955.

[16] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-

based learning applied to document recognition. Proceed-

ings of the IEEE, 86(11):2278–2324, 1998.

[17] D.-H. Lee. Pseudo-label: The simple and efficient semi-

supervised learning method for deep neural networks. In

Workshop on Challenges in Representation Learning, ICML,

volume 3, page 2, 2013.

[18] H. Li, K. Zhang, and T. Jiang. Minimum entropy clustering

and applications to gene expression analysis. In Computa-

tional Systems Bioinformatics Conference, 2004. CSB 2004.

Proceedings. 2004 IEEE, pages 142–151. IEEE, 2004.

[19] Y. Li, F. Nie, H. Huang, and J. Huang. Large-scale multi-

view spectral clustering via bipartite graph. Twenty-Ninth

AAAI Conference on Artificial Intelligence (AAAI 2015),

2015.

[20] S. Lloyd. Least squares quantization in pcm. IEEE transac-

tions on information theory, 28(2):129–137, 1982.

[21] D. Luo, C. Ding, and H. Huang. Consensus spectral cluster-

ing. ICDE, 2010.

[22] A. L. Maas, A. Y. Hannun, and A. Y. Ng. Rectifier nonlin-

earities improve neural network acoustic models. In Proc.

ICML, volume 30, 2013.

[23] Y. Nesterov. Introductory lectures on convex optimization:

A basic course, volume 87. Springer Science & Business

Media, 2013.

[24] A. Y. Ng, M. I. Jordan, Y. Weiss, et al. On spectral clustering:

Analysis and an algorithm. Advances in neural information

processing systems (NIPS), 2:849–856, 2002.

[25] F. Nie, C. Deng, H. Wang, X. Gao, and H. Huang. New

l1-norm relaxations and optimizations for graph clustering.

Thirtieth AAAI Conference on Artificial Intelligence (AAAI

2016), 2016.

[26] F. Nie and H. Huang. Subspace clustering via new discrete

group structure constrained low-rank model. 25th Interna-

tional Joint Conference on Artificial Intelligence (IJCAI),

pages 1874–1880, 2016.

[27] F. Nie, X. Wang, and H. Huang. Clustering and projected

clustering via adaptive neighbor assignment. The 20th ACM

SIGKDD Conference on Knowledge Discovery and Data

Mining (KDD 2014), pages 977–986, 2014.

[28] F. Nie, X. Wang, M. I. Jordan, and H. Huang. The con-

strained laplacian rank algorithm for graph-based clustering.

In AAAI, pages 1969–1976. Citeseer, 2016.

[29] F. Nie, Z. Zeng, I. W. Tsang, D. Xu, and C. Zhang. Spectral

embedded clustering: A framework for in-sample and out-

of-sample spectral clustering. IEEE Transactions on Neural

Networks, 22(11):1796–1808, 2011.

[30] N. Pitelis, C. Russell, and L. Agapito. Semi-supervised

learning using an unsupervised atlas. In Joint European Con-

ference on Machine Learning and Knowledge Discovery in

Databases, pages 565–580. Springer, 2014.

[31] A. Radford, L. Metz, and S. Chintala. Unsupervised repre-

sentation learning with deep convolutional generative adver-

sarial networks. arXiv preprint arXiv:1511.06434, 2015.

[32] R. Raina, Y. Shen, A. Y. Ng, and A. McCallum. Classifi-

cation with hybrid generative/discriminative models. In In

Advances in Neural Information Processing Systems (NIPS),

volume 16, 2003.

[33] A. Rasmus, M. Berglund, M. Honkala, H. Valpola, and

T. Raiko. Semi-supervised learning with ladder networks. In

Advances in Neural Information Processing Systems (NIPS),

pages 3546–3554, 2015.

[34] S. Rifai, Y. N. Dauphin, P. Vincent, Y. Bengio, and X. Muller.

The manifold tangent classifier. In Advances in Neural Infor-

mation Processing Systems (NIPS), pages 2294–2302, 2011.

5744

[35] S. Rifai, P. Vincent, X. Muller, X. Glorot, and Y. Bengio.

Contractive auto-encoders: Explicit invariance during fea-

ture extraction. In Proceedings of the 28th international

conference on machine learning (ICML-11), pages 833–840,

2011.

[36] V. Roth and T. Lange. Feature selection in clustering prob-

lems. In In Advances in Neural Information Processing Sys-

tems (NIPS), pages 473–480, 2003.

[37] M. E. Sargin, Y. Yemez, E. Erzin, and A. M. Tekalp. Anal-

ysis of head gesture and prosody patterns for prosody-driven

head-gesture animation. IEEE Transactions on Pattern Anal-

ysis and Machine Intelligence, 30(8):1330–1345, 2008.

[38] J. Shi and J. Malik. Normalized cuts and image segmenta-

tion. IEEE Transactions on pattern analysis and machine

intelligence, 22(8):888–905, 2000.

[39] H. Shinnou and M. Sasaki. Spectral clustering for a large

data set by reducing the similarity matrix size. In LREC,

2008.

[40] T. Sim, S. Baker, and M. Bsat. The cmu pose, illumina-

tion, and expression (pie) database. In Automatic Face and

Gesture Recognition, 2002. Proceedings. Fifth IEEE Inter-

national Conference on, pages 46–51. IEEE, 2002.

[41] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and

R. Salakhutdinov. Dropout: a simple way to prevent neu-

ral networks from overfitting. Journal of Machine Learning

Research, 15(1):1929–1958, 2014.

[42] F. Tian, B. Gao, Q. Cui, E. Chen, and T.-Y. Liu. Learning

deep representations for graph clustering. In AAAI, pages

1293–1299, 2014.

[43] G. Trigeorgis, K. Bousmalis, S. Zafeiriou, and B. Schuller.

A deep semi-nmf model for learning hidden representations.

In ICML, pages 1692–1700, 2014.

[44] V. Vapnik. Statistical learning theory, volume 1. Wiley New

York, 1998.

[45] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-

A. Manzagol. Stacked denoising autoencoders: Learning

useful representations in a deep network with a local de-

noising criterion. Journal of Machine Learning Research,

11(Dec):3371–3408, 2010.

[46] D. Wang, F. Nie, and H. Huang. Unsupervised feature se-

lection via unified trace ratio formulation and k-means clus-

tering (track). European Conference on Machine Learn-

ing and Principles and Practice of Knowledge Discovery in

Databases (ECML PKDD 2014), pages 306–321, 2014.

[47] H. Wang, F. Nie, and H. Huang. Multi-view clustering and

feature learning via structured sparsity. The 30th Interna-

tional Conference on Machine Learning (ICML 2013), pages

352–360, 2013.

[48] X. Wang, F. Nie, and H. Huang. Structured doubly stochas-

tic matrix for graph based clustering: Structured doubly

stochastic matrix. In ACM SIGKDD International Con-

ference on Knowledge Discovery and Data Mining, pages

1245–1254, 2016.

[49] Z. Wang, S. Chang, J. Zhou, M. Wang, and T. S. Huang.

Learning a task-specific deep architecture for clustering. In

Proceedings of the 2016 SIAM International Conference on

Data Mining, pages 369–377. SIAM, 2016.

[50] Z. Wang, Y. Yang, S. Chang, J. Li, S. Fong, and T. S. Huang.

A joint optimization framework of sparse coding and dis-

criminative clustering. In International Joint Conference on

Artificial Intelligence (IJCAI), volume 1, page 4, 2015.

[51] C. K. Williams. A mcmc approach to hierarchical mixture

modelling. In Advances in neural information processing

systems (NIPS), pages 680–686, 1999.

[52] L. Wolf, T. Hassner, and I. Maoz. Face recognition in uncon-

strained videos with matched background similarity. In Com-

puter Vision and Pattern Recognition (CVPR), 2011 IEEE

Conference on, pages 529–534. IEEE, 2011.

[53] J. Xie, R. Girshick, and A. Farhadi. Unsupervised deep em-

bedding for clustering analysis. In International Conference

on Machine Learning (ICML), 2016.

[54] P. Xie and E. P. Xing. Integrating image clustering and code-

book learning. In AAAI, pages 1903–1909, 2015.

[55] L. Xu, J. Neufeld, B. Larson, and D. Schuurmans. Maxi-

mum margin clustering. In Advances in neural information

processing systems (NIPS), pages 1537–1544, 2004.

[56] W. Xu, X. Liu, and Y. Gong. Document clustering based

on non-negative matrix factorization. In Proceedings of the

26th annual international ACM SIGIR conference on Re-

search and development in informaion retrieval, pages 267–

273. ACM, 2003.

[57] J. Yang, D. Parikh, and D. Batra. Joint unsupervised learn-

ing of deep representations and image clusters. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 5147–5156, 2016.

[58] Y. Yang, D. Xu, F. Nie, S. Yan, and Y. Zhuang. Image cluster-

ing using local discriminant models and global integration.

IEEE Transactions on Image Processing, 19(10):2761–2773,

2010.

[59] J. Ye, Z. Zhao, and M. Wu. Discriminative k-means for clus-

tering. In Advances in neural information processing systems

(NIPS), pages 1649–1656, 2008.

[60] R. Yeh, C. Chen, T. Y. Lim, M. Hasegawa-Johnson, and

M. N. Do. Semantic image inpainting with perceptual and

contextual losses. arXiv preprint arXiv:1607.07539, 2016.

[61] L. Zelnik-Manor and P. Perona. Self-tuning spectral cluster-

ing. In In Advances in Neural Information Processing Sys-

tems (NIPS), volume 17, page 16, 2004.

[62] W. Zhang, X. Wang, D. Zhao, and X. Tang. Graph degree

linkage: Agglomerative clustering on a directed graph. In

European Conference on Computer Vision, pages 428–441.

Springer, 2012.

[63] W. Zhang, D. Zhao, and X. Wang. Agglomerative clustering

via maximum incremental path integral. Pattern Recogni-

tion, 46(11):3056–3065, 2013.

[64] B. Zhao, F. Wang, and C. Zhang. Efficient multiclass maxi-

mum margin clustering. In ICML, pages 1248–1255, 2008.

[65] J. Zhao, M. Mathieu, R. Goroshin, and Y. Lecun.

Stacked what-where auto-encoders. arXiv preprint

arXiv:1506.02351, 2015.

[66] F. Zhou, F. De la Torre, and J. K. Hodgins. Hierarchical

aligned cluster analysis for temporal clustering of human

motion. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 35(3):582–596, 2013.

5745

