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Abstract

This paper proposes a deep neural network structure that

exploits edge information in addressing representative low-

level vision tasks such as layer separation and image filter-

ing. Unlike most other deep learning strategies applied in

this context, our approach tackles these challenging prob-

lems by estimating edges and reconstructing images using

only cascaded convolutional layers arranged such that no

handcrafted or application-specific image-processing com-

ponents are required. We apply the resulting transferrable

pipeline to two different problem domains that are both sen-

sitive to edges, namely, single image reflection removal and

image smoothing. For the former, using a mild reflection

smoothness assumption and a novel synthetic data gener-

ation method that acts as a type of weak supervision, our

network is able to solve much more difficult reflection cases

that cannot be handled by previous methods. For the latter,

we also exceed the state-of-the-art quantitative and quali-

tative results by wide margins. In all cases, the proposed

framework is simple, fast, and easy to transfer across dis-

parate domains.

1. Introduction

Inspired by the tremendous success of deep learning for

large-scale visual recognition tasks like ILSVRC [28, 20],

a variety of recent work has investigated deep neural net-

works for low-level computer vision tasks such as image de-

noising [27, 11], shadow removal [15], and image smooth-

ing [38, 24]. Given that edges represent an important cue

in addressing many of these problems, networks that can

replace computationally-expensive or otherwise inflexible

edge-aware filters naturally show promise.

For example, the underlying goal of image smoothing is

to extract sparse salient structures, like perceptually impor-

tant edges and contours, while minimizing the color differ-

ences in image regions with low amplitude. To approximate

∗This work was done when Qingnan Fan was an intern at MSR.

different edge-sensitive image smoothing filters which po-

tentially have slow runtimes [2, 6, 8, 26, 37, 39, 42, 43]

with deep networks, it has been proposed to first learn a

salient gradient/weight map and then subsequently filter im-

ages via simpler, weighted optimization procedures [38] or

iterative recursive processing techniques [24]. The above

approaches focus on solving a single/major problem using

a plain CNN model followed by more traditional, inflex-

ible operations inspired by fixed filtering methods. Con-

sequently, they are not fully extensible to implementing

broader image smoothing effects or other significantly dif-

ferent problems such as image layer separation.

In this latter regard, one typical case where gradient do-

main statistics are relevant is in dealing with image reflec-

tions, that are often at least partially out of focus, when pro-

vided with a single image. When taking a photo through

a glass window, the glare or reflection tends to distract the

eye from the scene behind the glass. Many attempts to mit-

igate these effects, such as using a polarizer [19, 31], drap-

ing a large piece of black cloth over the lens and the glass

to block ambient light from behind, or changing positions

[22, 40, 41], are simply infeasible in many practical situa-

tions. Moreover, when taking photographs in airplane, mu-

seum, aquarium, or related environments, there is no other

recourse but to shoot through the window. Consequently, it

is common for photographers to simply widen the aperture

of the camera and blur out the reflections.

To address this reflection removal problem from a com-

putational perspective, traditional imaging models assume

that the captured image I is a linear combination of a back-

ground layer B and a reflection layer R, i.e., I = B + R.

Obviously this is an ill-posed problem as there exist infinite

feasible solutions, and hence most reflection removal algo-

rithms require multiple input images [7, 30, 1, 19, 12, 22,

40, 41] or manual user interactions [21] to label reflection-

and background-layer gradients, thus condensing the space

of candidate solutions. However, one exploitable property

in the reflection removal problem is that the gradients or

perceptual structures of the two layers exhibit different dis-

tributions, since reflections often display a greater degree

13238



of blurring. This then naturally leads us towards edge-

based solutions, with data-driven network variants consid-

ered herein.

In this paper, we present a Cascaded Edge and Image

Learning Network (CEILNet) that can be tailored to solve

different image processing tasks such as layer separation

(e.g., reflection removal) and image filtering (e.g., image

smoothing). We rely on an overriding generic structure that

is specialized in each instance via domain-specific edge in-

formation. The core framework operates in a very intu-

itive way. In brief, we separate the difficult task of directly

predicting an image into two subproblems: (i) predicting

the edge maps of the target images via a deeply supervised

sub-network, and then (ii) reconstructing the target images

by leveraging the predicted edge maps. These tasks are

learned end-to-end by cascading two similar simple CNNs,

and no hand-crafted modules are required. The edge map

represents any color difference between each pair of adja-

cent pixels for task-specific target images, instead of sparse

salient structures as in edge detection problems.

Of course, these objectives require ample training data to

be feasible in practice. For image smoothing, this is not es-

pecially problematic provided sufficient computational re-

sources are available for producing filter outputs across a

corpus of images. However, for many layer separation tasks

ground-truth instances are scarce. We therefore propose a

novel weakly supervised learning method for training our

reflection removal pipeline. This involves the use of images

synthetically corrupted via reflections that mimic the phys-

ical properties of those found in natural scenes.

Our contributions can be summarized as follows:

• We propose a new, generic Cascaded Edge and Image

Learning Network (CEILNet) that relies only on con-

volutional layers and is specifically designed to tackle

edge-sensitive image processing tasks without resort-

ing to any handcrafted, application-specific compo-

nents. This structure is fast, extensible, and easy to

reproduce, facilitating the seamless transfer to differ-

ent low-level vision problems.

• We are the first to solve the challenging layer-

separation problem of reflection removal from single

images using deep learning techniques. We also pro-

pose a novel weakly supervised learning strategy com-

bined with CEILNet.

• Beyond reflection removal, we demonstrated state-of-

the-art visual and numerical performance using CEIL-

Net on the image smoothing task, surpassing previous

methods by a wide margin.

2. Related Work

Reflection Removal: Reflection removal is fundamen-

tally an underdetermined problem and therefore requires

prior knowledge or additional information to achieve any

degree of success. Perhaps the most popular practical rem-

edy is to use multiple input images, such as flash/non-flash

image pairs [1], focus/defocus pairs [30], video sequences

where background and reflection exhibit different motions

[7, 34, 29, 9, 22, 33, 12, 40, 41], or those obtained through

a polarizer at two or more orientations [19, 31, 29]. A few

ambitious approaches attempt single image reflection re-

moval, a far more difficult but practical scenario. In [21],

manual annotation is required to guide an optimization-

based layer separation. [32] compensates for the limited

information by exploiting ghost cues, but this approach is

not applicable beyond this somewhat specialized situation,

or in the majority of practical cases. [35] leverages a multi-

scale DoF computing strategy to separate reflection from

background.

In terms of automatic reflection removal from a single

image with minimal assumptions, the work most closely re-

lated to ours is [23]. This approach assumes the reflected

layer is relatively blurry compared to the background scene,

thus large gradients in it are strongly penalized in their opti-

mization. However, we observe that the reflection in many

real-world photographs, although indeed sometimes out of

focus or blurry, is nonetheless produced by bright lights and

often comprises the brightest portion of an image. The re-

gional gradients associated with these reflections can there-

fore be quite large, violating the assumption in [23]. In

this work, we synthesize a database of training samples that

better capture the background and reflection statistics, and

replace prior knowledge injected through explicit gradient

penalization or energy minimization with a particular deep

network to capitalize on this form of weak supervision. Em-

pirically we will later show that indeed significant improve-

ment is possible on real images.

Image Smoothing: Given the recent effectiveness of

parallel computation through GPUs, and the strong

learning capability of deep neural networks, replacing

computationally-expensive, optimization-based smoothing

filters with cheap neural modules has drawn a lot of at-

tention [38, 24]. However, because accurately capturing

smoothing effects with a fully convolutional deep network

can be challenging, [38] trains a shallow CNN on the gra-

dient domain followed by an optimized image reconstruc-

tion post-processing step with sensitive parameters tuned

for each different smoothing filter. From a somewhat dif-

ferent perspective, by treating spatially-variant recursive

networks as surrogates for a group of distinct filters, [24]

combines sparse salient structure prediction implemented

as CNN with image filtering in a hybrid neural network.

While significant differences exist, all of these prior

methods lean on traditional optimization or filtering tech-

niques at some point in their pipelines. Moreover, they are

mostly applied to image smoothing using filter- or effect-
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Figure 1. The proposed deep network architecture CEILNet. (a) The cascaded edge and image prediction pipeline. Two CNN networks,

E-CNN and I-CNN, are used for edge prediction and image reconstruction, respectively. I-CNN takes the output of E-CNN as input, giving

rise to an end-to-end and fully convolutional solution. (b) The detailed CNN structure shared by E-CNN and I-CNN.

dependent implementations without a universal, trainable

parametric structure. This can potentially contribute to de-

graded performance since no single optimization or filtering

strategy is likely to generalize to all different image smooth-

ing effects. In contrast, our method learns a generic, fully-

convolutional structure with no attendant postprocessing or

otherwise fixed, filter-inspired structures. Empirical exper-

iments demonstrate that this revised strategy outperforms

the best existing work by a wide margin.

3. Network Structure

Our network consists of two cascaded sub-networks: an

edge prediction network E-CNN and an image reconstruc-

tion network I-CNN. Figure 1 is a schematic description of

the architecture, which is unchanged for both the reflection

removal and image smoothing applications.

3.1. E­CNN: The Edge Prediction Network

When dealing with edge-sensitive image processing

tasks like reflection removal and image smoothing, edges-

related cues are naturally leveraged by many existing algo-

rithms [21, 22, 40, 10, 38]. Similarly, given a source image

I
s, we apply a CNN to learn an edge map E

t of the target

image I
t (i.e., the background layer for reflection removal

or the smoothed image for image smoothing). Note that the

goal is to predict the edges of the target image, not the input

image, and it is crucial not to confuse this procedure with

conventional edge detection [3, 36].

In this work, our edge map is not binary, as we empir-

ically found binary edge maps are less informative for the

subsequent image reconstruction. Instead, we designed a

simple but effective edge representation: the mean abso-

lute color difference between a center pixel and its four-

connected neighbors. Specifically, the edge map E of an

image I is computed by:

Ex,y =
1

4

∑

c

(

|Ix,y,c − Ix−1,y,c|+ |Ix,y,c − Ix+1,y,c|

+ |Ix,y,c − Ix,y−1,c|+ |Ix,y,c − Ix,y+1,c|
)

(1)

where x, y are the pixel coordinates and c refers to the chan-

nels in the RGB color space.

In order to ease the computation, we augment the source

image I
s with its edge map E

s as an additional channel for

input. The intuition behind is simple: either a reflection-

free background layer or an image smoothed via a filtering

process can be viewed as “simplified” versions of the orig-

inal source images, and their edge maps are roughly “at-

tenuated” versions of the source image edge maps. We ob-

served that such an augmentation can not only lead to bet-

ter results but also significantly accelerate the convergence

during training. In summary, E-CNN approximates the fol-

lowing function f :

E
t = f(Is,Es) (2)

3.2. I­CNN: The Image Reconstruction Network

The second sub-network, I-CNN, is designed to recon-

struct the target image I
t by learning how to process the

input image I
s given the target edge map E

t predicted by

E-CNN. In other words, it approximates the following func-

tion g:

I
t = g(Is,Et) (3)

The input image and the target edge are combined to be

a 4-channel tensor as input, similar to E-CNN, hence their

shared use of the same overall structure. Additionally, in the

context of the edge-based image reconstruction step of im-

age smoothing tasks, the I-CNN serves as a multi-purpose,

data-driven substitution for traditional fixed filtering opera-

tions or optimization-based postprocessing structures.
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1. Train E-CNN and I-CNN in parallel, with loss func-

tions of Eq. 4 and Eq. 5 respectively.

2. Jointly train (fine-tune) E-CNN and I-CNN end-to-

end, with loss in Eq. 6.

Figure 2. Our two-phase network training algorithm.

3.3. Details of CNN Layers

For simplicity, we employ the deep CNN structure

shown in Fig. 1 (b) for both E-CNN and I-CNN. The two

sub-nets only differ in the channel number of the final out-

put, i.e., 1 for E-CNN vs. 3 for I-CNN. In each case, we

employ 32 convolutional layers with the same 3×3 kernel

size (except for the third-to-last layer; see below). The in-

termediate 30 convolutional layers all have 64-dimensional

input and output feature maps. The first 31 layers are fol-

lowed by batch normalization (BN) and ReLU. To ensure

better contextual information, we enlarge the receptive field

by downsampling the internal feature map to half size and

then upsampling it back by changing the stride of the third

convolution layer to 2 and third-to-last convolution layer to

deconvolution with stride 2 and kernel size 4×4. In this

way, the receptive field is effectively enlarged without los-

ing too much image detail, and meanwhile the computation

cost is halved. For better performance and faster conver-

gence, we implement the middle 26 convolution layers as

13 residual units [14] similar to [5].

Finally, to resolve the color attenuation issue [16, 17] ob-

served in deep networks, we slightly magnify the predicted

image It via sc , argminsc ‖I
s
c−sc ·I

t
c‖

2
2 and I

t
c ← sc ·I

t
c.

This global color correction is implemented as a parameter-

free layer after I-CNN. Its computational cost is negligible.

4. Network Training

This section first presents our training pipeline, that ap-

plies independently of the data source. Later we describe

application-specific means of generating training samples.

4.1. Training Details

We employ a two-phase network training algorithm

shown in Fig. 2. Specifically, we first train the sub-networks

separately with ground-truth images and their edge maps

to ensure the best individual performances. We then fine-

tune the entire network end-to-end, granting the two sub-

nets more opportunity to cooperate accordingly.

The sub-nets are trained by minimizing the mean

squared errors (MSE) of their predictions. Let the symbol ∗
denote ground truth, the loss for edge prediction is

lE(θ) = ||E
t −E

t∗||22. (4)

For image prediction, we minimize not only the color MSE

but also the discrepancy of gradients:

lI(θ) = α ||It − I
t∗||22

+β (||∇xI
t −∇xI

t∗||1 + ||∇yI
t −∇yI

t∗||1).
(5)

The gradient discrepancy cost, though seemingly redun-

dant, helps to prevent the deep convolutional network from

generating blurry images [25]. In the joint training phase,

we train the entire network by minimizing the loss:

l(θ) = lI(θ) + γ lE(θ). (6)

For all experiments across reflection removal and image

smoothing, the loss coefficients are empirically set as α=
0.2, β=γ=0.4 (other selections produce similar results).

We initialize the convolution weights using the approach

from [13] and train all networks using ADAM [18] with

mini-batch size fixed at 1. When training the two sub-nets

separately, the learning rate is set to 0.01 over the initial

iterations, e.g., 40 and 25 epochs for reflection and imaging

smoothing tasks respectively. The entire network is then

fine-tuned with the learning rate reduced to 0.001.

4.2. Training Data Generation

Reflection Image Synthesis: Real images with ground

truth background layers are difficult to obtain. To gener-

ate enough training data, simply mixing two images with

different coefficients (such as 0.8 for background and 0.2

for reflection) seems to be a straightforward and plausible

compromise. Indeed, this strategy has been widely used in

previous works [34, 29, 12, 23, 41] for analysis and quanti-

tative evaluation. However, we found that networks trained

on such images generalize poorly to real photographs. We

therefore propose a novel synthesis method to better ap-

proximate real-world reflection.

As previously mentioned, we assume that the reflection

is somewhat blurry relative to the background layer, which

tends to be more sharp and clear. This is a valid assump-

tion for many cases, as the camera is usually focused on

the background target. Moreover, a photographer can easily

widen the camera’s aperture and blur out the reflections. A

similar assumption is used by [23].

We expand on this assumption using a simple comple-

mentary observation. First, according to the Fresnel equa-

tion, we know that when incident light travels across media

with different refractive indices (e.g., glass and air) in front

of some scene of interest, a portion of that light will be re-

flected back to the image plane. However, the actual vis-

ibility of this reflected light to the human eye or a camera

depends on the relative intensity of light transmitted from

the background scene. Therefore we may expect that only

portions of the background layer transmitting modest light

will be appreciably obstructed via a reflection layer, even if

the latter is uniformly present across a scene. And yet in re-

gions where reflections are apparent, their intensity can still
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Randomly pick two natural images normalized to [0, 1]
as background B and reflection R respectively, then:

1. R̃← gauss blurσ(R) with σ ∼ U(2, 5)

2. I← B+ R̃

3. m←mean({I(x, c) | I(x, c)>1, ∀x, ∀c=1,2,3})

4. R̃(x, c)←R̃(x, c)−γ · (m−1), ∀x, ∀c; γ set as 1.3

5. R̃← clip[0,1](R̃)

6. I← clip[0,1]
(

B+ R̃
)

Output I as the synthesized image with B as the

ground-truth background layer.

Figure 3. Reflection image data synthesis for weakly-supervised

learning. The subtraction and clipping operators allow for reflec-

tion intensities that can saturate and vanish in various regions.

be arbitrarily large (even if partially blurred) and so a purely

additive model with a weakly scaled reflection component

is not always physically plausible.

Based on the above observations, we develop a new

method summarized in Fig. 3 to synthesize images with re-

alistic background and reflection layers. One key difference

from naive image mixing is that the brightness overflow is-

sue is avoided not by scaling down the brightness, but by

subtracting an adaptively computed value followed by clip-

ping. In this way: (i) reflection-free regions are very likely

to appear which is consistent with natural images, (ii) strong

reflections can occur in other places, and (iii) the reflection

contrast is better maintained. Also note that we randomly

pick the σ of the Gaussian blur kernel between [2, 5], in

contrast to a fixed large value (σ = 5) tested in [23]. We

are interested in handling a wider range of real cases, in-

cluding cases with lesser blurry reflections. Figure 6 (top)

displays 4 synthetic images generated by our method, and

Fig. 5 shows a result comparison with naive image mixing.

For more comparisons and details regarding the synthesis

process, see the supplemental material.

Note that synthetically generated samples serve as a form

of weak supervision, as we ultimately deploy the trained

model on new real images containing natural reflections.

Generation of Smoothed Images: For image smoothing,

our network is trained to approximate the effect of exist-

ing filters. The training and testing data will simply be the

smoothed images generated by applying those filters to ex-

isting image databases. Various filters are tested in Sec. 5.

5. Experiments

This section first presents self-comparison experiments

to analyze the importance of proposed network architecture

design choices. We then evaluate the full CEILNet against

the state-of-the-art algorithms on the single-image reflec-

tion removal and image smoothing tasks.

Table 1. Result comparison for the image smoothing task (learn-

ing an L0 filter [37]). CEILNet outperformed Domain Transform

(DT) [10] and simple I-CNNs without E-CNN by large margins.

MSE PSNR SSIM

DT + input image edge 124.41 27.38 0.806

DT + pred. edge by E-CNN 51.26 31.17 0.964

DT + GT edge 45.67 31.66 0.971

I-CNN only 37.79 32.58 0.969

I-CNN only (64 layers) 31.86 33.33 0.973

I-CNN with input edge (64 layers) 22.50 34.86 0.979

CEILNet 13.34 37.10 0.989

5.1. Network Analysis

For simplicity, our analysis will be mainly based on the

representative results of approximating L0 smoothing [37].

These results were obtained on 100 PASCAL VOC test im-

ages (refer to Sec. 5.3 for training and testing details).

Is the target edge map from E-CNN helpful? To ver-

ify the importance of the target edge map for image recon-

struction, we removed E-CNN and trained a simple I-CNN

model without the predicted target edge or replacing the

predicted target edge with the input image edge. Table 1

shows that I-CNN with predicted edge (i.e., our CEILNet)

outperformed I-CNN alone and I-CNN with input edge by

significant margins, demonstrating the importance of target

edge prediction. A visual comparison is shown in Fig. 4.

Similar results were obtained for reflection removal: the

predicted background edges were found to be helpful for

layer separation. Figure 5 shows a typical example.

Does simply stacking more layers in I-CNN suffice?

Ideally, with enough depth, one may expect the network to

handle target edge prediction implicitly without the need

for an explicit E-CNN. We tried training a simple I-CNN

with more convolutional layers. and found that the per-

formance gets saturated quickly after more than 50 layers

(a detailed figure is deferred to the supplementary mate-

rial). Our CEILNet, i.e., 32-layer E-CNN + 32-layer I-

CNN, achieved much better results than a 64-layer simple

I-CNN (as shown in Table 1) and a best-performing 70-layer

one (PSNR 33.37 vs. 37.10 by CEILNet).

Is I-CNN better than a traditional method? To answer

this question, we replaced I-CNN with the Domain Trans-

form (DT) technique [10]. The predicted target edge map by

E-CNN and the input image are fed to DT to output smooth

images. We also tried the ground-truth target edge and the

input image edges. Table 1 shows that I-CNN with pre-

dicted edge from E-CNN (i.e., our CEILNet) outperformed

all DT results by large margins. A visual comparison is pre-

sented in Fig. 4.
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Input image GT image CEILNet

I-CNN only DT + pred. edge DT + GT edge

Input edge GT edge Pred. edge by E-CNN

Figure 4. Qualitative comparison for the image smoothing task

(learning an L0 filter [37]). Our CEILNet generates a more satis-

factory result than a simple I-CNN without E-CNN and than Do-

main Transform [10]. Best viewed on screen with zoom.

Input image Input edge Pred. edge by E-CNN

CEILNet (naive data) I-CNN only CEILNet

Figure 5. Qualitative reflection removal results on a real image.

Our CEILNet removes more reflection and generates a clearer

background image than a simple I-CNN without E-CNN, and than

CEILNet trained with a naive image mixing strategy for data gen-

eration. Best viewed on screen with zoom.

For reflection removal, we also tried applying the layer

separation algorithm in [22] with our predicted edges as in-

put, but no satisfactory results were obtained.1

5.2. Reflection Removal

Training Data: We applied the method described in

Sec. 4.2 to synthesize training data for the reflection re-

moval task to accommodate our weakly-supervised learning

pipeline. We used 17K natural images from the PASCAL

1[22] utilizes multiple images to identify background edges, which are

used as prior to guide layer septation. Their septation algorithm did not

work well with our edge maps as it assumes non-blurry reflections and

requires binary edge maps.

Table 2. Quantitative comparison of our method with Li and

Brown [23] on 100 synthetic images with reflection.

PSNR SSIM

[23] Ours [23] Ours

15.50 18.55 0.786 0.857

VOC dataset [4] for the synthesis. These images were col-

lected from Flickr, and represent a wide range of viewing

conditions. Two natural images were used to generate one

synthetic image containing a background layer and a reflec-

tion layer, resulting in 8.5K synthetic images in total. We

split these images into a training set of 7,643 images and a

test set with 850 images for quantitative comparison. The

training images are also cropped to 224×224. The algo-

rithm described in Fig. 2 was then applied, and we did not

observe over-fitting in any of the training sub-tasks.

Method Comparison: We tested our CEILNet against

the state-of-the-art, single-image approach from [23]. For

a quantitative comparison, we randomly selected 100 im-

ages in our test dataset, and evaluate the PSNR and SSIM

metrics for the predicted B from both algorithms. The de-

fault parameters of [23] were used for evaluation. Table 2

shows that CEILNet significantly outperformed [23].

Figure 6 presents some qualitative results of our method

compared against [23] on both synthetic and real images.

The reflection image estimates are computed via R = I−B.

We tuned the parameters of [23] for each image to get the

best visual result. It can be seen that [23] tends to generate

a blurry reflection layer with brightness covering the whole

image. It largely failed to remove less blurry, high contrast

or partially present reflections. This is because [23] em-

ploys strong priors to penalize abrupt color transitions in R

which, however, may be common in real cases. In contrast,

our CEILNet is able to separate out the reflections reason-

ably well even if some of them are very bright and shiny,

and without jeopardizing the reflection-free regions. More

results and comparisons are deferred to the supplementary

material due to space limitation.

5.3. Image Smoothing

Training Data: For image smoothing, we used the 17K

natural images in the PASCAL VOC dataset as input, and

generated the filtered images using existing image smooth-

ing algorithms as the ground truth. These images are fed to

the network without cropping. We also randomly pick 100

images in the PASCAL VOC dataset for testing. We again

use the algorithm in Fig. 2 to train our CEILNet.

Method Comparison: We tested 8 image smoothing al-

gorithms for the network to approximate, including bilat-

eral filter (BLF) [26], iterative bilateral filter (IBLF) [8],

rolling guidance filter (RGF) [42], RTV texture smoothing
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I B (Ours) R (Ours) B ([23]) R ([23]) I B (Ours) R (Ours) B ([23]) R ([23])

R
([

2
3
])

B
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2
3
])

R
(O

u
rs

)
B

(O
u

rs
)

I

I B (Ours) R (Ours) B ([23]) R ([23])

Figure 6. Qualitative results of the single image reflection removal task on synthetic (top two rows) and real (bottom rows) images. Visually

inspected, our method can largely remove the reflection and produce reasonably good background images under various situations. The

method of Li and Brown [23] clearly underperformed. The last example is a partial failure case for our method due to the strong reflection

and weak transmitted light, but still the result is superior to [23]. Best viewed on screen with zoom.

Table 3. Quantitative comparison on the image smoothing tasks. We report the PSNR and SSIM metrics (larger is better) for 8 different

smoothing filters, and compare our method with Xu et al. [38]. Average values are computed with the preceding 7 cases.

BLF IBLF L0 RGF RTV WLS WMF L1 Ave.

PSNR
[38] 35.02 32.97 31.66 32.49 35.68 33.92 29.62 32.62
Ours 43.76 38.18 37.10 42.05 44.03 41.39 39.70 36.99 40.40

SSIM
[38] 0.976 0.962 0.966 0.950 0.974 0.963 0.960 0.964
Ours 0.995 0.989 0.989 0.991 0.994 0.994 0.989 0.982 0.990

Table 4. Running time comparison (in seconds). We compare the running time of our method against different traditional methods as well

as deep learning based methods of Xu et al. [38] and Liu et al. [24] at various resolutions.

BLF IBLF RGF L0 WMF RTV WLS L1 [38] [24] Ours

QVGA (320×240) 0.03 0.11 0.22 0.17 0.62 0.41 0.70 32.18 0.23 0.07 0.03
VGA (640×480) 0.12 0.40 0.73 0.66 2.18 1.80 3.34 212.07 0.76 0.14 0.12

720p (1280×720) 0.34 0.97 1.87 2.43 4.98 5.74 13.26 904.36 2.16 0.33 0.35
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Figure 7. Qualitative results on the image smoothing task. All the methods are trained to approximate L0 smoothing [37]. Top: Comparison

with Xu et al. [38]. Bottom: Comparison with Liu et al. [24] on the 256×256 image size. Our results are visually much closer to the

ground truth. The numbers show the PSNR values. Best viewed on screen with zoom.

Table 5. Comparison with Liu et al. [24] on image smoothing.

PSNR SSIM

[24] Ours [24] Ours

L0 32.26 36.62 0.958 0.986

RGF 38.64 40.80 0.986 0.989

WLS 38.29 40.27 0.983 0.992

WMF 33.29 37.75 0.951 0.986

Ave. 35.64 39.36 0.966 0.988

(RTV) [39], weighted least square smoothing (WLS) [6],

weighted median filter (WMF) [43], L0 smoothing [37] and

L1 smoothing [2].

Table 3 presents the quantitative results of our method

and [38] on the test set with 100 images. In can been seen

that our network achieved much better results than [38] for

all the 8 filters, on both the PSNR and SSIM metrics. We

also compare our results with [24], whose models for 4 fil-

ters are publicly available. Note that at the time of writing,

the latest code of [24] released by their authors cannot run

on arbitrary image size due to some implementation con-

straints, so we use their default size of 256×256. Table 5

shows that our method also significantly outperformed [24]

for all the 4 filtering algorithms.

Figure 7 presents two visual results of our method com-

pared to others. It can be observed that the method of [24]

generated obvious artifacts compared to the ground truth

for both two cases, while [38] produced some unwanted

color transitions in the right and bottom left regions of the

“bridge” image, resulting in a PSNR even lower than the

raw input image. In contrast, our results are visually more

close to the ground truth. More results and discussions can

be found in the supplementary material.

Running Time: We evaluate the running time of the eight

traditional smoothing algorithms and the three deep learn-

ing based methods with respect to different image sizes on

the same computer (NVIDA DGX-1). Table 4 shows that

our method runs faster than others in most of the cases. It

can approximate any traditional algorithm at over 8 fps for

640×480 images.

6. Conclusions and Future Work

We have proposed CEILNet, a generic deep architecture

for edge-sensitive image processing. We provided the first

learning-based solution to the challenging single image re-

flection removal problem using CEILNet and with the aid

of a novel reflection image synthesis method. We have also

significantly advanced the state-of-the-art in DNN-based

image smoothing. Our future work includes testing CEIL-

Net on more image processing tasks. Promising results for

image denosing and inpainting have been obtained in our

preliminary experiments.
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