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Abstract

Recent studies demonstrate the effectiveness of Recur-

rent Neural Networks (RNNs) for action recognition in

videos. However, previous works mainly utilize video-level

category as supervision to train RNNs, which may pro-

hibit RNNs to learn complex motion structures along time.

In this paper, we propose a recurrent pose-attention net-

work (RPAN) to address this challenge, where we intro-

duce a novel pose-attention mechanism to adaptively learn

pose-related features at every time-step action prediction

of RNNs. More specifically, we make three main contri-

butions in this paper. Firstly, unlike previous works on

pose-related action recognition, our RPAN is an end-to-

end recurrent network which can exploit important spatial-

temporal evolutions of human pose to assist action recog-

nition in a unified framework. Secondly, instead of learn-

ing individual human-joint features separately, our pose-

attention mechanism learns robust human-part features by

sharing attention parameters partially on the semantically-

related human joints. These human-part features are then

fed into the human-part pooling layer to construct a highly-

discriminative pose-related representation for temporal ac-

tion modeling. Thirdly, one important byproduct of our

RPAN is pose estimation in videos, which can be used for

coarse pose annotation in action videos. We evaluate the

proposed RPAN quantitatively and qualitatively on two pop-

ular benchmarks, i.e., Sub-JHMDB and PennAction. Ex-

perimental results show that RPAN outperforms the recent

state-of-the-art methods on these challenging datasets.

1. Introduction

Action recognition in videos has been intensely investi-

gated in computer vision areas, due to its wide applications
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in video retrieval, human-computer interaction, etc [27].

The challenges of classifying actions in the wild videos

mainly come from high dimension of video data, complex

motion styles, large inter-category variations, and confused

background clutters. With tremendous successes of deep

models in image classification, there is a growing interest

in developing deep neural networks for action recognition

[9, 16, 18, 24, 31, 32, 38].

Recurrent Neural Networks (RNNs) show the power as

sequential models for action videos [9, 24, 31]. In most of

these works, the inputs to RNN are high-level features ex-

tracted from the fully-connected layer of CNNs, which may

be limited in describing fine details about action. To alle-

viate this issue, attention-based models have been proposed

[21, 28]. However, most existing attention approaches only

utilize video-level category as supervision to train RNNs,

which may lack a detailed and dynamical guidance (such as

human movement over time), and consequently restrict their

capacity of modeling complex motions in videos. Alterna-

tively, human poses have proven useful for action recogni-

tion [14, 15, 17, 25, 40]. As shown in Subplots (a-c) of

Fig. 1, human poses of different actors are closely related

to the saliency regions in the average of convolutional fea-

ture maps estimated by CNN, and different joints of human

pose can also be highly activated in certain individual fea-

ture maps. More importantly, spatial-temporal evolution of

human poses in Subplot (d) of Fig. 1 yields a dynamical

attention cue, which can guide RNNs to efficiently learn

complex motions for action recognition in videos.

Inspired by this analysis, this paper proposes a novel re-

current pose-attention network (RPAN) for action recog-

nition in videos, which can adaptively learn a highly-

discriminative pose-related feature for every-step action

prediction of LSTM. Specifically, we make three main con-

tributions as follows. Firstly, unlike the previous works on

pose-related action recognition, our RPAN is an end-to-end

recurrent network, which allows to take advantage of dy-
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Figure 1. Our motivations. (a) The sampled video frames of different actions in PennAction. The ground truth human poses are annotated

in the video frames. (b) Averaged feature map. We generate convolutional cube from the 5a layer (9 × 15 × 1024) in the spatial-stream

of temporal segment net [47], and then sum the convolutional cube over feature channels to obtain this averaged feature map. (c1) The

highest-activated feature map for different human joints (Ankle, Elbow, and Wrist). First, the video frame is reshaped to be the same size as

the feature map in the convolutional cube. Then, we find the location of each human joint on all the feature maps. Finally, the feature map

with the highest-activated value at the joint location is selected as the highest-activated feature map for the corresponding joint. (c2) Image

patch at the highest-activated location. The highest-activated feature map is firstly reshaped to be the same size as the video frame. Then

we find the image patch (80× 80) from the video frame, according to the location of the highest-activated value in the resized feature map.

(d) The pose-attention-related heat maps and estimated poses of sampled video frames by our recurrent pose attention network (RPAN).

One can see that, human pose is a discriminative cue for action recognition (Subplots a-c). More importantly, spatial-temporal evolution of

human pose can provide a dynamical guidance to assist recurrent network learning (Subplot d).

namical human pose cues to improve action recognition in

a unified framework. Secondly, our novel pose-attention

mechanism can learn a number of robust human-part fea-

tures, with guidance of human body joints in videos. By

sharing attention parameters partially on the semantically-

related joints, human-part features not only represent the

distinct joint characteristics, but also preserve rich human-

body-structure information which is robust to recognize

complex actions. Subsequently, these features are fed into a

human-part pooling layer to construct a discriminative pose

feature for temporal action modeling. Thirdly, one impor-

tant byproduct of our RPAN is pose estimation in videos,

which can be applied to coarse pose annotation in action

videos. To show the effectiveness of our RPAN, we conduct

extensive experiments on two popular benchmarks (sub-

JHMDB and PennAction) in pose-related action recogni-

tion. The empirical results show that, the classification ac-

curacy of RPAN outperforms the recent state-of-the-art ap-

proaches on these challenging datasets.

2. Related Works

Action Recognition. Early approaches for action recog-

nition are mainly based on hand-crafted features [20, 41,

42], which represent videos with a number of local descrip-

tors. However, hand-crafted approaches may only capture

the local contents and thus lack the discriminative power

to recognize complex actions [45]. With significant suc-

cesses of CNNs in image recognition [12, 19, 30, 33], sev-

eral works proposed to design effective CNNs for action

recognition in videos [16, 18, 29, 32, 38, 46]. One of the

most popular approaches is two-stream CNNs [29], where
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Figure 2. Our End-to-End Recurrent Pose-Attention Network (RPAN). At the t-th step, the video frame is fed into CNN to generate

the convolutional feature cube Ct. Then, with guidance of the previous hidden state ht−1 of LSTM, our pose attention mechanism

learns several human-part-related features FP

t from Ct. As attention parameters are partially shared on the semantic-related human

joints belonging to the same body part, our human-part-related features encode robust body-structure-information to discriminate complex

actions. Finally, these features are fed into the human-part pooling layer to produce a highly-discriminative pose-related feature St, which

is the input to LSTM for action recognition. The whole RPAN can be efficiently trained in an end-to-end fashion, by considering the action

loss (prediction ŷt vs. action label) and the pose loss (attention heat maps αJ

t (k) vs. pose annotations) together.

spatial and temporal CNNs were designed to process RGB

images and optical flows separately. One limitation in this

approach is that the stacked optical flows can only capture

motion information in short temporal scale. To improve the

performance, several extensions have been proposed by de-

signing trajectory-pooled deep descriptors [45], mining key

volume of videos [54], fusing two streams [11], introduc-

ing temporal segments [47]. Furthermore, the sequential

nature of video inspires researchers to learn video represen-

tations by RNNs, especially LSTM [9, 24, 31]. However,

the inputs to these LSTMs are high-level features obtained

from the fully-connected (FC) layer of CNNs, which are

limited to represent fine action details in videos [1]. Re-

cently, attention has been incorporated into LSTMs to learn

detailed spatial or temporal action cues [21, 28, 51], mo-

tivated by its efficiency for image understanding [39, 50].

However, these attention methods only utilize video-level

category as supervision, and thus lack the temporal guid-

ance (such as human-pose dynamics) to train LSTMs. This

may restrict their capacity of modeling complex motions in

the real-world action videos.

Pose-related Action Recognition. Human pose has

proven highly-discriminative to recognize complex actions

[14, 15, 17, 25, 40]. One well-known pose-based repre-

sentation is poselet [2] which has been applied to action

recognition and detection in videos [34, 44, 52]. However,

the hand-crafted features in these approaches may lack the

discriminative power to represent pose-related complex ac-

tions. To improve the performance, several latent struc-

tures were proposed by learning meaningful hierarchical

pose representations for action recognition [13, 22, 48].

Furthermore, with the recent development of deep mod-

els in action recognition [29, 38] and pose estimation

[4, 7, 23, 26, 37, 36, 49], pose-related deep approaches

[3, 5, 10] have been recently introduced to boost recognition

accuracy. However, these approaches are not in an end-to-

end learning procedure, since human poses are either given

or estimated before action recognition. As a result, spatial-

temporal pose evolutions may not effectively apply to action

recognition in a unified framework.

Different from the works above, we propose a novel end-

to-end recurrent pose-attention network (RPAN) for action

recognition in videos. At each time step, our pose attention

learns a highly-discriminative pose feature for key action

regions, with the guidance of human joints. Subsequently,

the resulting pose feature is fed into LSTM for action recog-

nition. In this case, our RPAN naturally takes advantage of

human-pose evolutions as a dynamical assistant task for ac-

tion recognition, and thus it can alleviate the complexity of

hand-crafted designs in the previous works.

3. Recurrent Pose-Attention Network (RPAN)

In this section, we describe the proposed Recurrent Pose-

Attention Network (RPAN), which can dynamically iden-

tify the important pose-related feature to enhance every

time-step action prediction of LSTM. First, the current

video frame is fed into CNN to generate a convolutional

feature cube. Then, our pose attention mechanism takes the

previous hidden state of LSTM as a guidance to estimate

a number of human-part-related features from the current

convolutional cube. Our attention parameters are partially

shared on semantic-related human joints, hence the learnt

human-part features encode rich and robust body-structure-

information. Next, these features are fed into a human-

part pooling layer to produce a highly-discriminative pose-

related feature for temporal action modeling within LSTM.

The whole framework is shown in Fig. 2.

3.1. Convolutional Feature Cube from CNN

In this work, we use the well-known deep architecture in

action recognition, two-steam CNNs [46, 47], to generate

the convolutional cubes from spatial (RGB) and temporal

(Optical Flow) stream CNNs. Since we follow [46, 47] to

process two streams separately, we henceforth describe the

3727



Figure 3. Our Pose-Attention Mechanism. We firstly group the semantically-related human joints into a number of body parts. For

each body part P , we take the previous hidden state ht−1 of LSTM as guidance to generate attention heat maps αJ

t (k) (Eq. 2-3) for

each joint J ∈ P . Since attention parameters are partially shared for the joints in P , their attention maps not only represent their joint

characteristics, but also preserve the important body structure information. Subsequently, we use these attention maps αJ

t (k) in the human

part P to learn the human-part feature FP

t from the convolutional cube Ct (Eq. 4). In this case, FP

t can contain the robust human-part-

information. Finally, we fuse all the human-part features with a human-part-pooling layer, to generate a discriminative pose feature for

temporal modeling. More details can be found in Section 3.2.

convolutional feature cube in general to reduce notation re-

dundancy. More details can be found in our experiments.

For the t-th video frame (t = 1, ..., T ), we denote the

convolutional cube from CNN as Ct ∈ R
K1×K2×dc , which

consists of dc feature maps with size of K1 ×K2. Further-

more, we denote Ct as a set of feature vectors at different

spatial locations,

Ct = {Ct(1), ...,Ct(K1 ×K2)}, (1)

where the feature vector at the k-th location is Ct(k) ∈
R

dc and k = 1, ...,K1 × K2. Based on the convolutional

cube from CNN, we next propose a novel pose-attention

mechanism to assist action prediction at each step of LSTM.

3.2. Pose Attention Mechanism

After obtaining Ct, we use it for temporal modeling with

LSTM. However, LSTM with only action-category super-

vision often lacks the dynamical guidance (such as human-

pose movements over time). This may restrict the capacity

of LSTM to learn complex motion structures in the real-

world action videos. Motivated by the fact that spatial-

temporal evolutions of human poses provide important cues

for action recognition [17], we design a novel pose-attention

mechanism to learn a discriminative pose feature for LSTM.

An illustration of our pose attention is shown in Fig. 3.

Pose-Attention with Human-Part-Structure. In fact,

human parts (such as Torso in Fig. 3) often contain more ro-

bust action information than individual joints (such as Head,

Shoulders, and Hips in Fig. 3) [15, 25, 40]. Inspired by this,

we propose a novel pose attention mechanism with human

part structure.

Firstly, we group semantically-related human joints into

a number of body parts in Fig. 3, where P denotes a body

part, and J denotes a human joint belonging to P . For

each body part P , we use the previous hidden state ht−1

of LSTM as action guidance, and estimate the importance

of convolutional cube Ct for each joint J ∈ P ,

α̃J
t (k) = vJ tanh(AP

h ht−1 +AP
c Ct(k) + bP ), (2)

where Ct(k) is the feature vector of Ct at the k-th spa-

tial location (k = 1, ...,K1 × K2), α̃J
t (k) is the un-

normalized attention score of Ct(k) for the joint J , and

{vJ ,AP
h ,A

P
c ,b

P } are attention parameters. Note that, vJ

is distinct for each joint J ∈ P , while {AP
h ,A

P
c ,b

P } are

shared for all the joints in the body part P . With this partial-

parameter-sharing design, each joint heat map α̃J
t (k) not

only represents distinct joint characteristics, but also pre-

serves rich human-part-structure information.

Secondly, we normalize α̃J
t (k) to the corresponding at-

tention heat map αJ
t (k),

αJ
t (k) =

exp{α̃J
t (k)}∑

k exp{α̃
J
t (k)}

. (3)

With αJ
t (k) of all the joints in the human part P , we can

learn the human-part-related feature from Ct,

FP
t = ΣJ∈PΣkα

J
t (k)Ct(k). (4)

Due to the novel human-part-structure design in our pose

attention, the learned features FP
t can contain body-

structure robustness for complex actions.

Human-Part Pooling Layer. To generate a highly dy-

namical and discriminative pose-related feature for tempo-

ral modeling, we design a human-part pooling layer to fuse

all the human-part-related features,

St = PartPool(FP
t ), (5)
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where PartPool is investigated with the max, mean or

concat operations in our experiments.

Note that, our pose attention takes account of occlusions,

via the proposed human-part-structure design. First, the

human-part feature in Eq. (4) is the attention summariza-

tion of all joints belonging to this part. In this case, when

some joints are occluded, other joints in the same part may

be discriminative for action recognition. Second, the pose

feature in Eq. (5) is the part-pooling of all human-part fea-

tures. In this case, when some parts are occluded, other

parts may still yield discriminative features for action recog-

nition. As shown in Fig. 2-3, our approach correctly recog-

nizes Baseball-Swing, even though the upper body of the

player is self-occluded.

3.3. Sequential Modeling with LSTM

Finally, we feed the dynamical pose feature St into

LSTM for temporal modeling,

(it, ft,ot) = σ(Us
⋆St +Uh

⋆ht−1 + b⋆), (6)

gt = tanh(Us
gSt +Uh

ght−1 + bg), (7)

rt = ft ⊙ rt−1 + it ⊙ gt, (8)

ht = ot ⊙ tanh(rt), (9)

ŷt = softmax(Uh
yht + by), (10)

where ⋆ denotes i, f and o for it, ft and ot, the sets of

U and b are the parameters of LSTM, σ(·) and tanh(·)
are the sigmoid and tanh functions, ⊙ is the element-wise

multiplication, it, ft and ot are the input, forget and output

gates, gt, rt and ht are the candidate memory, memory state

and hidden state, and ŷt is the action prediction vector.

3.4. EndtoEnd Learning

Different from previous approaches in pose-related ac-

tion recognition [3, 5], the proposed RPAN can be trained

in an end-to-end fashion with the total loss,

Ltotal = λactionLaction + λposeLpose + λΘ ‖ Θ ‖2, (11)

where Laction and Lpose are respectively the action and

pose losses, ‖ Θ ‖2 is the weight decay regularization for

all the model parameters, and λaction,λpose,λΘ are the co-

efficients for action, pose losses and weight decay.

Given the training action label yt (one-hot label vector),

Laction is the cross-entropy loss between yt and its predic-

tion ŷt in Eq. (10),

Laction = −ΣT
t=1Σ

C
c=1yt,c log ŷt,c, (12)

where C is the number of action classes, T is the number

of total time steps. Furthermore, given the training pose

annotation MJ
t (heat maps for all the joints), Lpose is the

L-2 loss between MJ
t and the joint attention heat maps αJ

t

in Eq. (3),

Lpose = ΣJΣ
T
t=1Σ

K1×K2

k=1
(MJ

t (k)− αJ
t (k))

2, (13)

where each training heat map MJ
t is generated by adding a

fixed Gaussian centered at the corresponding joint location.

Note that, the heat map loss like Eq. (13) has been widely

used in deep networks for pose estimation [26, 36], since

the pixel-level supervision yields richer pose representation.

With our end-to-end training procedure, spatial-temporal

pose evolutions can be efficiently used as a dynamical guid-

ance of action recognition in a unified framework.

4. Experiments

In this section, we evaluate our recurrent pose-attention

network (RPAN) on two popular benchmarks in pose-

related action recognition, i.e., Sub-JHMDB [15] and Pen-

nAction [53], where Sub-JHMDB / PennAction consists of

316/2,326 videos with 12/15 action classes, and the full-

body human joints are annotated for each video. Since

videos in both datasets are collected from internet, the com-

plex body occlusions, large appearance and motion varia-

tions make both datasets challenging for pose-related ac-

tion recognition [14, 25]. We use the published evaluation

protocol [14, 25] to report classification accuracy for both

datasets. Note that, the joint information is only required for

training in our RPAN, such information is not required for

testing. For a testing frame, we use the estimated heatmaps

of all joints (Eq. 2 - 3) to summarize the convolutional cube

as a pose feature. This feature is then fed into LSTM for ac-

tion recognition. All our experiments are performed in this

way, without using the joint information in the test set.

4.1. Implementation Details

Unless stated otherwise, we perform our RPAN with the

following implementation details. Firstly, for Sub-JHMDB

/ PennAction (size of 240 × 320 / 270 × 480), the convo-

lutional cube is generated from the convolutional layer (the

5a layer, 8 × 10 × 1024 / 9 × 15 × 1024) of temporal seg-

ment net (TSN) [47], due to its good performance on action

recognition in videos. Moreover, as TSN is a two-stream

deep structure, the convolution cubes for different streams

are separately generated by processing the RGB image and

stacked optical flow of each video frame respectively. In

this case, we perform our RPAN separately on the convo-

lution cubes from different streams, similar to two-stream

fashion of TSN. The training data sets for both benchmarks

are augmented by the mirror operation. Secondly, human

parts are defined as Torso, Elbow, Wrist, Knee and Ankle

for both datasets, as shown in Fig. 3. For Sub-JHMDB

/ PennAction, the dimensions of all hidden variables in

LSTM are 512/1024, and the dimensions of attention pa-

rameters {vJ ,AP
h ,A

P
c ,b

P } are {1 × 32, 32 × 512, 32 ×

3729



Table 1. Evaluation of the proposed pose-attention mecha-

nism via classification accuracy of our RPAN. ‘Without’: We

take the feature vector from the fully-connected layer of CNN

as the input to LSTM, without any attention. ‘Share-All’: We

perform the attention mechanism without guidance of human

joints, where the attention parameters {vJ ,AP

h ,A
P

c ,b
P } in Eq.

(2) are changed to be independent of human joints and body

parts, i.e., {v,Ah,Ac,b}. ‘Separate-Joint’: We perform the

attention mechanism with guidance of separate joints, where

{vJ ,AP

h ,A
P

c ,b
P } is changed for each separate joints with-

out human-part-structure consideration, i.e., {vJ ,AJ

h ,A
J

c ,b
J}.

‘Human-Part’: It is the proposed pose-attention mechanism with

human-part-structure in Eq. (2).

Attention in our RPAN Sub-JHMDB PennAction

Without 68.5 95.0

Share-All 71.7 96.4

Separate-Joint 78.3 96.5

Human-Part 80.0 97.1

1024, 32×1} / {1×128, 128×1024, 128×1024, 128×1}
respectively. Thirdly, for the training set, we add a fixed

Gaussian (std: 5) centered at the joint location. Then, we

resize the ground truth heat map of each human joint to be

the same size as the attention heat map (8× 10 / 9× 15 for

Sub-JHMDB / PennAction) and normalize it. Finally, we

train our RPAN with mini-batch stochastic gradient descent.

For both datasets, 16 videos are randomly chosen in each

training mini-batch, where 8 frames are randomly sampled

from each video with equal interval. 8 frames from each

test video with equal interval are selected and the last-frame

prediction is used to report test accuracy of our RPAN. The

momentum is 0.9, both action and pose coefficients λaction,

λpose are 1, the weight decay coefficient λΘ is 5 × 10−4,

the learning rate is set to 0.1 initially, reduced to 10−2 after

40/50 epochs for Sub-JHMDB / PennAction. The training

procedure stops at 100 epochs. We implement our RPAN

by Theano [35], with multi-GPU of BPTT [8].

4.2. Properties of Our RPAN

To investigate the properties of our RPAN, we evalu-

ate the effectiveness of its key model components on Sub-

JHMDB (split one) and PennAction. To be fair, when we

explore different strategies of one component in our RPAN,

all other components are with the basic strategy, where the

convolutional cube is extracted from the temporal-steam of

TSN, the pose-attention with human-part-structure refers to

Section 3.2, the human-part-pooling layer is based on the

concat strategy.

Pose Attention Mechanism. We examine our pose-

attention mechanism with different settings in Table 1.

First, the ‘Share-All’ attention setting of our RPAN outper-

forms the ‘Without’ setting (1024 dimension feature vector

of global pool layer in TSN is fed into LSTM without any

attention). It illustrates that the visual attention is important

Figure 4. Confusion Matrix Comparison (PennAction). (a) ‘With-

out Attention’: the ‘Without’ setting in Table 1. (b) ‘Our Pose At-

tention’: our proposed approach. The values in the matrix for both

cases are the number of test videos. First, the confusion matrix

of ‘Our Pose Attention’ is much sparser than the one of ‘Without

Attention’. It illustrates that more test videos are correctly clas-

sified by our approach. Second, we compare two matrices on the

‘tennis forehand’ action class, where our approach correctly clas-

sifies 7 more videos (68-61=7) than ‘Without Attention’. The main

difference comes from confusion between ‘tennis forehand’ and

‘tennis serve’. In ‘Without Attention’, these two action classes

are largely confused (11 confused test videos). On the contrary,

our approach can take spatial-temporal pose evolutions as a dy-

namical attention cue to reduce confusion between similar actions.

Table 2. Classification accuracy with different strategies of our

Human-Part-Pooling Layer.

Human-Part-Pooling Sub-JHMDB PennAction

Max 82.6 96.6

Mean 81.5 96.2

Concat 80.0 97.1

for action recognition. Second, the ‘Separate-Joint’ atten-

tion setting outperforms the ‘Share-All’ setting. It shows

that the human joint in each video frame is an effective dy-

namical guidance of attention. Finally, the ‘Human-Part’ at-

tention setting, the proposed mechanism in Section 3.2, out-

performs the ‘Separate-Joint’ setting. It demonstrates that,
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Table 3. Classification accuracy of RPAN with different basic

CNNs. We evaluate RPAN, based on two widely-used CNNs in

action recognition, i.e., Good-Practice CNN [46] and TSN [47].

CNNs for RPAN Sub-JHMDB PennAction

Good-Practice CNN 69.5 88.6

TSN 80.0 97.1

Table 4. Classification accuracy of RPAN with different streams

of TSN. TSN-S: Spatial TSN. TSN-T: Temporal TSN. TSN-

(S+T): Prediction score fusion on TSN-S and TSN-T. RPAN-S:

RPAN with spatial TSN. RPAN-T: RPAN with temporal TSN.

RPAN-(S+T): Prediction score fusion on RPAN-S and RPAN-T.

Model Variants Sub-JHMDB PennAction

TSN-S 55.6 80.4

TSN-T 72.2 93.3

TSN-(S+T) 72.2 93.8

RPAN-S 60.0 84.8

RPAN-T 80.0 97.1

RPAN-(S+T) 81.1 97.4

Table 5. Comparison with state-of-the-art on Sub-JHMDB (aver-

age over three splits) and PennAction.

State-of-the-art Year Sub-JHMDB PennAction

Dense+Pose [15] 2013 52.9 -

STIP [53] 2013 - 82.9

Action Bank [53] 2013 - 83.9

MST [43] 2014 45.3 74.0

AOG [25] 2015 61.2 85.5

P-CNN [6] 2015 66.8 -

Hierarchical [22] 2016 77.5 -

C3D [3] 2016 - 86.0

JDD [3] 2016 77.7 87.4

idt-fv [14] 2017 60.9 92.0

Pose+ idt-fv [14] 2017 74.6 92.9

Our RPAN 78.6 97.4

the human-part-structure information in our pose attention

is robust and discriminative for action recognition.

Furthermore, we analyze classification results with con-

fusion matrix in Fig. 4. The confusion matrix of our ap-

proach is much sparser than the one of ‘Without Attention’,

showing that our approach recognizes more test videos cor-

rectly. Then, we compare two approaches on the ‘ten-

nis forehand’ action class, where the difference between

two approaches is the largest with regard to the number of

correctly-classified videos (our pose attention vs. without

attention: 68 vs. 61). This difference mainly comes from

confusion between ‘tennis forehand’ and ‘tennis serve’. In

the without-attention setting, these two classes are largely

confused (11 confused test videos), while our approach

takes spatial-temporal pose evolutions as a dynamical at-

tention cue to reduce confusion between similar actions.

Human-Part-Pooling Layer. We investigate different

strategies for our human-part-pooling layer. As shown in

Table 2, the recognition performance is generally robust to

different pooling strategies. Hence, in our experiments we

use the concat strategy for comparison consistency.

Choice of Basic CNNs. We next evaluate different basic

CNNs for our RPAN. Hence, we perform our RPAN, based

on two widely-used CNNs in the research of action recogni-

tion, Good-Practice CNN (built on VGG16) [46] and TSN

(built on BN-Inception) [47]. Both CNNs are pretrained

on UCF101. For Good-Practice CNN [46], the convolu-

tional feature cube is generated from the convolutional layer

in the temporal-stream (the conv5 3 layer, 7 × 10 × 512 /

8 × 15 × 512 for Sub-JHMDB / PennAction). The convo-

lutional cube from the temporal-stream TSN is the same as

before. Table 3 shows that our RPAN achieves better perfor-

mance with TSN. The main reason is that, TSN is a deeper

CNN for action recognition, which can generate more pow-

erful convolutional cubes than Good-Practice CNN.

Additionally, we evaluate our RPAN, based on the

temporal-stream TSN so far. As TSN is a two-stream CNN

architecture for action recognition in videos, we next inves-

tigate the performance of our RPAN with different streams

of TSN (spatial-stream and temporal-stream). As shown in

Table 4, the temporal stream outperforms the spatial stream

for both TSN and RPAN, showing the fact that the motion

cue is generally more important than the appearance cue for

action recognition. The spatial and temporal score fusion

(S:T is 1:2) can further improve accuracy due to the com-

plementary properties between them. Finally, RPAN out-

performs TSN for all cases of different streams, showing

that our recurrent pose-attention is an effective dynamical

mechanism for action recognition.

Parameter Robustness. In the previous experiments,

we use a fixed Gaussian (std: 5) to generate MJ
t in Eq. (13).

We change this parameter to 1 / 10, and the accuracy of our

approach is 78.3 / 79.3 on Sub-JHMDB (split 1). These

results are comparable to the one with std=5 (‘Human-Part’

in Table 1), showing the parameter robustness.

4.3. Comparison with the Stateoftheart

We evaluate our RPAN, by comparing it with the re-

cent state-of-the-art approaches in pose-based action recog-

nition. In Table 5, our RPAN outperforms other recent

hand-crafted and deep learning approaches on both Sub-

JHMDB and PennAction datasets. This is mainly credited

to the fact that, our RPAN is an end-to-end recurrent frame-

work, where spatial-temporal evolutions of human pose are

exploited as a highly-discriminative attention cue to dynam-

ically assist action recognition in a unified fashion.

4.4. Byproduct: Pose Estimation in Videos

One important byproduct of our RPAN is pose estima-

tion in videos, although our main objective is action recog-
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Figure 5. Feature Dynamics of Hidden State ht in LSTM (Without Attention vs. Our Pose Attention). For each approach, we show two

maps of feature dynamics. One refers to positive-activations of ht, while the other refers to negative-activations of ht. For each map, each

row refers to 256 highest positive-activated (or negative-activated) dimensions of ht, where t is the time index of video frames. Note that,

256 highest activated dimensions are sorted in the descending order, according to the activation values in the last video frame. One can

see that, maps in our pose attention are more sparsely-activated than the ones in without-attention setting, illustrating that spatial-temporal

evolutions of human pose in our approach can assist ht to capture motion dynamics in videos. Additionally, as time goes on, we find that

more dimensions of ht are gradually activated in our approach. This demonstrates that the hidden states at the later steps can effectively

integrate important motion information from the previous ones, and improve action recognition in a recurrent manner.

nition in videos. We evaluate this perspective on PennAc-

tion. For the attention heat map of each human joint, we

find the location with the highest attention score as the es-

timated joint location. Then we follow the standard evalu-

ation criteria for pose estimation in videos [14, 25], where

the threshold is 0.2 for PennAction. The pose estimation

accuracy of our RPAN is 0.68, which is comparable to the

recent approaches [14, 25]. It illustrates that our RPAN can

provide reliable coarse pose annotation in videos.

4.5. Visualization

In this section, we qualitatively evaluate our RPAN with

the following visualizations. Firstly, we visualize pose-

attention heat maps (αJ
t (k) in Section 3.2) of our RPAN in

Fig. 1(d). We select an action video (Jumping-Jacks in Pen-

nAction) and show different heat maps (averaged, right an-

kle, right elbow, right wrist) for each sampled video frame.

Fig. 1(d) shows that, our pose-attention mechanism can take

spatial-temporal evolutions of human pose as a dynamical

cue to effectively capture different movements of this action

along time, and consequently assist to recognize this action

in a recurrent fashion. Additionally, we visualize the impor-

tant byproduct, i.e., pose estimation in videos, for Jumping-

Jacks in Fig. 1(d). One can see that, our RPAN can provide

reliable coarse pose annotation in videos.

Secondly, we further examine whether our recurrent pose

attention mechanism can provide a dynamical cue to assist

the learning of LSTM. We show feature dynamics of hidden

state ht in LSTM, since ht is used to make action predic-

tion for each time step (Eq. 10). We compare our approach

to the without-attention setting of Table 1. As shown in Fig.

5, maps of feature dynamics in our pose attention are more

sparsely-activated than the ones in without-attention setting,

indicating that spatial-temporal pose evolutions in our ap-

proach can assist ht to capture motion dynamics in videos.

Hence, our approach correctly classifies this Baseball-Pitch

action video, while the without-attention setting recognizes

it as a wrong action (i.e., Bowl). Furthermore, as time goes

on, we find that more dimensions of ht are gradually ac-

tivated in our approach. This shows that the hidden states

at the later steps can effectively integrate important motion

information from the previous ones, and consequently im-

prove action recognition.

5. Conclusion

In this paper, we design a novel recurrent pose-attention

network (RPAN) for action recognition, with the dynami-

cal guidance of human joints in videos. First, our RPAN

is an end-to-end recurrent framework, which takes advan-

tage of spatial-temporal pose evolutions as a dynamical at-

tention cue of action recognition in a unified fashion. Sec-

ond, our pose-attention can adaptively learn a discrimina-

tive pose feature to enhance action prediction at every step

of LSTM. Via sharing attention parameters partially on the

semantically-related joints, our pose-related representations

contain rich and robust human-part-structure information.

Finally, an important byproduct of our RPAN is pose esti-

mation in videos, which can be used as a reliable tool for

coarse pose annotation in videos. We evaluated our RPAN

on two popular benchmarks, i.e., Sub-JHMDB and PennAc-

tion. The results demonstrated that our RPAN outperforms

the recent state-of-the-art approaches on both datasets.
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