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Abstract

Correlation Filters (CFs) have recently demonstrated ex-

cellent performance in terms of rapidly tracking objects

under challenging photometric and geometric variations.

The strength of the approach comes from its ability to ef-

ficiently learn - on the fly - how the object is changing

over time. A fundamental drawback to CFs, however, is

that the background of the target is not modeled over time

which can result in suboptimal performance. Recent track-

ing algorithms have suggested to resolve this drawback by

either learning CFs from more discriminative deep fea-

tures (e.g. DeepSRDCF [9] and CCOT [11]) or learning

complex deep trackers (e.g. MDNet [28] and FCNT [33]).

While such methods have been shown to work well, they

suffer from high complexity: extracting deep features or

applying deep tracking frameworks is very computation-

ally expensive. This limits the real-time performance of

such methods, even on high-end GPUs. This work pro-

poses a Background-Aware CF based on hand-crafted fea-

tures (HOG [6]) that can efficiently model how both the

foreground and background of the object varies over time.

Our approach, like conventional CFs, is extremely compu-

tationally efficient- and extensive experiments over multi-

ple tracking benchmarks demonstrate the superior accuracy

and real-time performance of our method compared to the

state-of-the-art trackers.

1. Introduction

Correlation Filters (CFs) have been a widely used frame-

work for visual object tracking [23, 37, 10, 13], due to

their superior computation and fair robustness to photomet-

ric and geometric variations. CF trackers can learn and de-

tect quickly in the frequency domain [20], the most notable

example being the MOSSE tracker with the tracking speed

of ⇠700 frames per second [3]. Furthermore, these track-

ers learn “on-the-fly”. The approach quickly models how

an object varies visually over time by updating the tracker

when the next frames become available. Such per frame
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Figure 1. (a) Traditional CFs discard the background patches, and

instead learn from shifted patches of the cropped target. This may

result to suboptimal results. (b) The BACF, however, exploits

all background patches as negative examples for learning a filter

which is more discriminative to background clutter.

adaptation offers robust tracking under challenging circum-

stances such as motion blur, scaling and lighting variation.

Learning CF trackers in the frequency domain, however,

comes at the high cost of learning from circular shifted ex-

amples of the foreground target. These shifted patches are

implicitly generated through the circulant property of cor-

relation in the frequency domain and are used as negative

examples for training the filter [20]. All shifted patches are

plagued by circular boundary effects and are not truly rep-

resentative of negative patches in real-world scenes [17].

These boundary effects have been shown to have a dras-

tic impact on tracking performance, due to a number of

factors. First, learning from limited shifted patches may

lead to training an over-fitted filter which is not well-

generalized to rapid visual deformation e.g. caused by fast

motion [10]. Second, the lack of real negative training ex-

amples can drastically degrade the robustness of such track-

ers against cluttered background, and as a result, increase

the risk of tracking drift specifically when the target and

background display similar visual cues. Third, discarding

background information from the learning process may re-

duce the tracker’s ability to distinguish the target from oc-

clusion patches. This limits the potential of such trackers to

re-detect after an occlusion or out-of-plane movement [10].

Recently, two methods were proposed to address the dis-
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advantage of learning from shifted foreground patches [17,

10]. The method of CFs with limited boundaries (CFLB)

proposed to learn CFs with less boundary effects for the

tasks of facial landmark localization and object tracking.

Despite its promising results, this method was limited to

learning CFs from pixel intensities- which as shown in [16]

are not expressive enough for detecting challenging patterns

in visual contents. Similar to our work, spatially regularized

CFs (SRDCF) [10] proposed to learn filters from training

examples with large spatial supports. The major disadvan-

tage of this method is that the regularized objective is costly

to optimize, even in the Fourier domain. Furthermore, in

order to form the regularization weights, a set of hyper-

parameters must be carefully tuned, which if not performed

correctly can lead to poor tracking performance.

Contribution: We propose to learn Background-Aware

Correlation Filters (BACF) for real-time object tracking.

Our method is capable of learning/updating filters from

real negative examples densely extracted from the back-

ground. We demonstrate that learning trackers from neg-

ative background patches, instead of shifted foreground

patches, achieves superior accuracy with real-time perfor-

mance. This paper offers the following contributions:

• We propose a new correlation filter for real-time visual

tracking. Unlike prior CF-based trackers in which neg-

ative examples are limited to circular shifted patches,

our tracker is trained from real negative training exam-

ples, densely extracted from the background.

• We propose an efficient Alternating Direction Method

of Multipliers (ADMM) based approach for learning

our filter on multi-channel features (e.g. HOG), with

computational cost ofO(LKT log(T )), where T is the

size of vectorized frame, K is the number of feature

channels, and L is the ADMM’s iterations.

We calculate model updates with Sherman-Morrison

lemma to cope with changes in target and background ap-

pearance with real-time performance. We extensively eval-

uate our tracker on OTB50, OTB100, Temple-Color128 and

VOT2015 datasets. The result demonstrates very competi-

tive accuracy of our method compared to the state-of-the-art

CF based and deep trackers, with superior real-time track-

ing speed of ⇠ 40 FPS on a CPU.

2. Prior Work

The interest in employing CFs for visual tracking was ig-

nited by the seminal work of Bolme et al. [3] on the MOSSE

filter with an impressive speed of ⇠700 FPS. Thereafter,

several works [7, 8, 13, 22, 1] were built upon the MOSSE

approach showing notable improvement by learning CF

trackers on multi-channel features such as HOG [6]. All

these approaches, however, imitated the standard formula-

tion of CFs in the frequency domain to retain their computa-

tions efficient for real-time applications. Learning CF track-

ers quickly in the frequency domain, however, is highly af-

fected by boundary effects of shifted patches [17], leading

to suboptimal training [10]. Moreover, such methods solely

learn trackers from object patches cropped from the whole

frame, and the background visual information is discarded

from the learning process. This leads to poor discrimina-

tion against cluttered background, and thereby, increases

the risk of spurious detection when the target and its sur-

rounding background share similar visual cues [10]. Sev-

eral recent works addressed the constraint of learning from

shifted patches by exploiting training samples whose spa-

tial size is much larger than the trained filters [17, 10, 8, 9].

Learning from large training samples not only dramatically

reduces boundary effects [17], but offers learning filters

from a huge number of background patches [10]. The

method of CFLB [17] was originally designed to learn

from pixel intensities which was shown to be inaccurate

and suffers from poor generalization on challenging pat-

terns [16]. Our method, on the other hand, is capable of

handling more discriminative and well-generalized multi-

channel features such as HOG [6] and convolutional neural

networks (CNNs) features [31]. The SRDCF method [10]

and its variations [8, 9] require regularization weights to

penalize the correlation filter coefficients during learning.

These weights are highly target and video dependent, and

have to be carefully fine-tuned over a set of sensitive hyper-

parameters to perform well for each video. Furthermore,

due to their computational expense (⇠4 FPS), SRDCF

methods are not a suitable choice for real-time tracking.

The excellent performance of deep convolutional neural

networks (CNNs) on several challenging vision tasks [19,

31, 24, 14] has encouraged more recent works to either ex-

ploit CNN deep features within CF framework [26, 9, 11]

or design deep architectures [2, 28, 34, 5, 32, 33] for ro-

bust visual tracking. This trend has its own pros and cons.

Compared to hand-crafted features such as HOG, learn-

ing CF trackers using CNN features significantly improves

their robustness against geometric and photometric vari-

ations [11]. This is mainly resulted from the high dis-

crimination of such features, since CNNs are trained over

large scale dataset [19]. However, extracting CNN features

from each frame and training/updating CF trackers over

high dimensional deep features is computationally expen-

sive. Such an approach leads to poor real time performance

(⇠ 0.2 FPS in the case of [9, 11]). Similarly, purely deep

trackers also suffer the same drawback [2, 28, 34, 5, 32, 33],

with some methods performing at only 1 FPS on a typical

desktop PC.
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Figure 2. BACF learns from all possible positive and negative patches extracted from the entire frame. [∆τ j ] generates all circular shifts of

the frame over all j = [0, ..., T −1] steps. T is the length of vectorized frame. P is the cropping operator (a binary matrix) which crops the

central patch of each shifted image. The size of the cropped patches is same as the size of the target/filter (D), where T " D. All cropped

patches are utilized to train a CF tracker. In practice, we do not apply circular shift and cropping operators. Instead, we perform these

operations efficiently by augmenting our objective in the Fourier domain. The red and green boxes indicate the negative (background) and

positive (target) training patches. Please refer to Section 4 for more details.

3. Correlation Filters

Learning multi-channel CFs in the spatial domain is for-

mulated by minimizing the following objective [16]:

E(h) =
1

2
||y −

K
X

k=1

hk ? xk||22 +
λ

2

K
X

k=1

||hk||22 (1)

where xk 2 R
D and hk 2 R

D refers to the kth channel

of the vectorized image and filter respectively, and K is the

number of feature channels. y 2 R
D is the desired cor-

relation response, λ is a regularization, and ? is the spatial

correlation operator. Eq. 1 can be identically expressed as a

ridge regression objective in the spatial domain:

E(h) =
1

2

D
X

j=1

||y(j)−
K
X

k=1

h>
k xk[∆τ j ]||22

+
λ

2

K
X

k=1

||hk||22 (2)

where y(j) is the j-th element of y. [∆τ j ] is the cir-

cular shift operator, and xk[∆τ j ] applies a j-step discrete

circular shift to the signal xk. For a full treatment of multi-

channel correlation filters, please see [16].

The main drawback of Eq. 2 is learning a correlation fil-

ter/detector from D− 1 circular shifted foreground patches

which are generated through the [∆τ j ] operator. This trains

a filter which perfectly discriminates the foreground target

from its shifted examples. As mentioned earlier, this, how-

ever, increases the risk of over-fitting and limits the poten-

tial of the filter to classify the target from real non-target

patches (Fig. 1 (a)). For generic object detection task (such

as pedestrian detection in [16]), this drawback can be signif-

icantly diminished by exploiting a huge amount of positive

(pedestrian) and negative (non-pedestrian) patches to train a

well-generalized filter/detector. This, however, is not practi-

cal for the task of visual tracking. The target is the only pos-

itive sample available at the training time and gathering pos-

itive and negative examples from a pre-collected training set

for each individual target is infeasible. Fortunately, the tar-

get comes with a large surrounding background which can

be used as negative samples at the training stage. We pro-

pose the method of background-aware correlation filters to

directly learn more robust and well-generalized CF tracker

from background patches (Fig. 1 (b)).

4. Background-Aware Correlation Filters

We propose to learn multi-channel background-aware

correlation filters by minimizing the following objective:

E(h) =
1

2

T
X

j=1

||y(j)−
K
X

k=1

h>
k Pxk[∆τ j ]||22

+
λ

2

K
X

k=1

||hk||22 (3)

where P is a D ⇥ T binary matrix which crops the mid

D elements of signal xk. xk 2 R
T , y 2 R

T and h 2 R
D,

where T % D. T is the length of x.

For tracking task, x, y, and h are respectively a training

sample with large spatial support, y is the correlation out-

put with a peak centered upon the target of interest, and h

is the correlation filter whose spatial size is much smaller

than training samples. Applying the circular shift opera-

tor on the training sample followed by the cropping oper-

ator, Pxk[∆τ j ], returns all possible patches with the size

of D from the entire frame, Fig. 2. The cropped patch cor-

responding to the peak of the correlation output displays

the target (positive example), and those corresponding to
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the zero values of the correlation output display the back-

ground content (negative examples). The computational

cost of Eq. 3 is approximately the same as Eq. 2,O(D3K3),
since P can be precomputed, and Pxk (cropping) can be ef-

ficiently performed via a lookup table.

Correlation filters are typically learned in the frequency

domain, for computational efficiency [20]. Similarly, Eq. 3

can be expressed in the frequency domain as:

E(h, ĝ) =
1

2
||ŷ − X̂ĝ||22 +

λ

2
||h||22

s.t. ĝ =
p
T (FP> ⌦ IK)h (4)

where, ĝ is an auxiliary variable and the matrix X̂ is de-

fined as X̂ = [diag(x̂1)
>, . . . , diag(x̂K)>] of size T ⇥KT .

h = [h>
1 , . . . ,h

>
K ]> and ĝ = [ĝ>

1 , . . . , ĝ
>
K ]> respectively

show the KD ⇥ 1 and KT ⇥ 1 over-complete representa-

tions of h and ĝ by concatenating their K vectorized chan-

nels. IK is a K ⇥ K identity matrix, and ⌦ indicates the

Kronecker product. Aˆdenotes the Discrete Fourier Trans-

form (DFT) of a signal, such that â =
p
TFa, where F

is the orthonormal T ⇥ T matrix of complex basis vectors

for mapping to the Fourier domain for any T dimensional

vectorized signal. The transpose operator > on a complex

vector or matrix computes the conjugate transpose.

4.1. Augmented Lagrangian

To solve Eq. 4, we employ an Augmented Lagrangian

Method (ALM) [4]:

L(ĝ,h, ζ̂) =
1

2
||ŷ − X̂ĝ||22 +

λ

2
||h||22

+ ζ̂
>
(ĝ −

p
T (FP> ⌦ IK)h)

+
µ

2
||ĝ −

p
T (FP> ⌦ IK)h||22 (5)

where µ is the penalty factor and ζ̂ = [ζ̂
>
1 , . . . , ζ̂

>
K ]>

is the KT ⇥ 1 Lagrangian vector in the Fourier domain.

Equation 5 can be solved iteratively using the ADMM [4]

technique. Each of the subproblems, ĝ⇤ and h⇤, have closed

form solutions.

Subproblem h⇤:

h⇤ = argmin
h

nλ

2
||h||22 + ζ̂

>
(ĝ −

p
T (FP> ⌦ IK)h)

+
µ

2
||ĝ −

p
T (FP> ⌦ IK)h||22

o

= (µ+
λp
T
)−1(µg + ζ) (6)

where g = 1p
T
(PF> ⌦ IK)ĝ and ζ = 1p

T
(PF> ⌦

IK)ζ̂. The Kronecker product with the identity matrix can

be broken into K independent Inverse Fast Fourier Trans-

form (IFFT) computations of gk = 1p
T
PF>ĝk and ζk =

1p
T
PF>ζ̂k. In practice, both gk and ζk can be estimated

efficiently by applying an IFFT on each ĝk and ζ̂k and then

applying the lookup table formed from the masking matrix

P. The over-complete vectors g and ζ can be obtained by

concatenating {gk}Kk=1 and {ζk}Kk=1, respectively. The

computation of Eq. 6 is bounded by O(KT log(T )), where

K is the number of channels, and T log(T ) is the cost of

computing the IFFT of a signal with the length of T .

Subproblem ĝ⇤:

ĝ⇤ = argmin
ĝ

n1

2
||ŷ − X̂ĝ||22

+ ζ̂
>
(ĝ −

p
T (FP> ⌦ IK)h)

+
µ

2
||ĝ −

p
T (FP> ⌦ IK)h||22

o

(7)

Solving Eq. 7 directly is O(T 3K3). This computation

is intractable for real-time tracking, since we need to solve

for ĝ⇤ at every ADMM iteration. Fortunately, X̂ is sparse

banded, and thus, each element of ŷ (ŷ(t), t = 1, ..., T ) is

dependent only on K values of x̂(t) = [x̂1(t), ..., x̂K(t)]>

and ĝ(t) = [conj(ĝ1(t)), ..., conj(ĝK(t))]> [16]. The op-

erator conj(.) applies the complex conjugate to a complex

vector/number. Therefore, solving Eq. 7 for ĝ⇤ can be iden-

tically expressed as T smaller, independent objectives, solv-

ing for ĝ(t)⇤, over t = [1, ..., T ]:

ĝ(t)⇤ = argmin
ĝ(t)

n1

2
||ŷ(t)− x̂(t)>ĝ(t)||22

+ ζ̂(t)>(ĝ(t)− ĥ(t))

+
µ

2
||ĝ(t)− ĥ(t)||22

o

(8)

where ĥ(t) = [ĥ1(t), ..., ĥK(t)] and ĥk =
p
DFP>hk.

In practice, each ĥk can be estimated efficiently by apply-

ing a FFT to each hk padded with zeros. The solution for

each ĝ(t)⇤ is obtained by:

ĝ(t)⇤ =
(

x̂(t)x̂(t)> + TµIK
)−1

⇣

ŷ(t)x̂(t)− T ζ̂(t) + Tµĥ(t)
⌘

(9)

Eq. 9 has the complexity ofO(TK3), since we still need

to solve T independent K⇥K linear systems. Even though

this computation is substantially smaller than directly solv-

ing (O(T 3K3)), it is still intractable for real-time tracking.

Real-Time Extension: We propose to compute
(

x̂(t)x̂(t)> + TµIK
)−1

rapidly using the Sherman-

Morrison formula [30], stating that (uv> + A)−1 =

1138



A−1 − (v>A−1u)−1A−1uv>A−1, where in our case,

A = TµIK and u = v = x̂(t). Hence, Eq. 9 can be

rewritten as:

ĝ(t)⇤ =
1

µ

⇣

T ŷ(t)x̂(t)− ζ̂(t) + µĥ(t)
⌘

(10)

− x̂(t)

µb
(T ŷ(t)ŝx(t)− ŝζ(t) + µŝh(t))

where, ŝx(t) = x̂(t)>x̂, ŝζ(t) = x̂(t)>ζ̂, ŝh(t) = x̂(t)>ĥ
and b = ŝx(t) + Tµ are scalar. The cost of computing ĝ

using Eq. 10 is O(TK), which is much smaller than the

computation of Eq. 9 (O(TK3)).

Lagrangian Update: We update the Lagrangians as

ζ̂
(i+1)  ζ̂

(i)
+ µ(ĝ(i+1) − ĥ(i+1)) (11)

where ĝ(i+1) and ĥ(i+1) are the current solutions to the

above subproblems at iteration i + 1 within the iterative

ADMM, and ĥ(i+1) = (FP> ⌦ IK)h(i+1). A common

scheme for selecting µ is µ(i+1) = min(µmax, βµ
(i)) [4].

Online Update: Similar to other CF trackers [13, 3, 1],

we utilize an online adaptation strategy to improve our

robustness to pose, scale and illumination changes. The

online adaptation at frame f is formulated as x̂
(f)
model =

(1 − ⌘) x̂
(f−1)
model + ⌘ x̂(f), where ⌘ is the online adap-

tation rate. Based on this strategy, we use x̂
(f)
model instead of

x̂(f) in Eq. 10 to compute ĝ(t)⇤, ŝx(t), ŝζ(t) and ŝh.

Detection: The spatial location of the target in frame f is

detected by applying the filter ĝ(f−1) that has been updated

in the previous frame. Following [10, 1], the filter is ap-

plied on multiple resolutions of the searching area to esti-

mate scale changes. The searching area has the same spa-

tial size of the filter ĝ. This returns S correlation outputs,

where S is the number of scales. We employ the interpo-

lation strategy in [10, 11] to maximize detection scores per

each correlation output. The scale with the maximum corre-

lation output is used to update the object location and scale.

5. Experiments

We extensively evaluate our tracker on four standard

datasets, including OTB50 [36], OTB100 [37], Temple-

Color128 (TC128) [23], and VOT2015 [18], compar-

ing with 24 state-of-the-art methods, such as TLD [15],

Struck [12], CFLB [17], KCF [13], DSST [7], SAMF [22],

MEEM [38], DAT [29], LCT [27], HCF [26], Sta-

ple [1], SRDCF [10], SRDCFdecon [8], DeepSRDCF [9],

CCOT [11], S3Tracker [21], SC-EBT [35], LDP [25],

SiamFC [2], MDNet [28], STCT [34], YCNN [5],

SINT [32] and FCNT [33].

Table 1. BACF’s accuracy (% at IoU > 0.50) and speed with re-

spect to varying ADMM iterations, µ and β on OTB50.

µ 1 0.5 0.25 0.125 0.0625

β 10 4 2 1.5 1.25

ADMM Iterations 2 4 8 16 32

Mean succ. rate 85.4 84.2 85.9 86.2 86.1

Mean FPS 34.1 25.6 20.1 13.7 9.4

Evaluation Methodology: We use the success metric [36]

to evaluate all trackers on OTB50, OTB100 and TC128.

Success measures the intersection over union (IoU) of pre-

dicted and ground truth bounding boxes. The success plot

shows the percentage of bounding boxes whose IoU score

is larger than a given threshold. We use the Area Under the

Curve (AUC) of success plots to rank the trackers. We also

compare all the trackers by the success rate at the conven-

tional thresholds of 0.50 (IoU > 0.50) [36]. For the VOT15

dataset, tracking performance is evaluated in terms of accu-

racy (overlap with the ground-truth) and robustness (failure

rate) [18]. In VOT2015, a tracker is restarted in the case

of a failure, where there is no overlap between the detected

bounding box and ground truth. For a full treatment of these

metrics, readers are encouraged to read [18, 36].

Comparison Scenarios: We evaluate the BACF tracker

over four experiments. The first experiment is conducted

to show the superiority of our method to the state-of-the-art

trackers with hand-crafted features (HOG). At the second

experiment, we compare BACF with CF trackers with deep

features to show that compared to such methods BACF of-

fers very competitive accuracy with more than two orders

of magnitude (170 times) improvement in tracking speed.

The third experiment compares our method with the state of

the art deep trackers, and the last experiment compares our

tracker with leading methods of the VOT2015 challenge.

Implementation Details: Following [10, 13, 1] we employ

31-channel HOG features [6] using 4 ⇥ 4 cells multiplied

by a Hann window [3]. The regularization factor, λ, is set

to 0.001, and the number of scales (S) is set to 5 with an

scale-step of 1.01. A 2D Gaussian function with bandwidth

of
p
wh/16 is used to define the correlation output for an

object of size [h,w]. For the ADMM optimization, we set

the number of iterations and the penalty factor, µ, to 2 and

1, respectively. The penalty factor at iteration i + 1 is up-

dated by µ(i+1) = min(µmax, βµ
(i)), where β = 10 and

µmax = 103. We tested different configurations of µ, β
over different number of ADMM’s iterations (Table 1) and

we observed that choosing larger values of β and µ over

very few iterations offers better trade-off between tracking

accuracy and speed. The learning rate of BACF ⌘ = 0.0125
for all experiments. We tested our MATLAB implementa-

tion on a machine equipped with an Intel Core i7 running at

2.40 GHz. Code is available on www.hamedkiani.com.
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Figure 3. Success plots comparing BACF with the state-of-the-art HOG based trackers on (a) OTB50, (b) OTB100, and (c) TC128. The

result of top 12 trackers is illustrated here. AUCs are reported in brackets.

Table 2. Success rates (% at IoU > 0.50) of BACF versus HOG-based trackers. The first, second and third best methods are shown in color.

BACF SRDCF Staple LCT SAMF MEEM DSST KCF Struck CFLB TLD DAT

OTB50 85.4 76.0 73.2 79.4 67.7 68.2 67.1 61.8 58.2 47.3 45.1 35.2

OTB100 77.6 72.0 69.1 69.3 64.0 62.6 60.1 54.2 52.2 44.7 43.1 36.3

TC128 65.2 62.1 62.9 52.6 56.0 62.0 47.4 46.4 40.7 37.7 35.3 48.1

Avg. succ. rate 76.0 70.0 68.4 67.1 62.5 64.2 58.2 54.1 50.3 43.2 41.1 39.8

Avg. FPS 35.3 3.8 48.3 18.5 11.4 11.1 17.7 173.4 9.2 87.1 22.1 60.3

5.1. Comparison with HOG-based Trackers

Fig. 3 and Table 2 compare the BACF method with

the state-of-the-art HOG-based trackers on the OTB50,

OTB100 and TC128 datasets, where our method achieved

the highest accuracy over all three datasets. More particu-

larly, BACF achieved the best AUC (67.78) on OTB50 fol-

lowed by LCT (62.48) and SRDCF (62.35). On OTB100,

BACF (62.98) outperformed SRDCF (60.13) and Staple

(58.03). BACF (51.97) is also the winner of the compari-

son on TC128, which is closely followed by SRDCF (51.66)

and Staple (51.01). This result demonstrates the importance

of utilizing background patches to learn more robust CF

trackers from hand-crafted features. This evaluation also

shows that BACF’s strategy is more efficient than that of

SRDCF to learn robust CF trackers from background. This

is mainly because- unlike BACF- SRDCF has two crucial

parameters (the minimum value of each weight and the im-

pact of regularizer) to compute a regularization weight for

each pixel. Since these two parameters are fixed for all

videos, frames and pixels, there is no guarantee of deliv-

ering optimal results for all scenarios. Table 2 reports the

average success rates of all trackers (IoU > 0.50) as well

as their tracking speed (FPS) on CPUs. The best tracking

speed belongs to KCF (173.4 FPS) followed by CFLB (87.1

FPS), DAT (60.3 FPS) and Staple (48.3 FPS). Higher speed

of such trackers, however, came at the cost of much lower

accuracy compared to BACF. Our method obtained the real-

time speed of 35.3 FPS which is almost 10 times faster than

SRDCF (the second best tracker).

Attribute Based Evaluation: Fig. 4 illustrates the attribute

based evaluation of all HOG-based trackers on OTB100.

All sequences in OTB100 are manually annotated by 11 dif-

ferent visual attributes such as occlusion, deformation and

motion blur. We only reported the results of 6 attributes and

full evaluation can be found in the supplemental material.

The results show our superior tracking performance on all

attributes. This empirically demonstrates how learning CFs

from a huge set of background patches improves the sta-

bility of such trackers against challenging photometric and

geometric variations. Trackers such as SRDCF, Staple and

MEEM showed to be less robust to out of view, occlusion,

deformation, respectively.

Robustness to Initialization: Following [10, 9, 1], we eval-

uated our tracker towards different spatial and temporal ini-

tializations [37] using two robustness metrics: spatial ro-

bustness (SRE) and temporal robustness (TRE). SRE mea-

sures the sensitivity of a tracker against noisy initialization

(small perturbations from the ground truth). TRE mea-

sures the sensitivity of a tracker when initialized at different

frames of the sequence. Fig. 5 shows the TRE and SRE suc-

cess plots of BACF compared with the other HOG based

trackers (SRE and TRE of DAT and Struck are not avail-

able). Our method achieved the best TRE and SRE AUCs

followed by SRDCF and Staple. This evaluation shows that

compared to other HOG based methods our method is more

robust to different spatial and temporal initializations.

5.2. Comparing with Deep Feature-based Trackers

Table 3 compares BACF with the state-of-the-art CF

trackers with deep features, showing that BACF achieved

the best success rate on OTB50, and the second best
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Success plot of background clutter (31) Success plot of scale variation (64) Success plot of occlusion (49)
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Success plot of deformation (44) Success plot of motion blur (29) Success plot of out of view (14)
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Figure 4. Attribute based evaluation. Success plots compare BACF with state-of-the-art HOG based trackers on OTB100. BACF outper-

formed all the trackers over all attributes. AUCs are reported in brackets. The number of videos for each attribute is shown in parenthesis.
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Success plot of TRE on OTB100
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Figure 5. SRE TRE evaluation: Success plots comparing BACF

with state-of-the-art HOG based trackers on OTB100.

accuracy on OTB100 and TC128 after CCOT. Overall,

BACF (76.0) outperformed HCF (65.0) and DeepSRDCDF

(72.9) and obtained very comparable average success rate to

CCOT (77.8). In terms of tracking speed, however, BACF

dramatically outperformed the other trackers, with much

faster tracking speed. Despite the efficient optimization of

CFs in the Fourier domain, CF trackers with deep features

suffer from intractable complexity which is mainly caused

by 1) computationally expensive deep feature extraction on

CPUs, and 2) computing the FFT/IFFT of hundreds of deep

feature channels at each frame.

Table 3. Success rates (% at IoU > 0.50) of BACF compared to

CF trackers with deep features. The first, second and third highest

rates are highlighted in color.

BACF HCF DeepSRDCF CCOT

OTB50 85.4 72.1 77.4 81.6

OTB100 77.6 64.8 76.4 81.5

TC128 65.2 58.1 64.9 70.5

Avg. succ. rate 76.0 65.0 72.9 77.8

Avg. FPS 35.3 0.8 0.4 0.2

To emphasis the superior tracking speed of BACF and its

competitive accuracy to CCOT, we directly compared these

two methods on OTB100 sequences in terms of the number

of videos these trackers show superior accuracy, and rel-

ative tracking speed for each sequence. Results in Fig. 6

show that for 37 videos (of 101 videos) BACF outperformed

CCOT, and for 41 videos CCOT achieved superior accuracy.

Both CCOT and BACF showed the same accuracy on 23

sequences. This comparison highlights the competitive ac-

curacy of these methods. In terms of relative speed, BACF

showed at least 100 times faster speed on all videos.

5.3. Evaluation on VOT2015

Table 4 shows the comparison of our method with top

participants in the VOT2015 challenge1, CCOT, Staple and

DSST on 60 challenging videos of VOT15. Our method

achieved the best accuracy (0.56) by improving 5% of the

accuracy obtained by SRDCF and DeepSRDCF. The high-

est robustness (0.82) belongs to CCOT, followed by Deep-

SRDCF (1.05) and SRDCF (1.24). Our tracker significantly

1http://www.votchallenge.net/vot2015/
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BACF	outperforms	CCOT	(37	videos) CCOT	and	BACF	perform	equally	(23	videos) CCOT	outperforms	BACF	(41	videos)

Figure 6. Comparing BACF with CCOT in terms of speed up on OTB100. We also show performance details over which tracker performs

best on a given sequence. Sequences coded red are when BACF outperforms CCOT. Sequences coded green are when CCOT outperforms

BACF, and blue indicates equal performance. Across the board, we note that BACF provides an appreciable speedup (on average around

200x) compared to CCOT. CCOT, however, only outperforms BACF in terms of tracking accuracy on a small portion of the videos. For

most videos, BACF performs as well or better than CCOT.

Table 4. Evaluation on VOT2015 by the means of robustness and accuracy.

Ours S3Tracker Struck SC-EBT LDP DSST DAT Staple SRDCF DeepSRDCF CCOT

Acc. 0.59 0.52 0.47 0.55 0.51 0.49 0.44 0.53 0.56 0.56 0.54

Rob. 1.56 1.77 1.26 1.86 1.84 2.53 2.06 1.35 1.24 1.05 0.82
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Figure 7. Comparing our method with deep trackers in terms of

tracking speed (fps) and success rate at IoU > 0.50.

improved the accuracy and robustness of the top partici-

pants of VOT2015 (S3Tracker, SC-EBT, LDP and DSST).

5.4. Comparing with Deep Trackers

We compared our tracker against recent deep trackers on

OTB50, including SiamFC [2], MDNet [28], STCT [34],

YCNN [5], SINT [32] and FCNT [33]. Results in Fig. 7,

show our superior real-time performance. Surprisingly, our

accuracy (85.4) is very competitive with MDNet (87.3),

and our method outperformed SINT (85.3), SiamFC (79.2),

STCT (80.7), YCNN (77.3) and FCNT (76.1).

Qualitative Results: Fig. 8 shows some qualitative results.

6. Conclusion

In this work, we proposed background aware correlation

filters for the task of visual tracking. Compared to cur-

rent CF trackers which are trained by shifted patches, our

method exploits real background patches together with the

BACF CCOT Staple

Figure 8. Qualitative comparison of our approach with state-of-

the-art trackers on the Shaking, Skating and Lemming videos, un-

der illumination change, fast motion and background clutter.

target patch to learn the tracker. Moreover, we utilized an

online adaptation strategy to update the tracker model re-

spect to the new appearance of the target and background

over time. Learning from real patches over online adap-

tation significantly improved the robustness of our method

against challenging deformation, scaling, and background

clutter. We demonstrated the competitive accuracy and su-

perior tracking speed of our method compared to recent CF-

based and deep trackers over an extensive evaluation.
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