
Need for Speed: A Benchmark for Higher Frame Rate Object Tracking

Hamed Kiani Galoogahi1*, Ashton Fagg2*, Chen Huang1, Deva Ramanan1 and Simon Lucey1

1Robotics Institute, Carnegie Mellon University
2SAIVT Lab, Queensland University of Technology

{hamedk,chenh2}@andrew.cmu.edu ashton@fagg.id.au {deva,slucey}@cs.cmu.edu

Abstract

In this paper, we propose the first higher frame rate

video dataset (called Need for Speed - NfS) and bench-

mark for visual object tracking. The dataset consists of

100 videos (380K frames) captured with now commonly

available higher frame rate (240 FPS) cameras from real

world scenarios. All frames are annotated with axis aligned

bounding boxes and all sequences are manually labelled

with nine visual attributes - such as occlusion, fast motion,

background clutter, etc. Our benchmark provides an exten-

sive evaluation of many recent and state-of-the-art trackers

on higher frame rate sequences. We ranked each of these

trackers according to their tracking accuracy and real-time

performance. One of our surprising conclusions is that at

higher frame rates, simple trackers such as correlation fil-

ters outperform complex methods based on deep networks.

This suggests that for practical applications (such as in

robotics or embedded vision), one needs to carefully trade-

off bandwidth constraints associated with higher frame rate

acquisition, computational costs of real-time analysis, and

the required application accuracy. Our dataset and bench-

mark allows for the first time (to our knowledge) systematic

exploration of such issues, and will be made available to

allow for further research in this space.

1. Introduction

Visual object tracking is a fundamental task in computer

vision which has implications for a bevy of applications:

surveillance, vehicle autonomy, video analysis, etc. The vi-

sion community has shown an increasing degree of interest

in the problem - with recent methods becoming increasingly

sophisticated and accurate [9, 14, 11, 1, 2]. However, most

of these algorithms - and the datasets they have been evalu-

ated upon [38, 37, 23] - have been aimed at the canonical ap-

proximate frame rate of 30 Frames Per Second (FPS). Con-

*The first two authors contributed equally.

#	00001 #	00553 #	00737

#	00001 #	00721 #	01050 #	02110

#	00001 #	00225 #	00390

#	00001 #	00177 #	00273

Figure 1. The effect of tracking higher frame rate videos. Top rows

illustrate the robustness of tracking higher frame rate videos (240

FPS) versus lower frame rate videos (30 FPS) for a Correlation Fil-

ter (BACF with HOG) and a deep tracker (MDNet). Bottom rows

show if higher frame rate videos are available, cheap CF track-

ers (Staple and BACF) can outperform complicated deep trackers

(SFC and MDNet) on challenging situations such as fast motion,

rotation, illumination and cluttered background. Predicted bound-

ing boxes of these methods are shown by different colors. HFR

and LFR refer to Higher and Lower Frame Rate videos.

sumer devices with cameras such as smart phones, tablets,

drones, and robots are increasingly coming with higher

frame rate cameras (240 FPS now being standard on many

smart phones, tablets, drones, etc.). The visual object track-

ing community is yet to adapt to the changing landscape of

what “real-time” means and how faster frame rates effect

the choice of tracking algorithm one should employ.

In recent years, significant attention has been paid to

Correlation Filter (CF) based methods [3, 14, 9, 16, 17, 1]

for visual tracking. The appeal of correlation filters is

their efficiency - a discriminative tracker can be learned on-

11125

line from a single frame and adapted after each subsequent

frame. This online adaptation process allows for impres-

sive tracking performance from a relatively low capacity

learner. Further, CFs take advantage of intrinsic compu-

tational efficiency afforded from operating in the Fourier

domain [21, 14, 3].

More recently, however, the visual tracking community

has started to focus on improving reliability and robustness

through advances in deep learning [2, 32, 34]. While such

methods have been shown to work well, their use comes at a

cost. First, extracting discriminative features from CNNs or

applying deep tracking frameworks is computationally ex-

pensive. Some deep methods operate at only a fraction of

a frame per second, or require a high-end GPU to achieve

real time performance. Second, training deep trackers can

sometimes require a very large amount of data, as the learn-

ers are high capacity and require a significant amount of

expense to train.

It is well understood that the central artifact that affects

a visual tracker’s performance is tolerance to appearance

variation from frame to frame. Deep tracking methods have

shown a remarkable aptitude for providing such tolerance

- with the unfortunate drawback of having a considerable

computational footprint [32, 34]. In this paper we want to

explore an alternate thesis. Specifically, we want to explore

that if we actually increase the frame rate - thus reducing the

amount of appearance variation per frame - could we get

away with substantially simpler tracking algorithms (from

a computational perspective)? Further, could these compu-

tational savings be dramatic enough to cover the obvious

additional cost of having to process a significant number

of more image frames per second. Due to the widespread

availability of higher frame rate (e.g. 240 FPS) cameras on

many consumer devices we believe the time is ripe to ex-

plore such a question.

Inspired by the recent work of Handa et al. [12] in visual

odometry, we believe that increasing capture frame rate al-

lows for a significant boost in tracking performance without

the need for deep features or complex trackers. We do not

dismiss deep trackers or deep features, however we show

that under some circumstances they are not necessary. By

trading tracker capacity for higher frame rates, we believe

that more favourable runtime performance can be obtained,

particularly on devices with resource constraints, while still

obtaining competitive tracking accuracy.

Contributions: In this paper, we present the Need for

Speed (NfS) dataset and benchmark, the first benchmark

(to our knowledge) for higher frame rate general object

tracking. We use our dataset to evaluate numerous state

of the art tracking methods, including CFs and deep learn-

ing based methods. An exciting outcome of our work was

the unexpected result that if a sufficiently higher frame rate

can be attained, CFs with cheap hand-crafted features (e.g.

HOG [6]) can achieve very competitive (even higher) accu-

racy and superior computational efficiency compared to the

state of the art complex deep trackers.

2. Related Work

2.1. Tracking Datasets

Standard tracking datasets such as OTB100 [38],

VOT14 [18] and ALOV300 [31] have been widely used to

evaluate current tracking methods in the literature. These

datasets display annotated generic objects in real-world sce-

narios captured by low frame rate cameras (i.e. 30 FPS).

Existing tracking datasets are briefly described as below.

OTB50 and OTB100: OTB50 [37] and OTB100 [38] be-

long to the Object Tracking Benchmark (OTB) with 50 and

100 sequences, respectively. OTB50 is a subset of OTB100,

and both datasets are annotated with bounding boxes as

well as 11 different attributes such as illumination variation,

scale variation and occlusion and deformation.

Temple-Color 128 (TC128): This dataset consists of 128

videos which was specifically designed for the evaluation of

color-enhanced trackers. Similar to OTBs, TC128 provides

per frame bounding boxes and 11 per video attributes [23].

VOT14 and VOT15: VOT14 [18] and VOT15 [19] consist

of 25 and 30 challenging videos, respectively. All videos are

labelled with rotated bounding boxes- rather than upright

ones- with per frame attribute annotation.

ALOV300: This dataset [31] contains 314 sequences.

Videos are labeled with 14 visual attributes such as low

contrast, long duration, confusion, zooming camera, motion

smoothness, moving camera and transparency.

UAV123: This dataset [26] is created for Unmanned Aerial

Vehicle (UAV) target tracking. There are 128 videos in

this dataset, 115 videos captured by UAV cameras and 8

sequences rendered by a UAV simulator, which are all an-

notated with bounding boxes and 12 attributes.

Table 1 compares the NfS dataset with these datasets,

showing that NfS is the only dataset with higher frame rate

videos captured at 240 FPS. Moreover, in terms of num-

ber of frames, NfS is the largest dataset with 380K frames

which is more than two times bigger than ALOV300.

2.2. Tracking Methods

Recent state-of-the-art trackers can be generally divided

into two categories, including correlation filter (CF) track-

ers [1, 14, 8, 24, 10] and deep trackers [27, 2, 35, 32]. We

briefly review each of these two categories as following.

Correlation Filter Trackers: The interest in employ-

ing CFs for visual tracking was ignited by the seminal

MOSSE filter [3] with an impressive speed of ∼700 FPS,

1126

Table 1. Comparing NfS with other object tracking datasets.

UAV123 OTB50 OTB100 TC128 VOT14 VOT15 ALOV300 NfS

[26] [37] [38] [23] [18] [19] [31]

Capture frame rate 30 30 30 30 30 30 30 240

Videos 123 51 100 129 25 60 314 100

Min frames 109 71 71 71 171 48 19 169

Mean frames 915 578 590 429 416 365 483 3830

Max frames 3085 3872 3872 3872 1217 1507 5975 20665

Total frames 112578 29491 59040 55346 10389 21871 151657 383000

Duration (sec.) 3752 938.0 1968 1844 346 720 5055 1595

and the capability of online adaptation. Thereafter, sev-

eral works [14, 1, 7, 11, 25] were built upon the MOSSE

showing notable improvement by learning CF trackers from

more discriminative multi-channel features (e.g. HOG [6])

rather than pixel values. KCF [14] significantly improved

MOSSE’s accuracy by real-time learning of kernelized CFs

on HOG features. Trackers such as Staple [1], LCT [25] and

SAMF [11] were developed to improve KCF’s robustness

to object deformation and scale change. Kiani et al. [17]

showed that learning such trackers in the frequency domain

is highly affected by boundary effects, leading to subop-

timal performance [9]. The CF with Limited Boundaries

(CFLB) [17], Spatially Regularized CF (SRDCF) [9] and

the Background-Aware CF (BACF) [15] have proposed so-

lutions to mitigate these boundary effects in the Fourier do-

main, with impressive results.

Recently, learning CF trackers from deep Convolutional

Neural Networks (CNNs) features [30, 20] has offered su-

perior results on several standard tracking datasets [10,

8, 24]. The central tenet of these approaches (such as

HCF [24] and HDT [29]) is that- even by per frame on-

line adaptation- hand-crafted features such as HOG are not

discriminative enough to capture the visual difference be-

tween consecutive frames in low frame rate videos. Despite

their notable improvement, the major drawback of such CF

trackers is their intractable complexity (∼0.2 FPS on CPUs)

mainly needed for extracting deep features and computing

Fourier transforms on hundreds of feature channels.

Deep Trackers: Recent deep trackers [36, 27, 34] repre-

sent a new paradigm in tracking. Instead of hand-crafted

features, a deep network trained for a non-tracking task

(such as object recognition [20]) is updated with video

data for generic object tracking. Unlike the direct combi-

nation of deep features with the traditional shallow meth-

ods e.g. CFs [10, 24, 8, 29], the updated deep trackers

aim to learn from scratch the target-specific features for

each new video. For example, the MDNet [27] learns

generic features on a large set of videos and updates the so

called domain-specific layers for unseen ones. The more re-

lated training set and unified training and testing approaches

make MDNet win the first place in the VOT15 Challenge.

Wang et al. [34] proposed to use fully convolutional net-

works (FCNT) with feature map selection mechanism to

improve performance. However, such methods are compu-

tationally very expensive (even with a high end GPU) due

to the fine-tuning step required to adapt the network from a

large number of example frames. There are two high-speed

deep trackers GOTURN [13] and SFC [2] that are able to

run at 100 FPS and 75 FPS respectively on GPUs. Both

of these methods train a Siamese network offline to predict

motion between two frames (either using deep regression

or a similarity comparison). At test time, the network is

evaluated without any fine-tuning. Thus, these trackers are

significantly less expensive because the only computational

cost is the fixed feed-forward process. For these trackers,

however, we remark that there are two major drawbacks.

First, their simplicity and fixed-model nature can lead to

high speed, but also lose the ability to update the appearance

model online which is often critical to account for drastic

appearance changes. Second, on modern CPUs, their speed

becomes no more than 3 FPS, which is too slow for practical

use on devices with limited computational resources.

Other types of trackers such as those in [39, 4, 28, 41]

have not been considered as the state of the art over the last

five years, thus, evaluating such methods on higher frame

rate is outside of the scope of this work.

3. NfS Dataset

The NfS datset consists of 100 higher frame rate videos

captured at 240 FPS. We captured 75 videos using the

iPhone 6 (and above) and the iPad Pro which are capa-

ble of capturing 240 frames per second. We also included

25 sequences from YouTube, which were captured at 240

FPS from a variety of different devices. All 75 captured

videos come with corresponding IMU and Gyroscope raw

data gathered during the video capturing process. Although

we make no use of such data in this paper, we will make the

data publicly available for potential applications.

The tracking targets include (but not limited to) vehicle

(bicycle, motorcycle, car), person, face, animal (fish, bird,

mammal, insect), aircraft (airplane, helicopter, drone), boat,

and generic objects (e.g. sport ball, cup, bag, etc.). Each

1127

Table 2. Distribution of visual attributes within the NfS dataset,

showing the number of coincident attributes across all videos.

Please refer to Section 3 for more details.
IV SV OCC DEF FM VC OV BC LR

IV 45 39 23 12 33 17 9 16 8

SV 39 83 41 36 57 41 21 28 8

OCC 23 41 51 21 31 23 10 19 8

DEF 12 36 21 38 19 30 4 13 1

FM 33 57 31 19 70 31 20 24 4

VC 17 41 23 30 31 46 9 16 0

OV 9 21 10 4 20 9 22 10 4

BC 16 28 19 13 24 16 10 36 6

LR 8 8 8 1 4 0 4 6 10

frame in NfS is annotated with an axis aligned bounding

box using the VATIC toolbox [33]. Moreover, all videos are

labeled with nine visual attributes, including occlusion, illu-

mination variation (IV), scale variation (SV), object defor-

mation (DEF), fast motion (FM), viewpoint change (VC),

out of view (OV), background clutter (BC) and low reso-

lution (LR). The distribution of these attributes for NfS is

presented in Table 2. Example frames of the NfS dataset

and detailed description of each attribute are provided in the

supplementary material.

4. Evaluation

Evaluated Algorithms: We evaluated 15 recent trackers

on the NfS dataset. We generally categorized these trackers

based on their learning strategy and utilized feature in three

classes including CF trackers with hand-crafted features

(BACF [15], SRDCF [9], Staple [1], DSST [7], KCF [14],

LCT [25], SAMF [22] and CFLB [17]), CF trackers with

deep features (HCF [24] and HDT [29]) and deep trackers

(MDNet [27], SiameseFc [2], FCNT [34], GOTURN [13]).

We also included MEEM [40] in the evaluation as the state

of the art SVM-based tracker with hand-crafted feature.

Evaluation Methodology: We use the success metric to

evaluate all the trackers [37]. Success measures the in-

tersection over union (IoU) of predicted and ground truth

bounding boxes. The success plot shows the percentage of

bounding boxes whose IoU is larger than a given threshold.

We use the Area Under the Curve (AUC) of success plots to

rank the trackers. We also compare all the trackers by their

success rate at the conventional thresholds of 0.50 (IoU >

0.50) [37]. Moreover, we report the relative improvement

which is reduced error
error of lower frame rate tracking

, where the reducer error

is the difference between the error (1-success rate at IoU >

0.50) of higher frame rate and lower frame rate tracking.

Tracking Scenarios: To measure the effect of capture

frame rate on tracking performance, we consider two dif-

ferent tracking scenarios. At the first scenario, we run each

Figure 2. Top) a frame captured by a high frame rate camera (240

FPS), the same frame with synthesized motion blur, and the same

frame captured by a low frame rate camera (30 FPS) with real mo-

tion blur. Bottom) sampled frames with corresponding synthesized

motion blur. Please refer to Tracking Scenarios for more details.

tracker over all frames of the higher frame rate videos (240

FPS) in the NfS dataset. The second scenario, on the other

hand, involves tracking lower frame rate videos (30 FPS).

Since all videos in the NfS dataset are captured by high

frame rate cameras, and thus no 30 FPS video is available,

we simply create a lower frame rate version of NfS by tem-

poral sampling every 8th frame. In such case, we track

the object over each 8th frame instead of all frames. This

simply models the large visual difference between two fol-

lowing sampled frames as one may observe in a real lower

frame rate video. However, the main issue of temporal

sampling is that since the videos are originally captured by

higher frame rate cameras with very short exposure time,

the motion blur caused by fast moving object/camera is sig-

nificantly diminished. This leads to excluding the effect of

motion blur in lower frame rate tracking. To address this

concern and make the evaluation as realistic as possible,

we simulate motion blur over the lower frame rate videos

created by temporal sampling. We utilize a leading visual

effects package (Adobe After Effects) to synthesize motion

blur over the sampled frames. To verify the realism of the

synthesized motion blur, Fig. 2 demonstrates a real frame

(of a checkerboard) captured by a 240 FPS camera, the same

frame with synthesized motion blur and a frame with real

motion blur captured by a 30 FPS camera with identical ex-

trinsic and intrinsic settings. To capture two sequences with

different frame rates, we put two iPhones capture rates of

30 and 240 FPS side-by-side and then capture sequences

from the same scene simultaneously. Fig. 2 also shows two

frames before and after adding synthesized motion blur.

4.1. Adjusting Learning Rate of CF Trackers

A unique characteristic of CF trackers is their inher-

ent ability to update the tracking model online, when new

frames become available. The impact of each frame in

learning/updating process is controlled by a constant weight

called learning (or adaptation) rate [3]. Smaller rates in-

1128

Table 3. Evaluating the effect of updating learning rate of each CF tracker on tracking higher frame rate videos (240 FPS). Accuracy is

reported as success rate (%) at IoU > 0.50. Please refer to Section 4.1 for more details about the original and updated learning rates.

BACF SRDCF Staple LCT DSST SAMF KCF CFLB HCF HDT

Original LR 48.8 48.2 51.1 34.5 44.0 42.8 28.7 18.3 33.0 57.7

Updated LR 60.5 55.8 53.4 36.4 53.4 51.7 34.8 22.9 41.2 59.6

BACF SRDCF Staple LCT DSST SAMF KCF CFLB HCF HDT MEEM MDNet SFC FCNT GOTURN

Trackers

0

10

20

30

40

50

60

70

S
u
c
c
e
s
s
 r

a
te

 (
%

),
 a

t
Io

U
 >

 0
.5

0

30 FPS-MB 30 FPS- no MB 240 FPS

Figure 3. Comparing higher frame rate tracking (240 FPS) versus lower frame rate tracking (30 FPS) for each tracker. For higher frame

rate tracking CF trackers employ updated learning rates. The results of lower frame rate tracking are plotted for videos with and without

motion blur (30 FPS-MB and 30 FPS- no MB). Results are reported as success rate (%) at IoU > 0.50.

crease the impact of older samples, while bigger ones give

higher weight to samples from more recent frames. Each

CF tracker has its own learning rate which was tuned for

robust tracking on low frame rate sequences (30 FPS). To

retain the robustness of such methods for higher frame rate

videos (240 FPS), we approximately adjust their learning

rate to be LRnew = 1

8
LRold. Since the number of frames

in 240 FPS videos is 8 times more than that in 30 FPS se-

quences over a fixed period of time, dividing learning rates

by 8 can keep the balance between CFs updating capacity

and smaller inter-frame variation in 240 FPS videos. Proof

is provided in the supplementary material.

Table 3 shows the tracking accuracy (success rate at IoU

> 0.50) of 10 recent CF trackers on the NfS 240 FPS

sequences, comparing tracking by original learning rates

(LRold from their reference papers) versus updated rates

LRnew. The result shows that adjusting the learning rates

notably improves the accuracy of all the CF trackers. For

some trackers such as BACF, SRDCF, DSST and HCF there

is a substantial improvement, while for Staple, LCT and

HDT the improvement is much smaller (∼ 2%). This is

most likely because of the complementary parts of these

trackers. Staple utilizes color scores per pixel, and LCT

uses random fern classifiers as additional detectors which

are independent of their CF modules. Similarly, HDT em-

ploys the Hedge algorithm [5] as a multi-experts decision

maker to merge hundreds of weak CF trackers in a strong

tracker. Thus, updating their learning rates offers less im-

provement compared to those trackers such as BACF and

DSST that solely track by a single CF based tracker.

4.2. Per Tracker Evaluation

Figure 3 compares tracking higher versus lower frame

rate videos for each evaluated method. For lower frame

rate tracking (30 FPS) results are reported for both with and

without motion blur. All CF trackers achieve a significant

increase in performance when tracking on 240 FPS videos.

This is because in higher frame rate video, the appearance

change between two adjacent frames is very small, which

can be effectively learned by per frame CF online adapta-

tion. Among deep trackers, FCNT achieved the most im-

provement (6%), since this tracker also fine-tunes every 20

frames using the most confident tracking results. The lowest

improvement belongs to SFC and MDNet. These methods

are trained off-line and do not update a model or maintain

a memory of past appearances [2]. Thus, tracking higher

frame rate videos offers much smaller improvement to such

trackers. When evaluating lower frame rate videos, a slight

performance drop can be observed with the presence of mo-

tion blur, demonstrating that all trackers are reasonably ro-

bust towards motion blur.

4.3. Overall Comparison

The overall comparison of all trackers over three tracking

settings- higher frame rate tracking (240 FPS), lower frame

rate tracking with synthesized motion blur (30 FPS MB) and

lower frame rate tracking without motion blur (30 FPS no

MB)- is demonstrated in Fig. 4 (success plots) and Table 4

(AUCs and tracking speed).

Accuracy Comparison: For lower frame rate tracking

without motion blur MDNet achieved the best performance

followed by SFC. HDT which utilizes deep features over a

CF framework obtained the third rank followed by FCNT.

Almost the same ranking is observed for lower frame rate

tracking with motion blur. Overall, deep trackers outper-

formed CF trackers for lower frame rate tracking. This is

not surprising, as deep trackers have a higher learning ca-

pacity and employ more discriminative deep features which

are able to handle the large variation in adjacent frames

which is present in lower frame rate videos.

1129

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Overlap threshold

0

10

20

30

40

50

60

70

80

S
u
c
c
e
s
s
 r

a
te

 (
%

)

MDNet [42.9]

HDT [40.3]

SFC [40.1]

FCNT [39.7]

SRDCF [35.1]

BACF [34.1]

GOTURN [33.4]

Staple [33.3]

MEEM [29.7]

HCF [29.5]

SAMF [29.3]

DSST [28.0]

LCT [23.8]

KCF [21.8]

CFLB [14.3]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Overlap threshold

0

10

20

30

40

50

60

70

80

S
u
c
c
e
s
s
 r

a
te

 (
%

)

MDNet [44.4]

SFC [42.3]

HDT [41.4]

FCNT [40.6]

GOTURN [37.8]

SRDCF [35.8]

BACF [35.3]

Staple [34.5]

MEEM [32.9]

SAMF [30.3]

HCF [30.2]

DSST [29.5]

LCT [24.9]

KCF [22.3]

CFLB [14.9]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Overlap threshold

0

10

20

30

40

50

60

70

80

S
u
c
c
e
s
s
 r

a
te

 (
%

)

BACF [49.6]

HDT [47.8]

SFC [47.8]

MDNet [47.3]

SRDCF [47.1]

FCNT [46.9]

Staple [45.3]

DSST [44.8]

SAMF [43.9]

HCF [39.5]

GOTURN [38.6]

MEEM [37.5]

LCT [34.4]

KCF [33.3]

CFLB [19.9]

(a) (b) (c)

Figure 4. Evaluating trackers over three tracking scenarios, (a) lower frame rate tracking with synthesized motion blur, (b) and lower frame

rate tracking without motion blur, and (c) higher frame rate tracking. AUCs are reported in brackets.

Table 4. Comparing trackers on three tracking scenarios including higher frame rate tracking (240 FPS), lower frame rate tracking with

synthesized motion blur (30 FPS MB) and lower frame rate tracking without motion blur (30 FPS no MB). Results are reported as the

AUC of success plots. We also show the speed of each tracker on CPUs and/or GPUs if applicable. The first, second, third, forth and fifth

highest AUCs/speeds are highlighted in color.

BACF SRDCF Staple LCT DSST SAMF KCF CFLB HCF HDT MEEM MDNet SFC FCNT GOTURN

30 FPS- no MB 35.2 35.7 34.5 24.8 29.4 30.3 22.3 14.9 30.2 41.3 32.9 44.4 42.3 40.5 37.7

30 FPS- MB 34.0 35.1 33.2 23.7 28.0 29.2 21.7 14.2 29.5 40.3 29.6 42.9 40.1 39.7 33.4

240 FPS 49.5 47.1 45.3 34.3 44.8 43.9 33.3 19.9 39.5 47.8 37.5 47.3 47.7 46.9 38.6

Speed (CPU) 38.3 3.8 50.8 10.0 12.5 16.6 170.4 85.1 10.8 9.7 11.1 0.7 2.5 3.2 3.9

Speed (GPU) - - - - - - - - - 43.1 - 2.6 48.2 51.8 155.3

Surprisingly, the best accuracy of higher frame rate

tracking achieved by BACF (49.56), which is a CF tracker

with HOG features, followed by HDT (47.80)- a CF tracker

with deep features. SRDCF (47.13), Staple (45.34), DSST

(44.80) and SAMF (43.92) outperformed GOTURN (38.65)

and obtained very competitive accuracy compared to other

deep trackers including SFC (47.78), MDNet (47.34) and

FCNT (46.94). This implies that when higher frame rate

videos are available, the ability of CF trackers to adapt on-

line is of greater benefit than higher learning capacity of

deep trackers. The reasoning for this is intuitive, since

for higher frame rate video there is less appearance change

among consecutive frames, which can be efficiently mod-

eled by updating the tracking model at each frame even us-

ing simple hand-crafted features.

Run-time Comparison: The tracking speed of all evalu-

ated methods in FPS is reported in Table 4. For the sake

of fair comparison, we tested MATLAB implementations

of all methods (including deep trackers) on a 2.7 GHz Intel

Core i7 CPU with 16 GB RAM. We also reported the speed

of deep trackers on nVidia GeForce GTX Titan X GPU to

have a better sense of their run-time when GPUs are avail-

able. On CPUs, all CF trackers achieved much higher speed

compared to all deep trackers, because of their shallow ar-

chitecture and efficient computation in the Fourier domain.

Deep trackers on CPUs performed much slower than CFs,

with the exception of SRDCF (3.8 FPS). On GPU, how-

ever, deep trackers including GOTURN (155.3 FPS), FCNT

(51.8 FPS) and SFC (48.2 FPS) performed much faster than

on CPU. Their performance is comparable with many CF

trackers running on CPU, such as KCF (170.4 FPS), BACF

(38.3 FPS) and Staple (50.8 FPS). For tracking lower frame

rate videos, only BACF, Staple, KCF and CFLB can track at

or above real time on CPUs. GOTURN, FCNT and SFC of-

fer real-time tracking of lower frame rate videos on GPUs.

KCF (170.4 FPS) and GOTURN (155.3 FPS) are the only

trackers which can track higher frame rate videos almost

real time on CPUs and GPUs, respectively.

4.4. Attribute-based Evaluation

The attribute based evaluation of all trackers on three

tracking settings is shown in Fig. 6 (success rate at IoU >

0.50) and Table 5 (relative improvement). Similar to the

previous evaluation, the presence of motion blur slightly

degrades the performance of tracking lower frame rate se-

quences. For lower frame rate tracking, in general, deep

trackers outperformed CF trackers over all nine attributes,

MDNet outperformed SFC and FCNT, and HDT achieved

the superior performance compared to other CF trackers for

all attributes. Compared to lower frame rate tracking, track-

ing higher frame rate videos offers a notable improvement

of all trackers on all attributes except non-rigid deforma-

tion. This demonstrates the sensitivity of both CF based

and deep trackers to non-rigid deformation even when they

track higher frame rate videos. Fig. 6 shows that CF trackers

with hand-crafted features outperformed all deep trackers as

well as HDT for 6 attributes. More particularly, for illumi-

nation variation, occlusion, fast motion, out-of-view, back-

1130

SRDCF (soccer ball)

HDT (pingpong)

MDNet (tiger)

failure case (fish)

Figure 5. Rows(1-3) show tracking result of three trackers includ-

ing a CF tracker with HOG (SRDCF), a CF tracker with deep fea-

tures (HDT) and a deep tracker (MDNets), comparing lower frame

rate (green boxes) versus higher frame rate (red boxes) tracking.

Ground truth is shown by blue boxes. Last row visualizes a failure

case of higher frame rate tracking caused by non-rigid deformation

for BACF, Staple, MDNet and SFC.

ground clutter and low resolution CF trackers with hand-

crafted features (e.g. BACF and SRDCF) achieved superior

performance to all deep trackers and HDT. However, deep

tracker MDNet achieved the highest accuracy for scale vari-

ation (61.0), deformation (59.2) and view change (55.9),

followed by BACF for scale variation (60.1) and HDT for

deformation (57.6) and view change (54.8). The relative im-

provement of tracking higher frame rate versus lower frame

rate videos (with motion blur) is reported in Table 5.

4.5. Discussion and Conclusion

In this paper, we introduce the first higher frame rate ob-

ject tracking dataset and benchmark. We empirically evalu-

ate the performance of the state-of-the-art trackers with re-

spect to two different capture frame rates (30 FPS vs. 240

FPS), and find the surprising result that at higher frame

Table 5. Relative improvement (%) of high frame rate tracking

versus low frame rate tracking for each attribute.

IV SV OCC DEF FM VC OV BC LR

BACF 45.2 31.7 33.1 8.5 39.7 13.4 39.2 25.9 52.7

SRDCF 21.5 15.4 21.9 6.7 31.9 16.4 13.6 32.3 26.1

Staple 41.4 21.4 21.8 7.8 29.7 12.6 25.4 7.1 28.7

LCT 16.1 7.1 18.0 5.4 17.4 8.9 7.8 20.3 26.1

DSST 38.5 30.0 26.4 9.1 35.0 19.0 26.3 25.4 17.7

SAMF 33.8 24.0 26.2 8.7 34.8 13.5 26.0 23.5 15.9

KCF 19.5 10.0 16.6 1.7 21.9 7.8 7.6 15.7 23.7

CFLB 11.1 10.9 10.1 1.0 13.0 2.1 9.1 11.2 14.5

HCF 14.9 9.0 20.2 6.2 19.2 9.4 13.6 20.3 32.0

HDT 22.2 19.5 10.0 5.3 23.6 14.8 25.5 9.4 17.2

MEEM 9.8 7.1 12.8 5.8 16.2 7.1 7.9 9.4 15.3

MDNet 13.1 10.8 8.4 2.7 17.8 13.4 7.2 10.9 6.4

SFC 24.3 19.9 14.8 9.3 23.5 14.7 20.7 13.5 15.0

FCNT 21.8 19.2 12.1 5.9 22.0 15.5 20.5 8.2 13.7

GOTURN 26.1 17.4 8.5 -3.1 20.8 12.2 20.3 12.4 -3.6

rates, simple trackers such as correlation filters trained on

hand-crafted features (e.g. HOG) can achieve very compet-

itive accuracy compared to complex trackers based on deep

architecture. This suggests that computationally tractable

methods such as cheap CF trackers in conjunction with

higher capture frame rate videos can be utilized to effec-

tively perform object tracking on devices with limited pro-

cessing resources such as smart phones, tablets, drones, etc.

As shown in Fig. 7, cheaper trackers on higher frame rate

video (e.g. KCF and Staple) have been demonstrated as

competitive with many deep trackers on lower frame rate

videos (such as HDT and FCNT).

Our results also suggest that traditional evaluation crite-

ria that trades off accuracy versus speed (e.g., Fig.7 in [19])

could possibly paint an incomplete picture. This is because,

up until now, accuracy has been measured without regard to

the frame rate of the video. As we show, this dramatically

underestimates the performance of high-speed algorithms.

In simple terms: the accuracy of a 240 FPS tracker cannot

be truly appreciated until it is run on a 240 FPS video! From

an embedded-vision perspective, we argue that the acquisi-

tion frame rate is a resource that should be explicitly traded

off when designing systems, just as is hardware (GPU vs

CPU). Our new dataset allows for, the first time, exploration

of such novel perspectives. Our dataset fills a need, the need

for speed.

Acknowledgment: This research was supported by the

NSF (CNS-1518865 and IIS-1526033) and the DARPA

(HR001117C0051). Additional support was provided by

the Intel Science and Technology Center for Visual Cloud

Systems, Google, and Autel Robotics. Any opinions, find-

ings, conclusions or recommendations expressed in this

work are those of the authors and do not reflect the view(s)

of their employers or the above-mentioned funding sources.

1131

30 FPS MB 30 FPS- no MB 240 FPS

Background clutter Scale variation Occlusion

0

10

20

30

40

50

60

S
u
c
c
e
s
s
 r

a
te

 (
%

),
 I
o
U

 >
 0

.5
0

BAC
F

SR
D
C
F

Sta
pl
e

LC
T

D
SST

SAM
F

KC
F

C
FLB

H
C
F

H
D
T

M
EEM

M
D
N
et

SFC

FC
N
T

G
O
TU

R
N

0

20

40

60

80

S
u
c
c
e
s
s
 r

a
te

 (
%

),
 I
o
U

 >
 0

.5
0

BAC
F

SR
D
C
F

Sta
pl
e

LC
T

D
SST

SAM
F

KC
F

C
FLB

H
C
F

H
D
T

M
EEM

M
D
N
et

SFC

FC
N
T

G
O
TU

R
N

0

10

20

30

40

50

60

S
u
c
c
e
s
s
 r

a
te

 (
%

),
 I
o
U

 >
 0

.5
0

BAC
F

SR
D
C
F

Sta
pl
e

LC
T

D
SST

SAM
F

KC
F

C
FLB

H
C
F

H
D
T

M
EEM

M
D
N
et

SFC

FC
N
T

G
O
TU

R
N

Illumination variation Fast motion Out-of-view

0

20

40

60

80

S
u
c
c
e
s
s
 r

a
te

 (
%

),
 I
o
U

 >
 0

.5
0

BAC
F

SR
D
C
F

Sta
pl
e

LC
T

D
SST

SAM
F

KC
F

C
FLB

H
C
F

H
D
T

M
EEM

M
D
N
et

SFC

FC
N
T

G
O
TU

R
N

0

20

40

60

80

S
u
c
c
e
s
s
 r

a
te

 (
%

),
 I
o
U

 >
 0

.5
0

BAC
F

SR
D
C
F

Sta
pl
e

LC
T

D
SST

SAM
F

KC
F

C
FLB

H
C
F

H
D
T

M
EEM

M
D
N
et

SFC

FC
N
T

G
O
TU

R
N

0

20

40

60

80

S
u
c
c
e
s
s
 r

a
te

 (
%

),
 I
o
U

 >
 0

.5
0

BAC
F

SR
D
C
F

Sta
pl
e

LC
T

D
SST

SAM
F

KC
F

C
FLB

H
C
F

H
D
T

M
EEM

M
D
N
et

SFC

FC
N
T

G
O
TU

R
N

Deformation Viewpoint change Low resolution

0

20

40

60

80

S
u
c
c
e
s
s
 r

a
te

 (
%

),
 I
o
U

 >
 0

.5
0

BAC
F

SR
D
C
F

Sta
pl
e

LC
T

D
SST

SAM
F

KC
F

C
FLB

H
C
F

H
D
T

M
EEM

M
D
N
et

SFC

FC
N
T

G
O
TU

R
N

0

10

20

30

40

50

60

S
u
c
c
e
s
s
 r

a
te

 (
%

),
 I
o
U

 >
 0

.5
0

BAC
F

SR
D
C
F

Sta
pl
e

LC
T

D
SST

SAM
F

KC
F

C
FLB

H
C
F

H
D
T

M
EEM

M
D
N
et

SFC

FC
N
T

G
O
TU

R
N

0

20

40

60

80

S
u
c
c
e
s
s
 r

a
te

 (
%

),
 I
o
U

 >
 0

.5
0

BAC
F

SR
D
C
F

Sta
pl
e

LC
T

D
SST

SAM
F

KC
F

C
FLB

H
C
F

H
D
T

M
EEM

M
D
N
et

SFC

FC
N
T

G
O
TU

R
N

Figure 6. Attribute based evaluation. Results are reported as success rate (%) at IoU > 0.50.

BACF-LFR tracking-CPU

BACF-HFR tracking-CPU

SRDCF-LFR tracking-CPU

SRDCF-HFR tracking-CPU

Staple-LFR tracking-CPU

Staple-HFR tracking-CPU

SAMF-LFR tracking-CPU

SAMF-HFR tracking-CPU

SAMF-HFR tracking-CPU

KCF-LFR tracking-CPU

KCF-HFR tracking-CPU

HDT-LFR tracking-CPU

HDT-HFR tracking-CPU

HDT-HFR tracking-GPU

HDT-LFR tracking-GPU

MDNet-LFR tracking-CPU

MDNet-HFR tracking-CPU

MDNet-HFR tracking-GPU

MDNet-HFR tracking-CPU

MDNet-HFR tracking-GPU

MDNet-LFR tracking-GPU

SFC-LFR tracking-CPU

SFC-HFR tracking-CPU

SFC-HFR tracking-GPU

SFC-LFR tracking-GPU

FCNT-LFR tracking-CPU

FCNT-HFR tracking-CPU

FCNT-HFR tracking-GPU

FCNT-HFR tracking-CPU

FCNT-HFR tracking-GPU

FCNT-LFR tracking-GPU

Goturn-LFR tracking-CPU

Goturn-HFR tracking-CPU

Goturn-HFR tracking-GPU

Goturn-LFR tracking-GPU

10
-3

10
-2

10
-1

10
0

10
1

Real-time performance

20

25

30

35

40

45

50

S
u

c
c
e

s
s
 r

a
te

 (
%

)

Figure 7. This plot shows the affect of resource availability (GPUs vs. CPUs) and frame rate of captured videos (lower vs. higher frame

rate) on the top-10 evaluated trackers accuracy and real-time performance. Real-time performance is computed as the ratio of each tracker’s

speed (FPS) to frame rate of the target videos (30 vs. 240 FPS). The vertical line on the plot shows the boundary of being real-time (frame

rate of the target video is the same as the tracker’s speed). Trackers which are plotted at the left side of the line are not able to track

real-time (according to their tracking speed and video frame rate). GPU results are highlighted in yellow.

1132

References

[1] L. Bertinetto, J. Valmadre, S. Golodetz, O. Miksik, and

P. H. S. Torr. Staple: Complementary learners for real-time

tracking. In CVPR, June 2016. 1, 2, 3, 4

[2] L. Bertinetto, J. Valmadre, J. F. Henriques, A. Vedaldi, and

P. H. Torr. Fully-convolutional siamese networks for object

tracking. In ECCV, pages 850–865, 2016. 1, 2, 3, 4, 5

[3] D. S. Bolme, J. R. Beveridge, B. A. Draper, and Y. M. Lui.

Visual object tracking using adaptive correlation filters. In

CVPR, pages 2544–2550. IEEE, 2010. 1, 2, 4

[4] W. Bouachir and G.-A. Bilodeau. Part-based tracking via

salient collaborating features. In WACV, pages 78–85. IEEE,

2015. 3

[5] K. Chaudhuri, Y. Freund, and D. J. Hsu. A parameter-free

hedging algorithm. In NIPS, pages 297–305, 2009. 5

[6] N. Dalal and B. Triggs. Histograms of oriented gradients for

human detection. In CVPR, volume 1, pages 886–893, 2005.

2, 3

[7] M. Danelljan, G. Häger, F. Khan, and M. Felsberg. Accurate

scale estimation for robust visual tracking. In BMVC, 2014.

3, 4

[8] M. Danelljan, G. Hager, F. Shahbaz Khan, and M. Fels-

berg. Convolutional features for correlation filter based vi-

sual tracking. In CVPR Workshop, pages 58–66, 2015. 2,

3

[9] M. Danelljan, G. Hager, F. Shahbaz Khan, and M. Felsberg.

Learning spatially regularized correlation filters for visual

tracking. In ICCV, pages 4310–4318, 2015. 1, 3, 4

[10] M. Danelljan, A. Robinson, F. S. Khan, and M. Felsberg.

Beyond correlation filters: Learning continuous convolution

operators for visual tracking. In ECCV, pages 472–488,

2016. 2, 3

[11] M. Danelljan, F. Shahbaz Khan, M. Felsberg, and J. Van de

Weijer. Adaptive color attributes for real-time visual track-

ing. In CVPR, pages 1090–1097, 2014. 1, 3

[12] A. Handa, R. A. Newcombe, A. Angeli, and A. J. Davison.

Real-time camera tracking: When is high frame-rate best?

In ECCV, pages 222–235, 2012. 2

[13] D. Held, S. Thrun, and S. Savarese. Learning to track at 100

fps with deep regression networks. In ECCV, 2016. 3, 4

[14] J. F. Henriques, R. Caseiro, P. Martins, and J. Batista. High-

speed tracking with kernelized correlation filters. PAMI,

37(3):583–596, 2015. 1, 2, 3, 4

[15] H. Kiani Galoogahi, A. Fagg, and S. Lucey. Learning

background-aware correlation filters for visual tracking. In

ICCV, 2017. 3, 4

[16] H. Kiani Galoogahi, T. Sim, and S. Lucey. Multi-channel

correlation filters. In ICCV, pages 3072–3079, 2013. 1

[17] H. Kiani Galoogahi, T. Sim, and S. Lucey. Correlation filters

with limited boundaries. In CVPR, pages 4630–4638, 2015.

1, 3, 4

[18] M. Kristan, J. Matas, A. Leonardis, and et al. The visual ob-

ject tracking vot2014 challenge results. In ECCV Workshop,

2014. 2, 3

[19] M. Kristan, J. Matas, A. Leonardis, M. et alFelsberg, L. Ce-

hovin, G. Fernandez, T. Vojir, G. Hager, G. Nebehay, and

R. Pflugfelder. The visual object tracking vot2015 challenge

results. In ICCV Workshop, pages 1–23, 2015. 2, 3, 7

[20] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

NIPS, pages 1097–1105, 2012. 3

[21] B. V. Kumar. Correlation pattern recognition. Cambridge

University Press, 2005. 2

[22] Y. Li and J. Zhu. A scale adaptive kernel correlation filter

tracker with feature integration. In ECCV, pages 254–265,

2014. 4

[23] P. Liang, E. Blasch, and H. Ling. Encoding color informa-

tion for visual tracking: algorithms and benchmark. ITIP,

24(12):5630–5644, 2015. 1, 2, 3

[24] C. Ma, J.-B. Huang, X. Yang, and M.-H. Yang. Hierarchical

convolutional features for visual tracking. In CVPR, pages

3074–3082, 2015. 2, 3, 4

[25] C. Ma, X. Yang, C. Zhang, and M.-H. Yang. Long-term

correlation tracking. In CVPR, pages 5388–5396, 2015. 3, 4

[26] M. Mueller, N. Smith, and B. Ghanem. A benchmark and

simulator for uav tracking. In ECCV, pages 445–461, 2016.

2, 3

[27] H. Nam and B. Han. Learning multi-domain convolutional

neural networks for visual tracking. 2016. 2, 3, 4

[28] P. Pérez, C. Hue, J. Vermaak, and M. Gangnet. Color-based

probabilistic tracking. Computer visionECCV 2002, pages

661–675, 2002. 3

[29] Y. Qi, S. Zhang, L. Qin, H. Yao, Q. Huang, J. Lim, and M.-H.

Yang. Hedged deep tracking. In CVPR, pages 4303–4311,

2016. 3, 4

[30] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. arXiv preprint

1409.1556, 2014. 3

[31] A. W. Smeulders, D. M. Chu, R. Cucchiara, S. Calderara,

A. Dehghan, and M. Shah. Visual tracking: An experimental

survey. TPAMI, 36(7). 2, 3

[32] R. Tao, E. Gavves, and A. W. Smeulders. Siamese instance

search for tracking. arXiv preprint 1605.05863, 2016. 2

[33] C. Vondrick, D. Patterson, and D. Ramanan. Efficiently scal-

ing up crowdsourced video annotation. IJCV, 101(1):184–

204, 2013. 4

[34] L. Wang, W. Ouyang, X. Wang, and H. Lu. Visual tracking

with fully convolutional networks. In ICCV, pages 3119–

3127, 2015. 2, 3, 4

[35] L. Wang, W. Ouyang, X. Wang, and H. Lu. Stct: Sequen-

tially training convolutional networks for visual tracking.

CVPR, 2016. 2

[36] N. Wang and D.-Y. Yeung. Learning a deep compact image

representation for visual tracking. In NIPS, 2013. 3

[37] Y. Wu, J. Lim, and M.-H. Yang. Online object tracking: A

benchmark. In CVPR, pages 2411–2418, 2013. 1, 2, 3, 4

[38] Y. Wu, J. Lim, and M.-H. Yang. Object tracking benchmark.

PAMI, 37(9):1834–1848, 2015. 1, 2, 3

[39] W. Xiang and Y. Zhou. Part-based tracking with appearance

learning and structural constrains. In International Con-

ference on Neural Information Processing, pages 594–601.

Springer, 2014. 3

1133

[40] J. Zhang, S. Ma, and S. Sclaroff. MEEM: robust tracking

via multiple experts using entropy minimization. In ECCV,

pages 188–203, 2014. 4

[41] L. Zhao, X. Li, J. Xiao, F. Wu, and Y. Zhuang. Metric learn-

ing driven multi-task structured output optimization for ro-

bust keypoint tracking. In AAAI, pages 3864–3870, 2015.

3

1134

