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Abstract

Multi-person pose estimation in the wild is challenging.

Although state-of-the-art human detectors have demon-

strated good performance, small errors in localization and

recognition are inevitable. These errors can cause failures

for a single-person pose estimator (SPPE), especially for

methods that solely depend on human detection results. In

this paper, we propose a novel regional multi-person pose

estimation (RMPE) framework to facilitate pose estimation

in the presence of inaccurate human bounding boxes. Our

framework consists of three components: Symmetric Spa-

tial Transformer Network (SSTN), Parametric Pose Non-

Maximum-Suppression (NMS), and Pose-Guided Proposals

Generator (PGPG). Our method is able to handle inaccu-

rate bounding boxes and redundant detections, allowing it

to achieve 76.7 mAP on the MPII (multi person) dataset[3].

Our model and source codes are made publicly available.†.

1. Introduction

Human pose estimation is a fundamental challenge for

computer vision. In practice, recognizing the pose of

multiple persons in the wild is a lot more challenging

than recognizing the pose of a single person in an im-

age [30, 31, 21, 23, 38]. Recent attempts approach this

problem by using either a two-step framework [28, 12] or a

part-based framework [7, 27, 17]. The two-step framework

first detects human bounding boxes and then estimates the

pose within each box independently. The part-based frame-

work first detects body parts independently and then assem-

bles the detected body parts to form multiple human poses.

Both frameworks have their advantages and disadvantages.

In the two-step framework, the accuracy of pose estimation

highly depends on the quality of the detected bounding box-
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Figure 2. Problem of redundant human detections. The left image

shows the detected bounding boxes; the right image shows the es-

timated human poses. Because each bounding box is operated on

independently, multiple poses are detected for a single person.

es. In the part-based framework, the assembled human pos-

es are ambiguous when two or more persons are too close

together. Also, part-based framework loses the capability

to recognize body parts from a global pose view due to the

mere utilization of second-order body parts dependence.

Our approach follows the two-step framework. We aim

to detect accurate human poses even when given inaccu-

rate bounding boxes. To illustrate the problems of previous

approaches, we applied the state-of-the-art object detector

Faster-RCNN [29] and the SPPE Stacked Hourglass mod-

el [23]. Figure 1 and Figure 2 show two major problems:

the localization error problem and the redundant detection

problem. In fact, SPPE is rather vulnerable to bounding

box errors. Even for the cases when the bounding boxes

are considered as correct with IoU > 0.5, the detected hu-

man poses can still be wrong. Since SPPE produces a pose

for each given bounding box, redundant detections result in

redundant poses.

To address the above problems, a regional multi-person

pose estimation (RMPE) framework is proposed. Our

framework improves the performance of SPPE-based hu-

man pose estimation algorithms. We have designed a new

symmetric spatial transformer network (SSTN) which is at-

tached to the SPPE to extract a high-quality single person

region from an inaccurate bounding box. A novel paral-

lel SPPE branch is introduced to optimize this network. To

address the problem of redundant detection, a parametric
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Figure 1. Problem of bounding box localization errors. The red boxes are the ground truth bounding boxes, and the yellow boxes are

detected bounding boxes with IoU > 0.5. The heatmaps are the outputs of SPPE [23] corresponding to the two types of boxes. The

corresponding body parts are not detected in the heatmaps of the yellow boxes. Note that with IoU > 0.5, the yellow boxes are considered

as “correct” detections. However, human poses are not detected even with the “correct” bounding boxes.

pose NMS is introduced. Our parametric pose NMS elimi-

nates redundant poses by using a novel pose distance met-

ric to compare pose similarity. A data-driven approach is

applied to optimize the pose distance parameters. Lastly,

we propose a novel pose-guided human proposal genera-

tor (PGPG) to augment training samples. By learning the

output distribution of a human detector for different poses,

we can simulate the generation of human bounding boxes,

producing a large sample of training data.

Our RMPE framework is general and is applicable to

different human detectors and single person pose estima-

tors. We applied our framework on the MPII (multi-person)

dataset [3], where it outperforms the state-of-the-art meth-

ods and achieves 76.7 mAP. We have also conducted ab-

lation studies to validate the effectiveness of each pro-

posed component of our framework. Our model and source

codes are made publicly available to support reproducible

research.

2. Related Work

2.1. Single Person Pose Estimation

In single person pose estimation, the pose estimation

problem is simplified by only attempting to estimate the

pose of a single person, and the person is assumed to dom-

inate the image content. Conventional methods consid-

ered pictorial structure models. For example, tree model-

s [37, 30, 40, 36] and random forest models [31, 8] have

demonstrated to be very efficient in human pose estimation.

Graph based models such as random field models [20] and

dependency graph models [14] have also been widely inves-

tigated in the literature [13, 32, 21, 26].

More recently, deep learning has become a promising

technique in object/face recognition, and human pose es-

timation is of no exception. Representative works include

DeepPose (Toshev et al) [34], DNN based models [24, 11]

and various CNN based models [19, 33, 23, 4, 38]. Apart

from simply estimating a human pose, some studies [9, 25]

consider human parsing and pose estimation simultaneous-

ly. For single person pose estimation, these methods could

perform well only when the person has been correctly lo-

cated. However, this assumption is not always satisfied.

2.2. Multi Person Pose Estimation

Part-based Framework Representative works on part-

based framework [7, 12, 35, 27, 17] are reviewed. Chen et

al. presented an approach to parse largely occluded people

by graphical model which models humans as flexible com-

positions of body parts [7]. Gkiox et al used k-poselets to

jointly detect people and predict locations of human poses

[12]. The final pose localization is predicted by a weighted

average of all activated poselets. Pishchulin et al. proposed

DeepCut to first detect all body parts, and then label and

assemble these parts via integral linear programming[27].

A stronger part detector based on ResNet[15] and a better

incremental optimization strategy is proposed by Insafut-

dinov et al [17]. While part-based methods have demon-

strated good performance, their body-part detectors can be

vulnerable since only small local regions are considered.

Two-step Framework Our work follows the two-step

framework [28, 12]. In our work, we use a CNN based

SPPE method to estimate poses, while Pishchulin et al. [28]

used conventional pictorial structure models for pose esti-

mation. In particular, Insafutdinov et al [17] propose a sim-

ilar two-step pipeline which uses the Faster R-CNN as their

human detector and a unary DeeperCut as their pose estima-

tor. Their method can only achieve 51.0 in mAP on MPII

dataset, while ours can achieve 76.7 mAP. With the develop-

ment of object detection and single person pose estimation,

the two-step framework can achieve further advances in its

performance. Our paper aims to solve the problem of im-

perfect human detection in the two-step framework in order

to maximize the power of SPPE.
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Figure 3. Pipeline of our RMPE framework. Our Symmetric STN consists of STN and SDTN which are attached before and after the

SPPE. The STN receives human proposals and the SDTN generates pose proposals. The Parallel SPPE acts as an extra regularizer during

the training phase. Finally, the parametric Pose NMS (p-Pose NMS) is carried out to eliminate redundant pose estimations. Unlike

traditional training, we train the SSTN+SPPE module with images generated by PGPG.

3. Regional Multi-person Pose Estimation

The pipeline of our proposed RMPE is illustrated in Fig-

ure 3. The human bounding boxes obtained by the hu-

man detector are fed into the “Symmetric STN + SPPE”

module, and the pose proposals are generated automatical-

ly. The generated pose proposals are refined by parametric

Pose NMS to obtain the estimated human poses. During the

training, we introduce “Parallel SPPE” in order to avoid

local minimums and further leverage the power of SSTN.

To augment the existing training samples, a pose-guided

proposals generator (PGPG) is designed. In the follow-

ing sections, we present the three major components of our

framework.

3.1. Symmetric STN and Parallel SPPE

Human proposals provided by human detectors are not

well-suited to SPPE. This is because SPPE is specifically

trained on single person images and is very sensitive to lo-

calisation errors. It has been shown that small translation or

cropping of human proposals can significantly affect perfor-

mance of SPPE [23]. Our symmetric STN + parallel SPPE

was introduced to enhance SPPE when given imperfect hu-

man proposals. The module of our SSTN and parallel SPPE

is shown in Figure 4.

STN and SDTN The spatial transformer network

[18](STN) has demonstrated excellent performance in s-

electing region of interests automatically. In this paper,

we use the STN to extract high quality dominant human

proposals. Mathematically, the STN performs a 2D affine

transformation which can be expressed as

(

xs
i

ysi

)

=
[

θ1 θ2 θ3
]





xt
i

yti
1



 , (1)

where θ1, θ2 and θ3 are vectors in R
2. {xs

i , y
s
i } and

{xt
i, y

t
i} are the coordinates before and after transformation,

respectively. After SPPE, the resulting pose is mapped in-
to the original human proposal image. Naturally, a spatial
de-transformer network (SDTN) is required to remap the
estimated human pose back to the original image coordi-
nate. The SDTN computes the γ for de-transformation and
generates grids based on γ:
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Since SDTN is an inverse procedure of STN, we can obtain
the following:

[

γ1 γ2

]

=
[

θ1 θ2

]−1

(3)

γ3 = −1×
[

γ1 γ2

]

θ3 (4)

To back propagate through SDTN,
∂J(W,b)

∂θ
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as
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]
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with respect to θ1 and θ2, and

∂J(W, b)

∂θ3

=
∂J(W, b)

∂γ3

×

∂γ3

∂θ3

(6)

with respect to θ3.
∂
[

γ1 γ2

]

∂
[

θ1 θ2
] and ∂γ3

∂θ3

can be derived

from Eqn. (3) and (4) respectively.

After extracting high quality dominant human proposal

regions, we can utilize off-the-shelf SPPE for accurate pose

estimation. In our training, the SSTN is fine-tuned together

with our SPPE.

Parallel SPPE To further help STN extract good human-

dominant regions, we add a parallel SPPE branch in the

training phrase. This branch shares the same STN with
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Figure 4. An illustration of our symmetric STN architecture and our training strategy with parallel SPPE. The STN used was developed

by Jaderberg et al. [18]. Our SDTN takes a parameter θ, generated by the localization net and computes the γ for de-transformation. We

follow the grid generator and sampler [18] to extract a human-dominant region. For our parallel SPPE branch, a center-located pose label

is specified. We freeze the weights of all layers of the parallel SPPE to encourage the STN to extract a dominant single person proposal.

the original SPPE, but the spatial de-transformer (SDTN)

is omitted. The human pose label of this branch is spec-

ified to be centered. To be more specific, the output of

this SPPE branch is directly compared to labels of center-

located ground truth poses. We freeze all the layers of this

parallel SPPE during the training phase. The weights of

this branch are fixed and its purpose is to back-propagate

center-located pose errors to the STN module. If the ex-

tracted pose of the STN is not center-located, the parallel

branch will back-propagate large errors. In this way, we

can help the STN focus on the correct area and extract high

quality human-dominant regions. In the testing phase, the

parallel SPPE is discarded. The effectiveness of our parallel

SPPE will be verified in our experiments.

Discussions The parallel SPPE can be regarded as a regu-

larizer during the training phase. It helps to avoid a poor so-

lution (local minimum) where the STN does not transform

the pose to the center of extracted human regions. The like-

lihood of reaching a local minimum is increased because

compensation from the SDTN will make the network gen-

erate fewer errors. These errors are necessary to train the

STN. With the parallel SPPE, the STN is trained to move

the human to the center of the extracted region to facilitate

accurate pose estimation by SPPE.

It may seem intuitive to replace parallel SPPE with a

center-located poses regression loss in the output of SPPE

(before SDTN). However, this approach will degrade the

performance of our system. Although STN can partly trans-

form the input, it is impossible to perfectly place the per-

son at the same location as the label. The difference in co-

ordinate space between the input and label of SPPE will

largely impair its ability to learn pose estimation. This will

cause the performance of our main branch SPPE to de-

crease. Thus, to ensure that both STN and SPPE can ful-

ly leverage their own power, a parallel SPPE with frozen

weights is indispensable for our framework. The parallel

SPPE always produces large errors for non-center poses to

push the STN to produce a center-located pose, without af-

fecting the performance of the main branch SPPE.

3.2. Parametric Pose NMS

Human detectors inevitably generate redundant detec-

tions, which in turn produce redundant pose estimations.

Therefore, pose non-maximum suppression (NMS) is re-

quired to eliminate the redundancies. Previous methods

[5, 7] are either not efficient or not accurate enough. In this

paper, we propose a parametric pose NMS method. Similar

to the previous subsection, the pose Pi, with m joints is de-

noted as {〈k1i , c
1
i 〉, . . . , 〈k

m
i , cmi 〉}, where kji and cji are the

jth location and confidence score of joints respectively.

NMS scheme We revisit pose NMS as follows: firstly, the

most confident pose is selected as reference, and some poses

close to it are subject to elimination by applying elimination

criterion. This process is repeated on the remaining poses

set until redundant poses are eliminated and only unique

poses are reported.

Elimination Criterion We need to define pose similarity

in order to eliminate the poses which are too close and too

similar to each others. We define a pose distance metric

d(Pi, Pj |Λ) to measure the pose similarity, and a threshold

η as elimination criterion, where Λ is a parameter set of

function d(·). Our elimination criterion can be written as

follows:

f( Pi, Pj |Λ, η) = 1[d(Pi, Pj |Λ, λ) ≤ η] (7)

If d(·) is smaller than η, the output of f(·) should be 1,
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which indicates that pose Pi should be eliminated due to

redundancy with reference pose Pj .

Pose Distance Now, we present the distance function

dpose(Pi, Pj). We assume that the box for Pi is Bi. Then

we define a soft matching function

KSim(Pi, Pj |σ1) =
{

∑

n tanh
cni
σ1

· tanh
cnj
σ1

, if knj is within B(kni )

0 otherwise
(8)

where B(kni ) is a box center at kni , and each dimension of

B(kni ) is 1/10 of the original box Bi. The tanh operation

filters out poses with low-confidence scores. When two cor-

responding joints both have high confidence scores, the out-

put will be close to 1. This distance softly counts the num-

ber of joints matching between poses.

The spatial distance between parts is also considered,

which can be written as

HSim(Pi, Pj |σ2) =
∑

n

exp[−
(kni − knj )

2

σ2
] (9)

By combining Eqn (8) and (9), the final distance function

can be written as

d(Pi, Pj |Λ) = KSim(Pi, Pj |σ1) + λHSim(Pi, Pj |σ2)
(10)

where λ is a weight balancing the two distances and Λ =
{σ1, σ2, λ}. Note that the previous pose NMS [7] set pose

distance parameters and thresholds manually. In contrast,

our parameters can be determined in a data-driven manner.

Optimization Given the detected redundant poses, the four

parameters in the eliminate criterion f( Pi, Pj |Λ, η) are op-

timized to achieve the maximal mAP for the validation set.

Since exhaustive search in a 4D space is intractable, we

optimize two parameters at a time by fixing the other t-

wo parameters in an iterative manner. Once convergence

is achieved, the parameters are fixed and will be used in the

testing phase.

3.3. Pose­guided Proposals Generator

Data Augmentation For the two-stage pose estimation,

proper data augmentation is necessary to make the SST-

N+SPPE module adapt to the ’imperfect’ human proposals

generated by the human detector. Otherwise, the module

may not work properly in the testing phase for the human

detector. An intuitive approach is to directly use bounding

boxes generated by the human detector during the training

phase. However, the human detector can only produce one

bounding box for each person. By using the proposals gen-

erator, this quantity can be greatly increased. Since we al-

ready have the ground truth pose and an object detection

Figure 5. Gaussian distributions of bounding box offsets for sev-

eral different atomic poses. More results are available in supple-

mentary materials. Best viewed in color.

bounding box for each person, we can generate a large sam-

ple of training proposals with the same distribution as the

output of the human detector. With this technique, we are

able to further boost the performance of our system.

Insight We find that the distribution of the relative offset

between the detected bounding box and the ground truth

bounding box varies across different poses. To be more spe-

cific, there exists a distribution P (δB|P ), where δB is the

offset between the coordinates of a bounding box generated

by human detector and the coordinates of the ground truth

bounding box, and P is the ground truth pose of a person.

If we can model this distribution, we are able to generate

many training samples that are similar to human proposals

generated by the human detector.

Implementation To directly learn the distribution

P (δB|P ) is difficult due to the variation of human

poses. So instead, we attempt to learn the distribution

P (δB|atom(P )), where atom(P ) denotes the atomic

pose [39] of P . We follow the method used by Andriluka

et al [3] to learn the atomic poses. To derive the atomic

poses from annotations of human poses, we first align all

poses so that their torsos have the same length. Then we

use the k-means algorithm to cluster our aligned poses,

and the computed cluster centers form our atomic poses.

Now for each person instance sharing the same atomic

pose a, we calculate the offsets between its ground truth

bounding box and detected bounding box. The offsets

are then normalized by the corresponding side-length of

ground truth bounding box in that direction. After these

processes, the offsets form a frequency distribution, and

we fit our data to a Gaussian mixture distribution. For
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different atomic poses, we have different Gaussian mixture

parameters. We visualize some of the distributions and

their corresponding clustered human poses in Figure 5.

Proposals Generation During the training phase of the

SSTN+SPPE, for each annotated pose in the training sam-

ple we first look up the corresponding atomic pose a. Then

we generate additional offsets by dense sampling according

to P (δB|a) to produce augmented training proposals.

4. Experiments

The proposed method is qualitatively and quantitatively

evaluated on two standard multi-person datasets with large

occlusion cases: MPII [3] and MSCOCO 2016 Keypoints

Challenge dataset[1].

4.1. Evaluation datasets

MPII Multi-Person Dataset The challenging benchmark

MPII Human Pose (multi-person)[3] consists of 3,844 train-

ing and 1,758 testing groups with both occluded and over-

lapped people. Moreover, it contains more than 28,000

training samples for single person pose estimation. We use

all the training data in the single person dataset and 90% of

the multi-person training set to fine-tune the SPPE, leaving

10% for validation.

MSCOCO Keypoints Challenge We also evaluate our

method on the MSCOCO Keypoints Challenge dataset[1].

This dataset requires localization of person keypoints in

challenging, uncontrolled conditions. It consists of 105,698

training and around 80,000 testing human instances. The

training set contains over 1 million total labeled key-

points. The testing set are divided into four roughly equally

sized splits: test-challenge, test-dev, test-standard, and test-

reserve.

4.2. Implementation details in testing

In this paper, we use the VGG-based SSD-512 [22] as

our human detector, as it performs object detection effec-

tively and efficiently. In order to guarantee that the entire

person region will be extracted, detected human proposals

are extended by 30% along both the height and width direc-

tions. We use the stacked hourglass model [23] as the single

person pose estimator because of its superior performance.

For the STN network, we adopt the ResNet-18 [15] as our

localization network. Considering the memory efficiency,

we use a smaller 4-stack hourglass network as the parallel

SPPE.

4.3. Results

Results on MPII dataset. We evaluated our method on

full MPII multi-person test set. Quantitative results on the

full testing set are given in Table 1. Notably, we achieve an

average accuracy of 72 mAP on identifying difficult joints

such as wrists, elbows, ankles, and knees, which is 3.3 mAP

higher than the previous state-of-the-art result. We reach a

final accuracy of 70.4 mAP for the wrist and an accuracy

of 73 mAP for the knee. We present some of our results

in Figure 6. These results show that our method can accu-

rately predict pose in multi-person images. More results are

presented in supplementary materials.

Results on MSCOCO Keypoints dataset. We fine-tuned

the SPPE on the MSCOCO Keypoints training + validat-

ing sets and leave 5,000 images for validation. Quantita-

tive results on the test-dev set are given in Table 2. Our

method achieves the state-of-the-art performance. Note that

when using a similar human detector and SPPE, our method

outperforms R4D and Caltech by a great margin. Even

when using an inferior human detector (SSD, 28.8 mAP VS

G-RMI, 41.6 mAP on MSCOCO Detections test-dev set),

without extra in-house training data and ensembling, our t-

wo step method outperforms the performance of G-RMI by

1.3 mAP, which demonstrates the effectiveness of our pro-

posed framework.

Team AP AP 50 AP 75 APM APL

CMU-Pose[6] 61.8 84.9 67.5 57.1 68.2

G-RMI 60.5 82.2 66.2 57.6 66.6

DL-61 54.4 75.3 50.9 58.3 54.3

R4D 51.4 75 55.9 47.4 56.7

umich vl 46 74.6 48.4 38.8 55.6

Caltech 40.2 65.2 41.9 34.9 49.2

ours 61.8 83.7 69.8 58.6 67.6

Table 2. Results on the MSCOCO Keypoint Challenge (AP)

dataset [2]. The MSCOCO website provides a technical overview

only. Our result is obtained without ensembling.

4.4. Ablation studies

We evaluate the effectiveness of the three proposed com-

ponents, i.e., symmetric STN, pose-guided proposals gen-

erator and parametric pose NMS. The ablative studies have

been conducted by removing the proposed components

from the pipeline or replacing the proposed components

with conventional solvers. The straightforward two-step

method without the three components and the upper-bound

of our framework are tested for comparison. We conducted

these experiments on the MPII validation set. In addition,

we replace our human detection module to prove the gener-

ality of our framework.

Symmetric STN and Parallel SPPE To validate the im-

portance of symmetric STN and parallel SPPE, two experi-

ments were conducted. In the first experiment, we removed

the SSTN, including the parallel SPPE, from our pipeline.
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Head Shoulder Elbow Wrist Hip Knee Ankle Total

full testing set

Iqbal&Gall, ECCVw16 [35] 58.4 53.9 44.5 35.0 42.2 36.7 31.1 43.1

DeeperCut, ECCV16 [17] 78.4 72.5 60.2 51.0 57.2 52.0 45.4 59.5

Levinkov et al., CVPR17[10] 89.8 85.2 71.8 59.6 71.1 63.0 53.5 70.6

Insafutdinov et al., CVPR17[16] 88.8 87.0 75.9 64.9 74.2 68.8 60.5 74.3

Cao et al., CVPR17[6] 91.2 87.6 77.7 66.8 75.4 68.9 61.7 75.6

ours 88.4 86.5 78.6 70.4 74.4 73.0 65.8 76.7

Table 1. Results on the MPII multi-person test set (mAP).

Figure 6. Some results of our model’s predictions.

In the second experiment, we only removed the parallel

SPPE and kept the symmetric STN structure. Both of these

results are shown in Table 3(a). We can observe perfor-

mance degradation when removing parallel SPPE, which

implies that parallel SPPE with single person image labels

strongly encourages the STN to extract single person re-

gions to minimize the total losses.

Pose-guided Proposals Generator In Table 3(b), we

demonstrate that our pose-guided proposals generator also

plays an important role in our system. In this experimen-

t, we first remove the data augmentation from our training

phase. The final mAP drops to 73.0%. Then we compare

our data augmentation technique with a simple baseline.

The baseline is formed by jittering the locations and aspect

ratios of the bounding boxes produced by person detector to

generate a large number of additional proposals. We choose

those that have IoU>0.5 with ground truth boxes. From our

result in Table 3(b), we can see that our technique is better

than the baseline method. Generating training proposals ac-

cording to the distribution can be regarded as a kind of data

re-sampling, which can help the model to better fit human

proposals.

Parametric Pose NMS Since pose NMS is an independen-

t module, we can directly remove it from our final mod-

el. The experimental results are shown in Table 3(c). As

we can see, the mAP drops significantly if the paramet-

ric pose NMS is removed. This is because the increase in

the number of redundant poses will ultimately decrease our

precision. We note that the previous pose NMS can also

eliminate redundant detection to some extent. The state-of-
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Figure 7. Example failure cases of our model.

Methods Head Shoulder Elbow Wrist Hip Knee Ankle Total

RMPE, full 90.7 89.7 84.1 75.4 80.4 75.5 67.3 80.8

a)
w/o SSTN+parallel SPPE 89.0 86.9 82.8 73.5 77.1 73.3 65.0 78.2

w/o parallel SPPE only 89.9 88.0 83.4 74.7 77.8 74.0 65.8 79.1

b)
w/o PGPG 82.8 81.0 77.5 68.2 74.6 66.8 60.1 73.0

random jittering* 89.3 87.8 82.3 70.4 78.4 73.3 63.8 77.9

c)

w/o PoseNMS 85.1 83.6 79.2 69.8 76.4 72.2 63.6 75.7

PoseNMS [7] 88.9 87.8 83.0 73.8 78.7 74.6 66.3 79.1

PoseNMS [5] 90.0 88.6 83.7 74.6 79.7 75.1 67.0 79.9

d) straight forward two-steps 81.9 80.4 74.1 68.5 69.0 66.1 62.2 71.7

e) oracle human detection 94.3 93.4 87.7 80.2 84.3 78.9 70.6 84.2

Table 3. Results of the ablation experiments on our validation set. “w/o X” means without X module in our pipeline. “random jittering*”

means generating training proposals by jittering locations and aspect ratios of the detected human bounding boxes. “PoseNMS [x]” reports

the result when using the pose NMS algorithm developed in paper [x].

the-art pose NMS algorithms [5, 7] are used to replace our

parametric pose NMS, with the results given in Table 3(c).

These schemes perform less effectively than ours, since the

parameter learning is missing. In terms of efficiency, on

our validation set which contains 1300 images, the publicly

available implementation of [5]‡takes 62.2 seconds to per-

form pose NMS while using our algorithm takes only 1.8

seconds.

Upper Bound of Our Framework The upper bound of our

framework is tested, where we use the ground truth bound-

ing boxes as human proposals. As shown in Table 3(e), this

setting could yield 84.2% mAP. It verifies that our system

is already close to the upper-bound of two-step framework.

Human Detector Modules By replacing the human detec-

tor with ResNet50 based Faster-RCNN[29] (32.0 mAP on

MSCOCO Detections test-dev set), the final result on our

MPII valid set achieves 81.4 mAP and the result on MSCO-

CO Keypoints test-dev set achieves 63.3 mAP. It shows that

with stronger human detector, our framework can have bet-

ter performance, which proves that our RMPE framework

is general and is applicable to different human detectors.

4.5. Failure cases

We present some failure cases in Figure 7. It can be seen

that the SPPE can not handle poses which are rarely oc-

curred (e.g. the person performing the ’Human Flag’ in the

first image). When two persons are highly overlapped, our

‡http://www.vision.caltech.edu/ dhall/projects/MergingPoseEstimates/

system get confused and can not separate them apart (e.g.

the two persons in the left of the second image). The miss-

es of person detector will also cause the missing detection

of human poses (e.g. the person who has laid down in the

third image). Finally, erroneous pose may still be detected

when an object looks very similar to human which can fool

both human detector and SPPE (e.g. the background object

in the forth image).

5. Conclusion

In this paper, a novel regional multi-person pose estima-

tion (RMPE) framework is proposed, which significantly

outperforms the state-of-the-art methods for multi-person

human pose estimation in terms of accuracy and efficiency.

It validates the potential of two-step frameworks, i.e., hu-

man detector + SPPE, when SPPE is adapted to a human de-

tector. Our RMPE framework consists of three novel com-

ponents: symmetric STN with parallel SPPE, parametric

pose NMS, and pose-guided proposals generator (PGPG).

In particular, PGPG is used to greatly argument the train-

ing data by learning the conditional distribution of bounding

box proposals for a given human pose. The SPPE becomes

adept at handling human localization errors due to the uti-

lization of symmetric STN and parallel SPPE. Finally, the

parametric pose NMS can be used to reduce redundant de-

tections. In our future work, it would be interesting to ex-

plore the possibility of training our framework together with

the human detector in an end-to-end manner.
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