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Abstract

Modeling the long-term facial aging process is extremely

challenging due to the presence of large and non-linear

variations during the face development stages. In order to

efficiently address the problem, this work first decomposes

the aging process into multiple short-term stages. Then, a

novel generative probabilistic model, named Temporal Non-

Volume Preserving (TNVP) transformation, is presented to

model the facial aging process at each stage. Unlike Gener-

ative Adversarial Networks (GANs), which requires an em-

pirical balance threshold, and Restricted Boltzmann Ma-

chines (RBM), an intractable model, our proposed TNVP

approach guarantees a tractable density function, exact in-

ference and evaluation for embedding the feature transfor-

mations between faces in consecutive stages. Our model

shows its advantages not only in capturing the non-linear

age related variance in each stage but also producing a

smooth synthesis in age progression across faces. Our ap-

proach can model any face in the wild provided with only

four basic landmark points. Moreover, the structure can be

transformed into a deep convolutional network while keep-

ing the advantages of probabilistic models with tractable

log-likelihood density estimation. Our method is evalu-

ated in both terms of synthesizing age-progressed faces

and cross-age face verification and consistently shows the

state-of-the-art results in various face aging databases, i.e.

FG-NET, MORPH, AginG Faces in the Wild (AGFW), and

Cross-Age Celebrity Dataset (CACD). A large-scale face

verification on Megaface challenge 1 is also performed to

further show the advantages of our proposed approach.

1. Introduction

Face age progression is known as the problem of aes-

thetically predicting individual faces at different ages. Ori-

gin from finding the missing children, age progression has

Input I
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Ours TNVP 

results 

without If

Figure 1: An illustration of age progression from forensic

artist and our TNVP model. Given an input I of a sub-

ject at 34 years old [17], a forensic artist rendered his age-

progressed faces at 40s, 50s, 60s and 70s by reference to

his familial photos If . Without using If , our TNVP can

aesthetically produce his age-progressed faces.

shown its potential in many applications varied from wanted

fugitives, cross-age face verification, security system to

other cosmetic studies against aging. Aesthetically synthe-

sizing faces of a subject at different development stages is a

very challenging task. Human aging is complicated and dif-

fers from one individual to the next. Both intrinsic factors

such as heredity, gender, and ethnicity, and extrinsic factors,

i.e. environment and living styles, jointly contribute to this

process and create large aging variations between individu-

als. As illustrated in Figure 1, given a face of a subject at

the age of 34 [17], a set of closely related family faces has

to be provided to a forensic artist as references to generate

multiple outputs of his faces at 40s, 50s, 60s, and 70s.

In recent years, automatic age progression has become

a prominent topic and attracted considerable interest from

the computer vision community. The conventional meth-
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Table 1: Comparing the properties between our TNVP approach and other age progression methods, where ✗ represents

unknown or not directly applicable properties. Deep learning (DL), Dictionary (DICT), Prototype (PROTO), AGing pattErn

Subspace (AGES), Composition (COMP), Probabilistic Graphical Models (PGM), Log-likelihood (LL), Adversarial (ADV)

Our TNVP TRBM[15] RNN[26] acGAN[2] HFA[28] CDL[22] IAAP[10] HAGES[25] AOG[23]

Model Type DL DL DL DL DICT DICT PROTO AGES COMP

Architecture PGM+CNN PGM CNN CNN Bases Bases ✗ ✗ Graph

Loss Function LL LL ℓ2 ADV+ℓ2 LL+ℓ0 ℓ2 + ℓ1 ✗ ℓ2 ✗

Tractable ✓ ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✗

Non-Linearity ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

ods [6, 12, 16, 23] simulated face aging by adopting para-

metric linear models such as Active Appearance Models

(AAMs) and 3D Morphable Models (3DMM) to interpret

the face geometry and appearance before combining with

physical rules or anthropology prior knowledge. Some

other approaches [3, 10, 20] predefined some prototypes

and transferred the difference between them to produce age-

progressed face images. However, since face aging is a non-

linear process, these linear models have lots of difficulties

and the quality of their synthesized results is still limited.

Recently, deep learning based models [15, 26] have also

come into place and produced more plausible results. In

[26], Recurrent Neural Networks (RNN) are used to model

the intermediate states between two consecutive age groups

for better aging transition. However, it still has the limita-

tions of producing blurry results by the use of a fixed recon-

struction loss function, i.e. ℓ2-norm. Meanwhile, with the

advantages of graphical models, the Temporal Restricted

Boltzmann Machines (TRBM) has shown its potential in the

age progression task [15]. However, its partition function is

intractable and needs some approximations during training.

Contributions of this work: This paper presents a novel

generative probabilistic model, named Temporal Non-

Volume Preserving (TNVP) transformation, for age pro-

gression. This approach enjoys the strengths of both prob-

abilistic graphical models to produce better synthesis qual-

ity by avoiding the regular reconstruction loss function, and

deep residual networks (ResNet) [8] to improve the highly

non-linear feature generation. The proposed TNVP guar-

antees a tractable log-likelihood density estimation, exact

inference and evaluation for embedding the feature trans-

formations between faces in consecutive age groups.

In our framework, the long-term face aging is first con-

sidered as a composition of short-term stages. Then TNVP

models are constructed to capture the facial aging features

transforming between two successive age groups. By in-

corporating the design of ResNet [8] in the structure, our

TNVP is able to efficiently capture the non-linear facial ag-

ing feature related variance. In addition, it can be robustly

employed on face images in-the-wild without strict align-

ments or any complicated preprocessing steps. Finally, the

connections between latent variables can act as “memory”

and contribute to produce a smooth age progression while

preserving the identity throughout the transitions.

In summary, the novelties of our approach are three-fold.

(1) We propose a novel generative probabilistic models with

tractable density function to capture the non-linear age vari-

ances. (2) The aging transformation can be effectively mod-

eled using our TNVP. Similar to other probabilistic models,

our TNVP is more advanced in term of embedding the com-

plex aging process. (3) Unlike previous aging approaches

that suffer from a burdensome preprocessing to produce the

dense correspondence between faces, our model is able to

synthesize realistic faces given any input face in the wild.

Table 1 compares the properties between our TNVP ap-

proach and other age progression methods.

2. Related Work

This section reviews various age progression approaches

which can be divided into four groups: prototyping, model-

ing, reconstructing, and deep learning-based approaches.

Prototyping approaches use the age prototypes to syn-

thesize new face images. The average faces of people in the

same age group are used as the prototypes [20]. The input

image can be transformed into the age-progressed face by

adding the differences between the prototypes of two age

groups [3]. Kemelmacher-Shlizerman et al. [10] proposed

to construct sharper average prototype faces from a large-

scale set of images in combining with subspace alignment

and illumination normalization.

Modeling-based approaches represent facial shape and

appearance via a set of parameters and model facial aging

process via aging functions. Lanitis et al. [12] and Patter-

sons et al. [16] proposed to use AAMs parameters together

with four aging functions for both general and specific ag-

ing processes. Luu et al. [14] incorporated common facial

features of siblings and parents to age progression. Geng

et al. [6] proposed an AGing pattErn Subspace (AGES)

approach to construct a subspace for aging patterns as a

chronological sequence of face images. Later, Tsai et al.

[25] improved the stability of AGES by adding subject’s

characteristics clue. Suo et al. [23, 24] modeled a face us-
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Figure 2: The proposed TNVP based age progression framework. The long-term face aging is decomposed into multiple

short-term stages. Then given a face in age group i, our TNVP model is applied to synthesize face in the next age group.

Each side of our TNVP is designed as a deep ResNet network to efficiently capture the non-linear facial aging features.

TRBMTNVP

(Ours) 

Input IAAP RNN

Using Landmarks 4 points 10 points 66 points 68 points

Pose estimation û ü ü û

Dense correspondence û ü ü ü

Masking Image û ü ü ü

Expression Normalization û ü ü ü

Figure 3: Comparisons between the preprocessing pro-

cesses of our approach and other aging approaches: IAAP

[10], RNN based [26], and TRBM based [15] models. Our

preprocessing is easy to run, less dependent on the land-

marking tools, and efficiently deals with in-the-wild faces.

✓represents “included in the preprocessing steps”.

ing a three-layer And-Or Graph (AOG) of smaller parts, i.e.

eyes, nose, mouth, etc. and learned the aging process for

each part by applying a Markov chain.

Reconstructing-based methods reconstruct the aging

face from the combination of an aging basis in each group.

Shu et al. [22] proposed to build aging coupled dictionar-

ies (CDL) to represent personalized aging pattern by pre-

serving personalized facial features. Yang et al. [28] mod-

eled person-specific and age-specific factors separately via

sparse representation hidden factor analysis (HFA).

Recently, deep learning-based approaches are being de-

veloped to exploit the power of deep learning methods.

Duong et al. [15] employed TRBM to model the non-linear

aging process with geometry constraints and spatial RBMs

to model a sequence of reference faces and wrinkles of adult

faces. Wang et al. [26] modeled aging sequences using

a RNN with two-layer gated recurrent unit (GRU). Condi-

tional Generative Adversarial Networks (cGAN) is also ap-

plied to synthesize aged images in [2].

3. Our Proposed Method

The proposed TNVP age-progression architecture con-

sists of three main steps. (1) Preprocessing; (2) Face varia-

tion modeling via mapping functions; and (3) Aging trans-

formation embedding. With the structure of the mapping

function, our TNVP model is tractable and highly non-

linear. It is optimized using a log-likelihood objective func-

tion that produces sharper age-progressed faces compared

to the regular ℓ2-norm based reconstruction models. Figure

2 illustrates our TNVP-based age progression architecture.

3.1. Preprocessing

Figure 3 compares our preprocessing step with other

recent age progression approaches, including Illumination

Aware Age Progression (IAAP) [10], RNN based [26], and

TRBM based Age Progression [15] models. In those ap-

proaches, burdensome face normalization steps are applied

to obtain the dense correspondence between faces. The use

of a large number of landmark points makes them highly

dependent on the stability of landmarking methods that are

challenged in the wild conditions. Moreover, masking the

faces with a predefined template requires a separate shape

adjustment for each age group in later steps.

In our method, given an image, the facial region is sim-

ply detected and aligned according to fixed positions of four

landmark points, i.e. two eyes and two mouth corners. By

avoiding complicated preprocessing steps, our proposed ar-

chitecture has two advantages. Firstly, a small number of

landmark points, i.e. only four points, leverages the depen-

dency to the quality of any landmarking method. Therefore,

it helps to increase the robustness of the system. Secondly,

parts of the image background are still included, and thus it

implicitly embeds the shape information during the model-

ing process. From the experimental results, one can easily

notice the change of the face shape when moving from one
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Figure 4: Our proposed TNVP structure with two mapping

units. Both transformations S and T can be easily formu-

lated as compositions of CNN layers.

age group to the next.

3.2. Face Aging Modeling

Let I ⊂ R
D be the image domain and {xt,xt−1} ∈ I

be observed variables encoding the texture of face images

at age group t and t− 1, respectively. In order to embed the

aging transformation between these faces, we first define a

bijection mapping function from the image space I to a la-

tent space Z and then model the relationship between these

latent variables. Formally, let F : I → Z define a bijec-

tion from an observed variable x to its corresponding latent

variable z and G : Z → Z be an aging transformation func-

tion modeling the relationships between variables in latent

space. As illustrated in Figure 4, the relationships between

variables are defined as in Eqn. (1).

zt−1 = F1(x
t−1; θ1)

zt = H(zt−1,xt; θ2, θ3)

= G(zt−1; θ3) + F2(x
t; θ2)

(1)

where F1,F2 define the bijections of xt−1 and xt to their

latent variables, respectively. H denotes the summation of

G(zt−1; θ3) and F2(x
t; θ2). θ = {θ1, θ2, θ3} present the

parameters of functions F1,F2 and G, respectively. Indeed,

given a face image in age group t−1, the probability density

function can be formulated as in Eqn. (2).

pXt(xt|xt−1; θ) = pXt(xt|zt−1; θ)

= pZt(zt|zt−1; θ)

∣

∣

∣

∣

∂H(zt−1,xt; θ2, θ3)

∂xt

∣

∣

∣

∣

= pZt(zt|zt−1; θ)

∣

∣

∣

∣

∂F2(x
t; θ2)

∂xt

∣

∣

∣

∣

(2)

where pXt(xt|xt−1; θ) and pZt(zt|zt−1; θ) are the distri-

bution of xt conditional on xt−1 and the distribution of zt

conditional on zt−1, respectively. In Eqn. (2), the second

equality is obtained using the change of variable formula.
∂F2(x

t;θ2)
∂xt is the Jacobian. Using this formulation, instead

of estimating the density of a sample xt conditional on xt−1

directly in the complicated high-dimensional space I, the

assigned task can be accomplished by computing the den-

sity of its corresponding latent point zt given zt−1 associ-

ated with the Jacobian determinant

∣

∣

∣

∂F2(x
t;θ2)

∂xt

∣

∣

∣
. There are

some recent efforts to achieve the tractable inference pro-

cess via approximations [11] or specific functional forms

[5, 7, 13]. Section 3.3 introduces a non-linear bijection

function that enables the exact and tractable mapping from

the image space I to a latent space Z where the density of

its latent variables can be computed exactly and efficiently.

As a result, the density evaluation of the whole model be-

comes exact and tractable.

3.3. Mapping function as CNN layers

In general, a bijection function between two high-

dimensional domains, i.e. image and latent spaces, usually

produces a large Jacobian matrix and is expensive for its

determinant computation. In order to enable the tractable

property for F with lower computational cost, this section

introduces a non-linear mapping unit structure that maps

variables from image space to intermediate latent spaces

where the density can be computed exactly and efficiently.

Then the bijection mapping function F is formulated as a

composition of mapping units. With this structure, F can

be efficiently set up as a deep convolutional network and

enjoys the strengths of both deep networks and probabilis-

tic models with tractable log-likelihood density estimation.

3.3.1 Mapping unit

Given an input x, a unit f : x → y defines a mapping from
x to an intermediate latent state y as in Eqn. (3).

y = x
′ + (1− b)⊙

[

x⊙ exp(S(x′)) + T (x′)
]

(3)

where x′ = b ⊙ x; ⊙ denotes the Hadamard product;

b = [1, · · · , 1, 0, · · · , 0] is a binary mask where the first d

elements of b is set to one and the rest is zero; S and T rep-

resent the scale and the translation functions, respectively.
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Figure 5: An illustration of mapping unit f whose trans-

formations S and T are represented with 1-residual-block

CNN network.

The Jacobian of this transformation unit is given by

∂f

∂x
=

[

∂y1:d

∂x1:d

∂y1:d

∂xd+1:D

∂yd+1:D

∂x1:d

∂yd+1:D

∂xd+1:D

]

=

[

Id 0
∂yd+1:D

∂x1:d
diag (exp(S(x1:d)))

]

(4)

where diag (exp(S(x1:d))) is the diagonal matrix such that

exp(S(x1:d)) is their diagonal elements. This form of ∂f
∂x

provides two nice properties for the mapping unit f . Firstly,

since the Jacobian matrix ∂f
∂x

is triangular, its determinant
can be efficiently computed as,

∣

∣

∣

∣

∂f

∂x

∣

∣

∣

∣

=
∏

j

exp(sj) = exp

(

∑

j

sj

)

(5)

where s = S(x1:d). This property also introduces the

tractable feature for f . Secondly, the Jacobians of the two

functions S and T are not required in the computation of
∣

∣

∣

∂f
∂x

∣

∣

∣
. Therefore, any non-linear function can be chosen for

S and T . From this property, the functions S and T are set

up as a composition of CNN layers in ResNet (i.e. resid-

ual networks) [8] style with skip connections. This way,

high level features can be extracted during the mapping pro-

cess and improve the generative capability of the proposed

model. Figure 5 illustrates the structure of a mapping unit

f . The inverse function f−1 : y → x is also derived as

x =y
′ + (1− b)⊙

[

(y − T (y′))⊙ exp(−S(y′))
]

(6)

where y′ = b⊙ y.

3.3.2 Mapping function

The bijection mapping function F is formulated by com-

posing a sequence of mapping units {f1, f2, · · · , fn}.

F = f1 ◦ f2 ◦ · · · ◦ fn (7)

The computation of the Jacobian of F is no more difficult

than its units and still remains tractable.

∂F

∂x
=

∂f1

∂x
·
∂f2

∂f1
. . .

∂fn

∂fn−1

(8)

Similarly, the derivations of its determinant and inverse are
∣

∣

∣

∣

∂F

∂x

∣

∣

∣

∣

=

∣

∣

∣

∣

∂f1

∂x

∣

∣

∣

∣

·

∣

∣

∣

∣

∂f2

∂f1

∣

∣

∣

∣

. . .

∣

∣

∣

∣

∂fn

∂fn−1

∣

∣

∣

∣

F−1 = (f1 ◦ f2 ◦ · · · ◦ fn)
−1 = f

−1

1 ◦ f−1

2 ◦ · · · ◦ f−1

n

(9)

Since each mapping unit leaves part of its input unchanged

(i.e. due to the zero-part of the mask b), we alternatively

change the binary mask b to 1 − b in the sequence so that

every component of x can be jointed through the mapping

process. As mentioned in the previous section, since each

mapping unit is set up as a composition of CNN layers, the

bijection F with the form of Eqn. (7) becomes a deep con-

volutional networks that maps its observed variable x in I
to a latent variable z in Z .

3.4. The aging transform embedding

In the previous section, we present the invertible map-

ping function F between a data distribution pX and a latent

distribution pZ . In general, pZ can be chosen as a prior

probability distribution such that it is simple to compute

and its latent variable z is easily sampled. In our system,

a Gaussian distribution is chosen for pZ , but notice that our

proposed model can still work well with any other prior dis-

tributions. Since the connections between zt−1 and zt em-

bed the relationship between variables of different Gaussian

distributions, we further assume that their joint distribution

is a Gaussian. From Eqn. (1) and Figure 4, the latent vari-

able zt is computed from two sources: (1) the mapping from

observed variable xt defined by F2(x
t; θ2) and (2) the ag-

ing transformation from zt−1 defined by G(zt−1; θ3). The

transformation G between zt−1 and zt is formulated as,

G(zt−1; θ3) = Wzt−1 + bG (10)

where θ3 = {W,bG} represents the connecting weights
and bias of latent-to-latent interactions. Then the joint dis-
tribution pZt,Zt−1(zt, zt−1) can be computed as follows.

z
t−1 ∼ N (0, I)

F2(x
t
, θ2) = z̄

t ∼ N (0, I)

pZt,Zt−1(z
t
, z

t−1; θ) ∼ N

([

bG

0

]

,

[

WTW + I W

W I

])

(11)

3.5. Model Learning

The parameters θ = {θ1, θ2, θ3} of the model are opti-

mized to maximize the log-likelihood:

θ∗1 , θ
∗
2 , θ

∗
3 = arg max

θ1,θ2,θ3
log pXt(xt|xt−1; θ1, θ2, θ3) (12)

From Eqn. (2), the log-likelihood can be computed as

log pXt(xt|xt−1; θ) = log pZt(zt|zt−1
, θ) + log

∣

∣

∣

∣

∂F2(x
t; θ2)

∂xt

∣

∣

∣

∣

= log pZt,Zt−1(z
t
, z

t−1; θ)

− log pZt−1(z
t−1; θ1) + log

∣

∣

∣

∣

∂F2(x
t; θ2)

∂xt

∣

∣

∣

∣
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Figure 6: Age Progression Results against FG-NET and MORPH. Given input images, plausible age-progressed faces in

different age ranges are automatically synthesized. Best viewed in color.

where the first two terms are the two density functions and

can be computed using Eqn. (11) while the third term (i.e.

the determinant) is obtained using Eqns. (9) and (5). Then

the Stochastic Gradient Descent (SGD) algorithm is applied

to optimize parameter values.

3.6. Model Properties

Tractability and Invertibility: With the specific struc-

ture of the bijection F , our proposed graphical model has

the capability of modeling arbitrary complex data distribu-

tions while keeping the inference process tractable. Fur-

thermore, from Eqns. (6) and (9), the mapping function is

invertible. Therefore, both inference (i.e. mapping from im-

age to latent space) and generation (i.e. from latent to image

space) are exact and efficient.

Flexibility: as presented in Section 3.3.1, our proposed

model introduces the freedom of choosing the functions S
and T for their structures. Therefore, different types of deep

learning models can be easily exploited to further improve

the generative capability of the proposed TNVP. In addition,

from Eqn. (3), the binary mask b also provides the flexibil-

ity for our model if we consider this as a template during

the mapping process. Several masks can be used in differ-

ent levels of mapping units to fully exploit the structure of

the data distribution of the image domain I.

Although our TNVP shares some similar features with

RBM and its family such as TRBM, the log-likelihood es-

timation of TNVP is tractable while that in RBM is in-

tractable and requires some approximations during train-

ing process. Compared to other methods, our TNVP also

shows its advantages in high-quality synthesized faces (by

avoiding the ℓ2 reconstruction error as in Variational Au-

toencoder) and efficient training process (i.e. avoid main-

taining a good balance between generator and discriminator

as in case of GANs).

4. Experimental Results

4.1. Databases

We train our TNVP system using AginG Faces in the

Wild (AGFW) [15] and a subset of the Cross-Age Celebrity

Dataset (CACD) [4]. Two other public aging databases, i.e.

FG-NET [1] and MORPH [19], are used for testing.

AginG Faces in the Wild (AGFW): consists of 18,685

images that covers faces from 10 to 64 years old. On av-

erage, after dividing into 11 age groups with the span of 5

years, each group contains 1700 images.

Cross-Age Celebrity Dataset (CACD) is a large-scale

dataset with 163446 images of 2000 celebrities. The age

range is from 14 to 62 years old.

FG-NET is a common aging database that consists of

1002 images of 82 subjects and has the age range from 0 to

69. Each face is manually annotated with 68 landmarks.

MORPH includes two albums, i.e. MORPH-I and

MORPH-II. The former consists of 1690 images of 515

subjects and the latter provides a set of 55134 photos from

13000 subjects. We use MORPH-I for our experiments.
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Figure 7: Comparisons between our TNVP against other approaches: IAAP [10], TRBM-based [15], Exemplar based (EAP)

[21], and Craniofacial Growth (CGAP) [18] models. Best viewed in color.

4.2. Implementation details

To train our TNVP model, we first select a subset of 572

celebrities from CACD as in the training protocol of [15].

All images of these subjects are then classified into 11 age

groups ranging from 10 to 65 with the age span of 5 years.

Next, the aging sequences for each subject are constructed

by collecting and combining all image pairs that cover two

successive age groups of that subject. This process results

in 6437 training sequences. All training images from these

sequences and the AGFW dataset are then preprocessed as

presented in Section 3.1. After that, a two-step training pro-

cess is applied to train our TNVP age progression model.

In the first step, using faces from AGFW, all mapping func-

tions (i.e. F1,F2) are pretrained to obtain the capability of

face interpretation and high-level feature extraction. Then,

our TNVP model is employed to learn the aging transfor-

mation between faces presented in the face sequences.

For the model configuration, the number of units for each

mapping function is set to 10. In each mapping unit fi,

two Residual Networks with rectifier non-linearity and skip

connections are set up for the two transformations S and

T . Each of them contains 2 residual blocks with 32 feature

maps. The convolutional filter size is set to 3×3. The train-

ing time for TNVP model is 18.75 hours using a machine of

Core i7-6700 @3.4GHz CPU, 64.00 GB RAM and a single

NVIDIA GTX Titan X GPU and TensorFlow environment.

The training batch size is 64.

4.3. Age Progression

After training, our TNVP age progression system is ap-

plied to all faces over 10 years old from FG-NET and

MORPH. As illustrated in Figure 6, given input faces at

different ages, our TNVP is able to synthesize realistic age-

progressed faces in different age ranges. Notice that none

of the images in FG-NET or MORPH is presented in the

training data. From these results, one can easily see that

our TNVP not only efficiently embed the specific aging in-

formation of each age group to the input faces but also ro-

bustly handles in-the-wild variations such as expressions,

illumination, and poses. Particularly, beards and wrinkles

naturally appear in the age-progressed faces around the ages

of 30-49 and over 50, respectively. The face shape is also

implicitly handled in our model and changes according to

different individuals and age groups. Moreover, by avoid-

ing the ℓ2 reconstruction loss and taking the advantages of

maximizing log-likelihood, sharper synthesized results with

aging details are produced using our proposed model. We

compare our synthesized results with other recent age pro-

gression works whose results are publicly available such as

IAAP [10], TRBM-based model [15] in Figure 7. The real

faces of the subjects at target ages are provided for refer-

ence. Other approaches, i.e. Exemplar based Age Progres-

sion (EAP) [21] and Craniofacial Growth (CGAP) model

[18], are included for further comparisons. Notice that since

our TNVP model is trained using the faces ranging from 10

to 64 years old, we choose the ones with ages close to 10

during the comparison. These results again show the advan-

tages of our TNVP model in terms of efficiently handling

the non-linear variations and aging embedding.

4.4. Age­Invariant face verification

This experiment validates the effectiveness of our TNVP

model by showing the performance gain for cross-age face

verification using our age-progressed faces. In both testing

protocols, i.e. small-scale with images pairs from FG-NET

and large-scale benchmark on Megaface Challenge 1, we

show that our aged faces can provide significant improve-

ments on top of the face matching model without re-training

on cross-age databases. We employ one of the state-of-the-
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Figure 8: From left to right: (a) ROC curves of face verification from 1052 pairs synthesized from different age progression

methods; (b) ROC and (c) CMC curves of different face matching methods and the improvement of CL method using our

age-progressed faces (under the protocol of MegaFace challenge 1).

art deep face matching model [27], i.e. Center Loss (CL).

Under the small-scale protocol, in FG-NET database, we

randomly pick 1052 image pairs with the age gap larger

than 10 years of either the same or different person. This

set is denoted as A consisting of a positive list of 526 image

pairs of the same person and a negative list of 526 image

pairs of two different subjects. From each image pair of

set A, using the face with younger age, we synthesize an

age-progressed face image at the age of the older one us-

ing our proposed TNVP model. This forms a new match-

ing pair, i.e. the aged face vs. the original face at older

age. Applying this process for all pairs of set A, we ob-

tain a new set denoted as set B1. To compare with IAAP

[25] and TRBM [15] methods, we also construct two other

sets of image pairs similarly and denote them as set B2 and

B3, respectively. Then, the False Rejection Rate-False Ac-

ceptance Rate (FRR-FAR) is computed and plotted under

the Receiver Operating Characteristic (ROC) curves for all

methods (Fig. 8a). Our method achieves an improvement

of 30% on matching performance over the original pair (set

A) while IAAP and TRBM slightly increase the rates.

In addition, our model is also experimented on the large-

scale Megaface [9] challenge 1 with FGNET test set. Prac-

tical face recognition models should achieve high perfor-

mance against having gallery set of millions of distrac-

tors and probe set of people at various ages. In this test-

ing, 4 billion pairs are generated between the probe and

gallery sets where the gallery includes one million distrac-

tors. Thus, only improvements on Rank-1 identification

rate with one million distractors and verification rate at low

FAR are meaningful [9]. Fig. 8b shows Rank-1 identifi-

cation rates as the number of distractors increasing and the

rates with one million distractors are shown in Table 2. We

compute the TAR-FAR and show ROC curves1 in Fig. 8c.

The model from DeepSense achieves the best performance

1The results of other methods are provided in MegaFace website.

Table 2: Rank-1 Identification Accuracy with one million

Distractors (MegaFace Challenge 1 - FGNET). Protocol

“small” means ≤0.5M images trained. “Cross-age” means

trained with cross-age faces.

Methods Protocol Cross-age Accuracy

Barebones FR Small Y 7.136 %

3DiVi Small Y 15.78 %

NTechLAB Small Y 29.168 %

DeepSense Small Y 43.54 %

CL [27] Small N 38.79%

CL + TNVP Small N 47.72%

under the cross-age training set while the CL model [29]

trained solely on CASIA WebFace dataset having < 0.49M

images without cross-age information. From these results,

we show that face matching models can directly benefit

from our TNVP model to improve their robustness against

aging effects. Particularly, by using our age-progressed im-

ages without re-training, the CL model [29] not only ob-

tains 10% improvements but also outperforms other models

trained with a small training set as shown in Table 2.

5. Conclusion

This paper has presented a novel generative probabilis-
tic model with a tractable density function for age progres-
sion. The model inherits the strengths of both probabilistic
graphical model and recent advances of ResNet. The non-
linear age-related variance and the aging transformation be-
tween age groups are efficiently captured. Given the log-
likelihood objective function, high-quality age-progressed
faces can be produced. In addition to a simple preprocess-
ing step, geometric constraints are implicitly embedded dur-
ing the learning process. The evaluations in both quality of
synthesized faces and cross-age verification showed the ro-
bustness of our TNVP.
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