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Abstract

Being intensively studied, visual tracking has seen great

recent advances in either speed (e.g., with correlation fil-

ters) or accuracy (e.g., with deep features). Real-time and

high accuracy tracking algorithms, however, remain scarce.

In this paper we study the problem from a new perspective

and present a novel parallel tracking and verifying (PTAV)

framework, by taking advantage of the ubiquity of multi-

thread techniques and borrowing from the success of paral-

lel tracking and mapping in visual SLAM. Our PTAV frame-

work typically consists of two components, a tracker T and

a verifier V , working in parallel on two separate threads.

The tracker T aims to provide a super real-time tracking

inference and is expected to perform well most of the time;

by contrast, the verifier V checks the tracking results and

corrects T when needed. The key innovation is that, V does

not work on every frame but only upon the requests from

T ; on the other end, T may adjust the tracking according

to the feedback from V . With such collaboration, PTAV en-

joys both the high efficiency provided by T and the strong

discriminative power by V . In our extensive experiments on

popular benchmarks including OTB2013, OTB2015, TC128

and UAV20L, PTAV achieves the best tracking accuracy a-

mong all real-time trackers, and in fact performs even bet-

ter than many deep learning based solutions. Moreover, as

a general framework, PTAV is very flexible and has great

rooms for improvement and generalization.

1. Introduction

1.1. Background

Visual object tracking plays a crucial role in computer

vision and has a variety of applications such as robotics, vi-

sual surveillance, human-computer interaction and so forth

[36, 41]. Despite great successes in recent decades, robust
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real-time

Figure 1. Speed and accuracy plot of state-of-the-art visual track-

ers on OTB2013 [39]. For better illustration, only those trackers

with accuracy higher than 0.75 are reported. The proposed PTAV

algorithm achieves the best accuracy among all real-time trackers.

visual tracking still remains challenging due to many factors

including object deformation, occlusion, rotation, illumina-

tion change, pose variation, etc. An emerging trend toward

improving tracking accuracy is to use deep learning-based

techniques (e.g., [9, 28, 33, 38]) for their strong discrimina-

tive power, as shown in [33]. Such algorithms, unfortunate-

ly, often suffer from high computational burden and hardly

run in real-time (see Fig. 1).

Along a somewhat orthogonal direction, researchers

have been proposing efficient visual trackers (e.g., [5, 7, 16,

43]), represented by the series of trackers based on correla-

tion filters. While easily running at real-time, these trackers

are usually less robust than deep learning-based approaches.

Despite the above mentioned progresses in either speed

or accuracy, real-time high quality tracking algorithms re-

main scarce. A natural way is to seek a trade-off between

speed and accuracy, e.g., [3, 29]. In this paper we work to-

ward this goal, but from a novel perspective as following.

1.2. Motivation

Our key idea is to decompose the original tracking task

into two parallel but collaborative ones, one for fast tracking

and the other for accurate verification. Our work is inspired

by the following observations or related works:

Motivation 1. When tracking a target from visual input,
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Figure 2. Verifying tracking results on a typical sequence. Verifier validates tracking results every 10 frames. Most of the time the tracking

results are reliable (showing in blue). Occasionally, e.g. frame #080, the verifier finds the original tracking result (showing in blue)

unreliable and the tracker is corrected and resumes tracking based on detection result (showing in red).

most of the time the target moves smoothly and its appear-

ance changes little or slowly. Simple but efficient algo-

rithms usually work fine for such easy cases. By contrast,

hard cases appear only occasionally, though may cause se-

rious consequences if not addressed properly. These hard

cases typically require to be handled by computationally ex-

pensive operations, which are called verifiers in our study.

These verifiers, intuitively, are needed only occasionally in-

stead of for every frame, as shown in Fig. 2.

Motivation 2. The ubiquity of multi-thread computing has

already benefited computer vision systems, with notably in

visual SLAM (simultaneous localization and mapping). By

splitting tracking and mapping into two parallel threads, P-

TAM (parallel tracking and mapping) [23] provides one of

the most popular SLAM frameworks with many important

extensions (e.g., [32]). A key inspiration in PTAM is that

mapping is not needed for every frame; nor does verifying

in our task.

Motivation 3. Last but not least, recent advances in fast

or accurate tracking algorithms provide promising building

blocks and encourage us to seek a combined solution.

1.3. Contribution

With the motivations listed above, we propose to build

real-time high accuracy trackers in a novel framework

named parallel tracking and verifying (PTAV). PTAV typi-

cally consists of two components: a fast tracker1 denoted by

T and a verifier denoted by V . The two components work

in parallel on two separate threads while collaborate with

each other. The tracker T aims to provide a super real-time

tracking inference that is expected to perform well most of

the time, e.g., most frames in Fig. 2. By contrast, the verifier

V checks the tracking results and corrects T when needed,

e.g., at frame #080 in Fig. 2.

The key idea is, while T needs to run on every frame, V
does not. As a general framework, PTAV allows the coor-

dination between the tracker and the verifier: V checks the

tracking results provided by T and sends feedback to V; and

V adjusts itself according to the feedback when necessary.

By running T and V in parallel, PTAV inherits both the high

efficiency of T and the strong discriminative power of V .

1In the rest of the paper, for conciseness, we refer the fast tracker as a

tracker whenever no confusion caused.

Implementing2 a PTAV algorithm needs three parts: a

base tracker for T , a base verifier for V , and the coordina-

tion between them. For T , we choose the fast discrimina-

tive scale space tracking (fDSST) algorithm [7], which is

correlation filter-based and runs efficiently by itself. For V ,

we choose the Siamese networks [6] for verification similar

to [37]. For coordination, T sends results to V at a certain

frequency that allows enough time for verification. On the

verifier side, when an unreliable result is found, V performs

detection and sends the detected result to T for correction.

The framework is illustrated in Fig. 3 and detailed in Sec. 3.

The proposed PTAV algorithm is evaluated thoroughly

on several benchmarks including OTB2013 [39], OTB2015

[40], TC128 [26] and UAV20L [31]. In these experiments,

PTAV achieves the best tracking accuracy among all real-

time trackers, and in fact even performs even better than

many deep learning based solutions.

In summary, our first main contribution is the novel par-

allel tracking and verifying framework (i.e. PTAV). With the

framework, we made a second contribution to implement

a tracking solution that combines correlation kernel-based

tracking and deep learning-based verification. Then, our

solution shows very promising results on thorough experi-

ments in comparison with state-of-the-arts. Moreover, it is

worth noting that PTAV is a very flexible framework and

our implementation is far from optimal. We believe there

are great rooms for future improvement and generalization.

2. Related Work

Visual tracking has been extensively studied with a huge

amount of literature. In the following we discuss the most

related work and refer readers to [36,41] for recent surveys.

Related tracking algorithms. Existing model free visual

tracking algorithms are often categorized as either discrimi-

native or generative. Discriminative algorithms usually treat

tracking as a classification problem that distinguishes the

target from ever-changing background. The classifiers in

these methods are learned by, e.g., multiple instance learn-

ing (MIL) [1], compressive sensing [43], P-N learning [21],

structured output SVMs [14], on-line boosting [13] and so

on. By contrast, generative trackers usually formulate track-

2The source code of our implementation is shared at http://www.

dabi.temple.edu/˜hbling/code/PTAV/ptav.htm.
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Figure 3. Illustration of the PTAV framework in which tracking and verifying are processed in two parallel asynchronous threads.

ing as searching for regions most similar to the target. To

this end, various object appearance modeling approaches

have been proposed such as incremental subspace learn-

ing [34] and sparse representation [2,10,30]. Inspired by the

powerfulness of deep features in visual recognition [24,35],

some trackers [9, 28, 33, 38] utilize the deep features for ro-

bust object appearance modeling.

Recently, correlation filters have drawn increasing atten-

tion in visual tracking. Bolme et al. [5] propose a corre-

lation filter tracker via learning the minimum output sum

of squared error (MOSSE). Benefitting from the high com-

putational efficiency of correlation filters, MOSSE achieves

an amazing speed at hundreds of fps. Henriques et al. [15]

introduce kernel space into correlation filter and propose a

circulant structure with kernel (CSK) method for tracking.

CSK is then extended in [16] for further improvement and

result in the well-known kernelized correlation filters (KCF)

tracker. Later, [7] and [25] propose to improve KCF by

imbedding scale estimations into correlation filters. More

efforts on improving KCF can be found in [27, 29], etc.

Verification in tracking. The idea of verification is not new

in tracking. A notable example is the TLD tracker [21], in

which tracking results are validated per frame to decide how

learning and/or detection shall progress. Similar ideas have

been used in other trackers such as [18, 19]. Unlike in pre-

vious studies, the verification in PTAV runs only on sam-

pled frames. This allows PTAV to use strong verification

algorithms (Siamese networks [6] in our implementation)

without worrying about running time efficiency.

Interestingly, tracking by itself can be also formulated

as a verification problem that finds the best candidate sim-

ilar to the target [4, 37]. Bertinetto et al. [4] propose a

fully-convolutional Siamese networks for visual tracking.

In [37], Tao et al. formulate tracking as object matching

in each frame by Siamese networks. Despite obtaining ex-

cellent performance, application of such trackers is severely

restricted by the heavy computation for extracting deep fea-

tures in each frame. By contrast, our solution only treats

verification as a way to check and correct the fast tracker,

and does not run verification per frame.

3. Parallel Tracking and Verifying (PTAV)

3.1. Framework

A typical PTAV consists of two components: a (fast)

tracker T and a (reliable) verifier V . The two components

work together toward real-time and high accuracy tracking.

• The tracker T is responsible of the “real-time” re-

quirement of PTAV, and needs to locate the target in

each frame. Meanwhile, T sends verification request

to V from time to time (though not every frame), and

responds to feedback from V by adjusting tracking

or updating models. To avoid heavy computation, T
maintains a buffer of tracking information (e.g., inter-

mediate status) in recent frames to facilitate fast trac-

ing back when needed.

• The verifier V is employed to pursue the “high accu-

racy” requirement of PTAV. Up on receiving a request

from T , V tries the best to first validate the tracking re-

sult (e.g. comparing it with the initialization), and then

provide feedback to T .

In PTAV, T and V run in parallel on two different thread-

s with necessary interactions, as illustrated in Fig. 3. The

tracker T and verifier V are initialized in the first frame.

After that, T starts to process each arriving frame and gen-

erates the result (pink solid dot in Figure 3). In the mean-

time, V validates the tracking result every several frames.

Because tracking is much faster verifying, T and V work

asynchronously. Such mechanism allows PTAV to toler-

ate temporal tracking drift (e.g., at frame 380 in Figure 3),

which will be corrected later by V . When finding the track-

ing result unreliable, V searches the correct answer from a

local region and sends it to T . Upon the receipt of such
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Algorithm 1: Parallel Tracking and Verifying (PTAV)

1 Initialize the tracking thread for tracker T ;

2 Initialize the verifying thread for verifier V;

3 Run T (Alg. 2) and V (Alg. 3) till the end of tracking;

feedback, T stops current tracking job and traces back to

resume tracking with the correction provided by V .

It is worth noting that PTAV is a very flexible framework,

and some important designing choices are following. (1)

The choices of base algorithms for T and V may depend

on applications and available computational resources. In

addition, in practice one may use more than one verifiers or

even base trackers. (2) The response of T to the feedback,

either positive or negative, from V can be largely designed.

(3) The correction of unreliable tracking results can be im-

plemented in many ways, and the correction can even be

conducted purely by T (i.e., including target detection). (4)

T has various ways to use pre-computed archived informa-

tion for speeding up. Algorithm 1 summarizes the general

PTAV framework.

3.2. PTAV Implementation

3.2.1 Tracking

We choose the fDSST tracker [7] as the base of the track-

er T in PTAV. As a discriminative correlation filter-based

tracker, fDSST learns a model on an image patch f with a

d-dimension feature vector. Let f l denote the feature along

the l-th dimension, l ∈ 1, 2, · · · , d. The objective is to learn

the optimal correlation filter h, consisting of one filter hl

per feature dimension, by minimizing the cost function

ǫ(f) =
∥∥∥
∑d

l=1

hl ∗ f l − g
∥∥∥
2

+ λ
∑d

l=1

‖ hl ‖2 (1)

where g represents the desired correlation output associat-

ed with the training patch f , λ (λ > 0) denotes a tradeoff

parameter, and ∗ is circular convolution operation.

Using the fast Fourier transformation (FFT), the solution

of Eq. (1) can be efficiently obtained with

H l =
ḠF l

∑d

k=1
F̄ kF k + λ

, l = 1, 2, · · · , d (2)

where the capital letters in Eq. (2) represent the discrete

Fourier transform (DFT) of the corresponding quantities,

and the bar (̄·) indicates complex conjugation.

An optimal filter can be derived by minimizing the out-

put error over all training samples [22]. Nevertheless, this

requires solving a d×d linear system of equations per pixel,

leading to high computation. For efficiency, a simple linear

update strategy is applied to the numerator Al
t and denomi-

Algorithm 2: Tracking Thread T

1 while Current frame is valid do

2 if received a message s from V then

3 if verification passed then

4 Update tracking model (optional);

5 else

6 Correct tracking;

7 Trace back and reset current frame;

8 Resume tracking;

9 end

10 else

11 Tracking on the current frame;

12 if time for verification then

13 Send the current result to V to verify;

14 end

15 end

16 Current frame← next frame;

17 end

Algorithm 3: Verifying Thread V

1 while not ended do

2 if received request from T then

3 Verifying the tracking result;

4 if verification failed then

5 Provide correction information;

6 end

7 Send verification result s to T ;

8 end

9 end

nator Bt of H l
t by

Al
t = (1− η)Al

t−1
+ ηḠtF

l
t

Bt = (1− η)Bt−1 + η
∑d

k=1
F̄ k
t F

k
t

(3)

where η is the learning rate. The responding scores y for a

new image patch z can be computed by

y = F−1

{∑d

l=1
ĀlZl

B + λ

}
(4)

The position of target object is determined by the location

of maximal value of y.

To adapt the tracker to scale variation, a scale filter is

adopted to estimate the scale of target. In addition, to further

decrease computation, principal component analysis (PCA)

is utilized to reduce the dimension of feature vector. For

more details, readers are referred to [7].

Unlike in [7], in our implementation the tracker T stores

all intermediate results (e.g. H l
t in each frame t) since send-

ing out last verification request to ensure fast tracing back.

To validate the tracking result, T sends the verification re-

sults every V frames, where V is the dynamically adjustable

verification interval as described later.
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(c)(a) (b)
Figure 4. Detection based on verification. When finding an unre-

liable tracking result (showing in blue in (a)), the verifier V de-

tects the target in a local region ( shown in (b)). The dashed red

rectangles in (b) represent object candidates generated by sliding

window. The red rectangle in (c) is the detection result.

3.2.2 Verifying

We adopt the siamese networks [6] to develop the verifier

V . The siamese networks3 contain two branches of CNNs,

and process two inputs separately. In this work, we borrow

the architecture from VGGNet [35] for the CNNs, but with

an additional region pooling layer [12]. This is because, for

detection, V needs to process multiple regions in an image,

from which the candidate most similar to the target is se-

lected to be result. As a result, region pooling enables us to

simultaneously process a set of regions in an image.

Given the tracking result from T , if its verification s-

core is lower than a threshold τ1, V will treat it as a track-

ing failure. In this case, V needs detect target, again using

the siamese networks. Unlike for verification, detection re-

quires to verify multiple image patches in a local region4

and finds the best one. Thanks to the region pooling layer,

these candidates can be simultaneously processed in only

one pass, resulting in significant reduction in computation.

Let {ci}
N
i=1

denote the candidate set generated by sliding

window, and the detection result ĉ is determined by

ĉ = argmax
ci

ν(xobj , ci), i = 1, 2, · · · , N (5)

where ν(xobj , ci) returns the verification score between the

tracking target xobj and the candidate ci.

After obtaining detection result, we determine whether

or not take it to be an alternative for tracking result based

on its verification score. If detection result is unreliable

(e.g., the verification score for detection result is less than a

threshold τ2), we do not change the tracking result. Instead,

we decrease the verifying interval V , and increase the size

of local region to search for the target. The process repeats

until we find a reliable detection result. Then we restore ver-

ification interval and the size of the searching region. Figure

4 shows the detection process.

3Due to page limitation, we refer readers to the supplementary material

for detailed architecture of the siamese networks and its training process.
4The local region is a square of size β(w2 + h2)

1

2 centered at the

location of the tracking result in this validation frame, where w and h are

the width and height of the tracking result, and β controls the scale.

4. Experiments

4.1. Implementation details

Our PTAV is implemented in C++ and its verifier uses

Caffe [20] on a single NVIDIA GTX TITAN Z GPU with

6GB memory. The regularization term λ in Eq. (1) is set

to 0.01, and the learning rate in Eq. (3) to 0.025. Other pa-

rameters for tracking remain the same as in [7]. The siamese

networks for verification are initialized with VGGNet [35]

and trained based on the approach in [37]. The verification

interval V is initially set to 10. The validation and detec-

tion thresholds τ1 and τ2 are set to 1.0 and 1.6, respectively.

The parameter β is initialized to 1.5, and is adaptively ad-

justed based on the detection result. If the detection result

with β = 1.5 is not reliable, the verifier will increase β for

a larger searching region. When the new detection becomes

faithful, β is restored to 1.5.

4.2. Experiments on OTB2013 and OTB2015

Overall performance. OTB2013 [39] and OTB2015 [40]

are two popular tracking benchmarks, which contain 50 and

100 videos, respectively. We evaluate the PTAV on these

benchmarks in comparison with 11 state-of-the-art track-

ers from three typical categories: (i) deep features-based

trackers, including SINT [37], HCF [28], SiamFC [4] and

DLT [38]; (ii) correlation filters-based tracking approaches,

including fDSST [7], LCT [29], SRDCF [8], KCF [16] and

Staple [3]; and (iii) other representative tracking method-

s, including TGPR [11], MEEM [42] and Struck [14]. For

SINT [37], we use its tracking results without optical flow

because no optical flow part is provide from the released

source code. In PTAV, the fDSST tracker [7] is chosen to be

our tracking part, and thus it can be regarded as our base-

line. It is worth noting that other tracking algorithms may

also be used for tracking part in our PTAV.

Following the protocol in [39, 40], we report the results

in one-pass evaluation (OPE) using distance precision rate

(DPR) and overlap success rate (OSR) as shown in Fig. 5.

Overall, PTAV performs favorably against all other state-

of-the-art trackers on both datasets. In addition, we present

quantitative comparison of DPR at 20 pixels, OVR at 0.5,

and speed in Table 1. It shows that PTAV outperforms oth-

er state-of-the-art trackers in both rates. On OTB2015, our

tracker achieves a DPR of 84.9% and an OVR of 77.6%.

Though the HCF [28] utilizes deep features to represent

object appearance, our approach performs better compared

with its DPR of 83.7% and OSR of 65.6%. Besides, ow-

ing to the adoption of parallel framework, PTAV (27 fps)

is more than twice faster than HCF (10 fps). Compared

with SINT [37], PTAV improves DPR from 77.3% to 84.9%

and OSR from 70.3% to 77.6%. In addition, PTAV runs at

real-time while SINT does not. Compared with the base-

line fDSST [7], PTAV achieves significant improvements
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Figure 5. Comparison on OTB2013 and OTB2015 using distance precision rate (DPR) and overlap success rate (OSR).

Table 1. Comparisons with state-of-the-art tracking methods on OTB2013 [39] and OTB2015 [40]. Our PTAV outperforms existing

approaches in distance precision rate (DPR) at a threshold of 20 pixels and overlap success rate (OSR) at an overlap threshold of 0.5.

Deep trackers Correlation-filters based trackers Representative trackers

PTAV

(Ours)

HCF

[28]

SINT

[37]

DLT

[38]

SiamFC

[4]

SRDCF

[8]

Staple

[3]

LCT

[29]

fDSST

[7]

KCF

[16]

MEEM

[42]

TGPR

[11]

Struck

[14]

OTB2013

DPR (%) 89.4 89.1 85.1 54.8 78.5 83.8 79.3 84.8 78.7 74.1 83 70.5 65.6

OSR (%) 82.7 74 79.1 47.8 74.0 78.2 75.4 81.2 74.7 62.2 69.6 62.8 55.9

Speed (fps) 27 11 3 9 46 4 45 27 54 245 21 1 10

OTB2015

DPR (%) 84.9 83.7 77.3 52.6 75.7 78.9 78.4 76.2 72 69.2 78.1 64.3 63.9

OSR (%) 77.6 65.6 70.3 43 70.9 72.9 70.9 70.1 67.6 54.8 62.2 53.5 51.6

Speed (fps) 25 10 2 8 43 4 43 25 51 243 21 1 10

Table 2. Average precision and success scores of PTAV and other five top trackers on different attributes: background cluttered (BC), de-

formation (DEF), fast motion (FM), in-plane rotation (IPR), illumination variation (IV), low resolution (LR), motion blur (MB), occlusion

(OCC), out-of-plane rotation (OPR), out-of-view (OV) and scale variation (SV).

Distance precision rate (%) on eleven attributes Overlap success rate (%) on eleven attributes

Attribute PTAV HCF [28]SRDCF [8] Staple [3] MEEM [42]SINT [37] PTAV HCF [28]SRDCF [8] Staple [3] MEEM [42]SINT [37]

BC 87.9 84.7 77.6 77.0 75.1 75.1 64.9 58.7 58.0 57.4 52.1 56.7

DEF 81.3 79.1 73.4 74.8 75.4 75.0 59.7 53.0 54.4 55.4 48.9 55.5

FM 77.7 79.7 76.8 70.3 73.4 72.5 60.8 55.5 59.9 54.1 52.8 55.7

IPR 83.0 85.4 74.5 77.0 79.3 81.1 60.7 55.9 54.4 55.2 52.8 58.5

IV 86.0 81.7 79.2 79.1 74.0 80.9 64.3 54.0 61.3 59.8 51.7 61.8

LR 78.9 78.7 63.1 60.9 60.5 78.8 56.3 42.4 48.0 41.1 35.5 53.9

MB 81.0 79.7 78.2 72.6 72.1 72.8 62.9 57.3 61.0 55.8 54.3 57.4

OCC 83.2 76.7 73.5 72.6 74.1 73.1 62.3 52.5 55.9 54.8 50.3 55.8

OPR 82.8 81.0 74.6 74.2 79.8 79.4 61.1 53.7 55.3 53.8 52.8 58.6

OV 73.6 67.7 59.7 66.1 68.3 72.5 57.0 47.4 46.0 48.1 48.4 55.9

SV 79.7 80.2 74.9 73.1 74.0 74.2 59.0 48.8 56.5 52.9 47.3 55.8

Overall 84.9 83.7 78.9 78.4 78.1 77.3 63.5 56.2 59.8 58.1 52.9 58.0

on both DPR (12.9%) and OSR (10.0%).

Attribute-based evaluation. We further analyze the

performance of PTAV under different attributes in OT-

B2015 [40]. Table 2 shows the comparison of PTAV with

other top five tracking algorithms on these eleven attributes.

In terms of distance precision rates (DPR), PTAV achieves

the best results under 8 out of 11 attributes. For the rest

three (FM, IPR and SV), PTAV obtains competitive perfor-

mances. Compared with other deep learning-based tracker-

s [28,37], PTAV can better locate the target object in videos.

On the other hand, PTAV achieves the best results of overlap

success rates (OVR) under all 11 attributes. Compared with

correlation filters-based trackers [3, 8] and MEEM [42], P-

TAV performs more robust under occlusion, background

cluttered and low resolution with the help of cooperation

between tracker and verifier.

Qualitative evaluation. Figure 6 summarizes qualitative

comparisons of PTAV with seven state-of-the-art trackers

(HCF [28], SRDCF [8], Staple [3], MEEM [42], SINT [37],

KCF [15] and fDSST [7]) on twelve sequences sampled

form OTB2015 [40]. The correlation filters-based trackers

(KCF [16], SRDCF [8], fDSST [7] and Staple [3]) perform

well in sequences with deformation, illumination variation

and partial occlusion (Basketball, Bolt, Shaking and Panda).

However, when full occlusion happens (Coke and Jogging-

1), they are prone to lose the target. HCF [28] uses deep

features to represent object appearance, and can deal with

these cases to some degree. Nevertheless, it still fails when
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Figure 6. Qualitative evaluation of the proposed algorithm and other seven state-of-the-art trackers on twelve sequences (from left to right

and top to bottom: Basketball, BlurBody, Bolt, Shaking, Human3, Human6, Coke, Girl2, Lemming, Sylvester, Panda, and Jogging-1.)

occlusion happens with other situations such as deforma-

tion and rotation (Girl2, Human3, Human6, Sylvester and

Lemming).

Compared with these trackers, PTAV locate the target

object more reliably. Even when experiencing a short drift,

the verifier in PTAV can sense the drift and then detect the

correct target for subsequent tracking. SINT [37] deals well

with occlusion thanks to its capability in re-locating the tar-

get. However, it meets problems when motion blur occurs

(BlurBody), which causes serious change in it extracted fea-

tures. Different from SINT, PTAV uses a correlation filters

based method for its tracking part, which works well for

motion blur. MEEM [42] uses multiple classifier to track

the target and works well in most cases. However, it may

lose the target in presences of heavy occlusion and scale

variations (e.g., Human6).

4.3. Experiment on TC128

For experiments on the TC128 [26] dataset contain-

ing 128 videos, our PTAV runs at 21 frames per second.

The comparison with state-of-the-art trackers (MEEM [42],

HCF [28], LCT [29], fDSST [7], Struck [14], SRDCF [8],

Staple [3], KCF [16]) is shown in Figure 7. Among the
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Figure 7. Comparison on TC128 using DPR and OSR.
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Figure 8. Comparison on UAV20L using DPR and OSR.

eight compared trackers, HCF [28] obtains the best distance

precision rate (DPR) of 70.5% and Staple [3] achieves the
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