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Abstract

While machine learning approaches to image restora-

tion offer great promise, current methods risk training mod-

els fixated on performing well only for image corruption of

a particular level of difficulty—such as a certain level of

noise or blur. First, we examine the weakness of conven-

tional “fixated” models and demonstrate that training gen-

eral models to handle arbitrary levels of corruption is in-

deed non-trivial. Then, we propose an on-demand learning

algorithm for training image restoration models with deep

convolutional neural networks. The main idea is to exploit

a feedback mechanism to self-generate training instances

where they are needed most, thereby learning models that

can generalize across difficulty levels. On four restora-

tion tasks—image inpainting, pixel interpolation, image de-

blurring, and image denoising—and three diverse datasets,

our approach consistently outperforms both the status quo

training procedure and curriculum learning alternatives.

1. Introduction

Deep convolutional networks [21, 36, 14] have swept the

field of computer vision and have produced stellar results on

various recognition benchmarks in the past several years.

Recently, deep learning methods are also becoming a pop-

ular choice to solve low-level vision tasks in image restora-

tion, with exciting results [8, 27, 23, 44, 6, 17, 31, 43].

Restoration tasks such as image super-resolution, inpaint-

ing, deconvolution, matting, and colorization have a wide

range of compelling applications. For example, deblurring

techniques can mitigate motion blur in photos, and denois-

ing methods can recover images corrupted by sensor noise.

A learning-based approach to image restoration enjoys

the convenience of being able to self-generate training in-

stances purely based on the original real images. Whereas

training an object recognition system entails collecting im-

ages manually labeled with object categories by human an-

notators, an image restoration system can be trained with

arbitrary, synthetically corrupted images. The original im-

age itself is the ground-truth the system learns to recover.

While existing methods take advantage of this conve-

Figure 1. Illustration of four image restoration tasks: image in-

painting, pixel interpolation, image deblurring, and image denois-

ing. Each task exhibits increasing difficulty based on size of in-

painting area, percentage of deleted pixels, degree of blurriness,

and severity of noise. Our work aims to train all-rounder models

that perform well across the spectrum of difficulty for each task.

nience, they typically do so in a problematic way. Image

corruption exists in various degrees of severity, and so in

real-world applications the difficulty of restoring images

will also vary significantly. For example, as shown in Fig. 1,

an inpainter may face images with varying sizes of miss-

ing content, and a deblurring system may encounter vary-

ing levels of blur. Intuitively, the more missing pixels or the

more severe the blur, the more difficult the restoration task.

However, the norm in existing deep learning methods is

to train a model that succeeds at restoring images exhibit-

ing a particular level of corruption difficulty. In particu-

lar, existing systems self-generate training instances with

a manually fixed hyper-parameter that controls the degree

of corruption—a fixed inpainting size [31, 43], a fixed per-

centage of corrupted pixels [43, 27], or a fixed level of white

Gaussian noise [27, 41, 16, 3]. The implicit assumption is

that at test time, either i) corruption will be limited to that

same difficulty, or ii) some other process, e.g., [26, 28, 4],

will estimate the difficulty level before passing the image to
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the appropriate, separately trained restoration system. Un-

fortunately, these are strong assumptions that remain diffi-

cult to meet in practice. As a result, existing methods risk

training fixated models: models that perform well only at

a particular level of difficulty. Indeed, deep networks can

severely overfit to a certain degree of corruption. Taking

the inpainting task as an example, a well-trained deep net-

work may be able to inpaint a 32×32 block out of a 64×64

image very well, then fails miserably at inpainting a (seem-

ingly easier) 10×10 block (see Fig. 2 and Sec. 4). Further-

more, as we will show, simply pooling training instances

across all difficulty levels makes the deep network struggle

to adequately learn the concept.

How should we train an image restoration system to suc-

ceed across a spectrum of difficulty levels? In this work we

explore ways to let a deep learning system take control and

guide its own training. This includes i) a solution that sim-

ply pools training instances from across difficulty levels, ii)

a solution that focuses on easy/hard examples, iii) curricu-

lum learning solutions that intelligently order the training

samples from easy to hard, and iv) a new on-demand learn-

ing solution for training general deep networks across diffi-

culty levels. Our approach relies on a feedback mechanism

that, at each epoch of training, lets the system guide its own

learning towards the right proportion of sub-tasks per diffi-

culty level. In this way, the system itself can discover which

sub-tasks deserve more or less attention.

To implement our idea, we devise a general encoder-

decoder network amenable to several restoration tasks. We

evaluate the approach on four low-level tasks—inpainting,

pixel interpolation, image deblurring, and denoising—and

three diverse datasets, CelebFaces Attributes [29], SUN397

Scenes [40], and the Denoising Benchmark 11 (DB11) [7,

3]. Across all tasks and datasets, the results consistently

demonstrate the advantage of our proposed method. On-

demand learning helps avoid the common (but thus far ne-

glected) pitfall of overly specializing deep networks to a

narrow band of distortion difficulty.

2. Related Work

Deep Learning in Low-Level Vision: Deep learning for

image restoration is on the rise. Vincent et al. [38] propose

one of the most well-known models: the stacked denoising

auto-encoder. A multi-layer perceptron (MLP) is applied

to image denoising by Burger et al. [3] and post-deblurring

denoising by Schuler et al. [35]. Convolutional neural net-

works are also applied to natural image denoising [16] and

used to remove noisy patterns (e.g., dirt/rain) [9]. Apart

from denoising, deep learning is gaining traction for var-

ious other low-level tasks: super-resolution [8, 17], in-

painting [31, 43], deconvolution [42], matting [6], and col-

orization [23, 44]. While many models specialize the ar-

chitecture towards one restoration task, recent work by

Liu et al. presents a unified network for multiple tasks [27].

Our encoder-decoder pipeline also applies across tasks, and

serves as a good testbed for our main contribution—the idea

of on-demand learning. Our idea has the potential to bene-

fit any existing method currently limited to training with a

narrow band of difficulty [31, 43, 16, 3, 35, 27].

The fixation problem is also observed in recent denois-

ing work, e.g., [3, 30], but without a dedicated and general

solution. Burger et al. [3] attempt to train a network on

patches corrupted by noise with different noise levels by

giving the noise hyper-parameter as an additional input to

the network. While the model can better denoise images

at different noise levels, assuming the noise level is known

at test time is problematic. Recently, Mao et al. [30] ex-

plore how the large capacity of a very deep network can

help generalize across noise levels, but accuracy still de-

clines noticeably from the fixated counterpart.

Curriculum and Self-Paced Learning: Training neural

networks according to a curriculum can be traced back at

least to Elman [11]. Prior work mainly focuses on super-

vised learning and a single task, like the seminal work of

Bengio et al. [2]. Recently, Pentina et al. [32] pose curricu-

lum learning in a multi-task learning setting, where shar-

ing occurs only between subsequent tasks. Building on the

curriculum concept, in self-paced learning, the system au-

tomatically chooses the order in which training examples

are processed [22, 24]. We are not aware of any prior

work in curriculum/self-paced learning that deals with im-

age restoration. Like self-paced learning, our approach does

not rely on human annotations to rank training examples

from easiest to hardest. Unlike self-paced work, however,

our on-demand approach self-generates training instances

of a targeted difficulty.

Active Learning: Active learning is another way for a

learner to steer its own learning. Active learning selects

examples that seem most valuable for human labeling, and

has been widely used in computer vision to mitigate manual

annotation costs [19, 15, 10, 37, 25, 12, 18, 39]. Unlike ac-

tive learning, our approach uses no human annotation, but

instead actively synthesizes training instances of different

corruption levels based on the progress of training. All our

training data can be obtained for “free” and the ground-truth

(original uncorrupted image) is always available.

3. Roadmap

We first examine the fixation problem, and provide

concrete evidence that it hinders deep learning for image

restoration (Sec. 4). Then we present a unified view of

image restoration as a learning problem (Sec. 5.1) and de-

scribe inpainting, interpolation, deblurring, and denoising

as instantiations (Sec. 5.2). Next we introduce the on-

demand learning idea (Sec. 5.3) and our network architec-

ture (Sec. 5.4). Finally, we present results (Sec. 6).
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(b) fixated model for image deblurring task

(a) fixated model for image inpainting task

excel at

fail at
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fail at

Figure 2. Illustration of the severity of overfitting for image in-

painting and deblurring. The models overfit to a certain degree

of corruption. They perform extremely well at that level of cor-

ruption, yet fail to produce satisfactory restoration results even for

much easier sub-tasks. See Supp. for other tasks and details.

4. The Fixation Problem

The fixation problem arises when existing image restora-

tion methods train a learning algorithm to restore images

with a controlled degree of corruption [41, 43, 3, 35, 31, 27].

For example, Yeh et al. [43] train an image inpainter at a

fixed size and location, and always delete 80% of pixels for

pixel interpolation. Pathak et al. [31] mainly focus on a

large central block for the inpainting task. Liu et al. [27]

solve denoising, pixel interpolation, and color interpolation

tasks all with a restricted degree of corruption. While such

methods may fix the level of corruption in training as a

proof of concept, they nonetheless do not offer a solution

to make the model generally applicable.

Just how bad is the fixation problem in image restora-

tion tasks? Fig. 2 helps illustrate. To get these results, we

followed the current literature to train deep networks to tar-

get a certain degree of corruption for four applications (See

Supp. for similar results of interpolation and denoising).1

Specifically, for the image inpainting task, following

similar settings of prior work [31, 43], we train a model

to inpaint a large central missing block of size 32 × 32.

During testing, the resulting model can inpaint the central

block of the same size at the same location very well (first

row in Fig. 2-a). However, if we remove a block that is

slightly shifted away from the central region, or remove a

much smaller block, the model fails to inpaint satisfactorily

(second row in Fig. 2-a). For the deblurring results in Fig. 2

(and interpolation & denoising results in Supp.), we attempt

analogous trials, i.e., training for 80% missing pixels [43],

a single width blur kernel or a single noise level, respec-

tively, then observe poor performance by the fixated model

on examples having different corruption levels.

The details of the deep networks used to generate the re-

1See Sec. 6 for quantitative results, and Sec. 5.4 for details about the

encoder-decoder network used.

sults in Fig. 2 are not identical to those in prior work. How-

ever, we stress that the limitation in their design that we

wish to highlight is orthogonal to the particular architecture.

To apply them satisfactorily in a general manner would re-

quire training a separate model for each hyper-parameter.

Even if one could do so, it is difficult to gauge the corrup-

tion level in a novel image and decide which model to use.

Finally, as we will see below, simply pooling training in-

stances across all difficulty levels is also inadequate.

5. Approach

Next we present ideas to overcome the fixation problem.

5.1. Problem Formulation

While the problem of overfitting is certainly not limited

to image restoration, both the issue we have exposed as well

as our proposed solution are driven by its special ability to

self-generate “free” training instances under specified cor-

ruption parameters. Recall that a real training image auto-

matically serves as the ground-truth; the corrupted image is

synthesized by applying a randomized corruption function.

We denote a real image as R and a corrupted image as

C (e.g., a random block is missing). We model their joint

probability distribution by p(R,C) = p(R)p(C|R), where

p(R) is the distribution of real images and p(C|R) is the

distribution of corrupted images given the original real im-

age. In the case of a fixated model, C may be a deterministic

function of R (e.g., specific blur kernel).

To restore the corrupted image, the most direct way is to

find p(R|C) by applying Bayes’ theorem. However, this is

not feasible because p(R) is intractable. Therefore, we re-

sort to a point estimate f (C,w) through an encoder-decoder

style deep network (details in Sec. 5.4) by minimizing the

following mean squared error objective:

ER,C ||R− f (C,w)||22. (1)

Given a corrupted image C0, the minimizer of the above

objective is the conditional expectation: ER[R|C = C0],
which is the average of all possible real images that could

have produced the given corrupted image C0.

Denote the set of real images {Ri}. We synthesize cor-

rupted images {Ci} correspondingly to produce training im-

age pairs {Ri,Ci}. We train our deep network to learn its

weights w by minimizing the following Monte-Carlo esti-

mate of the mean squared error objective:

ŵ = argmin
w

∑
i

||Ri − f (Ci,w)||22. (2)

During testing, our trained deep network takes a corrupted

image C as input and forwards it through the network to

output f (C,w) as the restored image.

5.2. Image Restoration Task Descriptions

Under this umbrella of a general image restoration solu-

tion, we consider four tasks.
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Image Inpainting The image inpainting task aims to re-

fill a missing region and reconstruct the real image R of an

incomplete corrupted image C (e.g., with a contiguous set

of pixels removed). In applications, the “cut out” part of the

image would represent an occlusion, cracks in photographs,

or an object that should be removed from the photo. Un-

like [31, 43], we make the missing square block randomized

across the whole image in both position and scale.

Pixel Interpolation Related to image inpainting, pixel in-

terpolation aims to refill non-contiguous deleted pixels. The

network has to reason about the image structure and infer

values of the deleted pixels by interpolating from neighbor-

ing pixels. Applications include more fine-grained inpaint-

ing tasks such as removing dust spots in film.

Image Deblurring The image deblurring task aims to re-

move the blurring effects of a corrupted image C to restore

the corresponding real image R. We use Gaussian smooth-

ing to blur a real image to create training examples. The

kernel’s horizontal and vertical widths (σx and σy) control

the degree of blurriness and hence the difficulty. Applica-

tions include removing motion blur or defocus aberration.

Image Denoising The image denoising task aims to re-

move additive white Gaussian (AWG) noise of a corrupted

image C to restore the corresponding real image R. We cor-

rupt real images by adding noise drawn from a zero-mean

normal distribution with variance σ (the noise level).

5.3. On­Demand Learning for Image Restoration

All four image restoration tasks offer a spectrum of dif-

ficulty. The larger the region to inpaint, the larger the per-

centage of deleted pixels, the more blurry the corrupted im-

age, or larger the variance of the noise, the more difficult

the corresponding task. To train a system that generalizes

across task difficulty, a natural approach is to simply pool

training instances across all levels of difficulty, insisting that

the learner simultaneously tackle all degrees of corruption

at once. Unfortunately, as we will see in our experiments,

this approach can struggle to adequately learn the concept.

Instead, we present an on-demand learning approach

in which the system dynamically adjusts its focus where

it is most needed. First, we divide each restoration task

into N sub-tasks of increasing difficulty. During training,

we aim to jointly train the deep neural network restoration

model (architecture details below) to accommodate all N

sub-tasks. Initially, we generate the same number of train-

ing examples from each sub-task in every batch. At the

end of every epoch, we validate on a small validation set

and evaluate the performance of the current model on all

sub-tasks. We compute the mean peak signal-to-noise ratio

(PSNR) for all images in the validation set for each sub-

task.2 A lower PSNR indicates a more difficult sub-task,

2PSNR is widely used as a good approximation to human perception of

suggesting that the model needs more training on examples

of this sub-task. Therefore, we generate more training ex-

amples for this sub-task in each batch in the next epoch.

That is, we re-distribute the corruption levels allocated to

the same set of training images. Specifically, we assign

training examples in each batch for the next epoch inversely

proportionally to the mean PSNR Pi of each sub-task Ti.

Namely,

Bi =
1/Pi

∑
N
i=1 1/Pi

·B, (3)

where B is the batch size and Bi is the number of of training

examples assigned to sub-task Ti for the next epoch. Please

see Supp. for the pseudocode of our algorithm.

On-demand learning bears some resemblance to boost-

ing and hard negative mining, in that the system refocuses

its effort on examples that were handled unsatisfactorily

by the model in previous iterations of learning. However,

whereas they reweight the influence given to individual

(static) training samples, our idea is to self-generate new

training instances in specified difficulty levels based on the

model’s current performance. Moreover, the key is not sim-

ply generating more difficult samples, but to let the network

steer its own training process, and decide how to schedule

the right proportions of difficulty.

Our approach discretizes the difficulty space via its in-

trinsic continuity property for all tasks. However, it is

the network itself that determines the difficulty level for

each discretized bin based on the restoration quality (PSNR)

from our algorithm, and steers its own training.

We arrived at this simple but effective approach after in-

vestigating several other schemes inspired by curriculum

and multi-task learning, as we shall see below. In partic-

ular, we also developed a new curriculum approach that

stages the training samples in order of their difficulty, start-

ing with easier instances (less blur, smaller cut-outs) for

the system to gain a basic representation, then moving onto

harder ones (more blur, bigger cut-outs). Wary that what

appears intuitively easier to us as algorithm designers need

not be easier to the deep network, we also considered an

“anti-curriculum” approach that reverses that ordering, e.g.,

starting with bigger missing regions for inpainting. More

details are given in Sec. 6.3.

5.4. Deep Learning Network Architecture

Finally, we present the network architecture used for all

tasks to implement our on-demand learning idea. Our image

restoration network is a simple encoder-decoder pipeline.

See Fig. 3. The encoder takes a corrupted image C of size

64× 64 as input and encodes it in the latent feature space.

The decoder takes the feature representation and outputs the

quality in image restoration tasks. We found PSNR to be superior to an L2

loss; because it is normalized by the max possible power and expressed in

log scale, it is better than L2 at comparing across difficulty levels.
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Encoder

Channel-wise
Fully-Connected

Decoder

Figure 3. Network architecture for our image restoration frame-

work, an encoder-decoder pipeline connected by a channel-wise

fully-connected layer. See Supp. for details.

restored image f (C,w). Our encoder and decoder are con-

nected through a channel-wise fully-connected layer. The

loss function we use during training is L2 loss, which is

the mean squared error between the restored image f (C,w)
and the real image R. We use a symmetric encoder-decoder

pipeline that is efficient for training and effective for learn-

ing. It is a unified framework that can be used for all four

image restoration tasks. Please see Supp. for the complete

network architecture and detailed design choices.

6. Experiments

We compare with traditional “fixated” learners, hard

negative mining, multi-task and curriculum methods, and

several existing methods in the literature [31, 1, 7, 3, 13, 34,

5].

6.1. Datasets

We experiment with three datasets: CelebFaces At-

tributes (CelebA) [29], SUN397 Scenes [40], and the De-

noising Benchmark 11 (DB11) [7, 3]. We do not use any

of the accompanying labels. For CelebA, we use the first

100,000 images as the training set. Among the rest of the

images, we hold out 1,000 images each for the validation

and test sets. For SUN397, similarly, we use 100,000 im-

ages for training, and 1,000 each for validation and testing.

DB11 consists of 11 standard benchmark images, such as

“Lena” and “Barbara”, that have been widely used to evalu-

ate denoising algorithms [7, 3]. We only use this dataset to

facilitate comparison with prior work.

6.2. Implementation Details

Our image restoration pipeline is implemented in Torch3.

We use ADAM [20] as the stochastic gradient descent

solver. We use the default solver hyper-parameters sug-

gested in [33] and batch size B= 100 in all experiments.

The number of sub-tasks N for on-demand learning con-

trols a trade-off between precision and run-time. Larger val-

ues of N will allow the on-demand learning algorithm more

fine-grained control on its sample generation, which could

3https://github.com/rhgao/on-demand-learning

Figure 4. Our algorithm vs. fixated models on CelebA (See

Supp. for results on SUN397 and denoising). Our algorithm per-

forms well over the spectrum of difficulty, whereas fixated models

perform well at only a certain level of corruption.

lead to better results. However, the time complexity for val-

idating on all sub-tasks at the end of each epoch is O(N).
Therefore, a more fine-grained division of training exam-

ples among sub-tasks comes at the cost of longer running

time during training. For consistency, we divide each of the

image restoration tasks into N = 5 difficulty levels during

training. We have not tried any other values, and it is pos-

sible other settings could improve our results further. We

leave how to select the optimal value of N as future work.

An extra level (level 6) is added during testing. The level 6

sub-task can be regarded as an “extra credit” task that strains

the generalization ability of the obtained model.

Image Inpainting: We focus on inpainting missing

square blocks of size 1 × 1 to 30 × 30 at different loca-

tions across the image. We divide the range into the fol-

lowing five intervals, which define the five difficulty lev-

els: 1 × 1 − 6 × 6, 7 × 7 − 12 × 12, 13 × 13 − 18 × 18,

19×19−24×24, 25×25−30×30.

Pixel Interpolation: We train the pixel interpolation net-

work with images corrupted by removing a random per-

centage of pixels. The percentage is sampled from the

range [0%,75%]. We divide the range into the following

five difficulty levels: 0%− 15%, 15%− 30%, 30%− 45%,

45%−60%, 60%−75%.

Image Deblurring: Blur kernel widths σx and σy, which

are sampled from the range [0,5], control the level of diffi-

culty. We consider the following five difficulty levels: 0−1,

1−2, 2−3, 3−4, 4−5.

Image Denoising: We use gray-scale images for denois-

ing. The variance σ of additive white Gaussian noise is

sampled from the range [0,100]. We use the following five

difficulty levels: 0−20, 20−40, 40−60, 60−80, 80−100.

6.3. Baselines

For fair comparisons, all baseline models and our

method are trained for the same amount of time (1500

epochs). Therefore, while our algorithm shifts the distri-

bution of training instances it demands on the fly, it never

receives more training instances than the baselines.

Fixated Model (Hard): The image restoration network is

trained only on one level of severely corrupted images.
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CelebA SUN397

Image Deblurring Pixel Interpolation Image Inpainting Image Deblurring Pixel Interpolation Image Inpainting

L2 Loss PSNR L2 Loss PSNR L2 Loss PSNR L2 Loss PSNR L2 loss PSNR L2 Loss PSNR

Rigid Joint Learning 1.58 29.40 dB 1.02 31.86 dB 1.05 32.11 dB 2.32 28.53 dB 1.29 31.98 dB 1.80 31.13 dB

Cumulative Curriculum 1.85 28.70 dB 1.11 31.68 dB 1.28 31.47 dB 2.64 27.86 dB 1.36 31.70 dB 1.94 30.75 dB

Cumulative Anti-Curriculum 1.49 29.31 dB 1.01 31.96 dB 1.04 31.90 dB 2.39 28.34 dB 1.25 32.02 dB 1.90 30.44 dB

Staged Curriculum 125 15.59 dB 2.10 28.51 dB 1.18 31.30 dB 133 14.44 dB 2.36 28.13 dB 1.87 30.42 dB

Staged Anti-Curriculum 5.54 25.43 dB 7.76 27.82 dB 4.80 28.10 dB 6.27 25.17 dB 7.05 27.76 dB 4.35 28.42 dB

Hard Mining 2.98 27.33 dB 1.85 29.15 dB 3.31 29.47 dB 3.98 26.35 dB 1.82 29.01 dB 2.61 29.83 dB

On-Demand Learning 1.41 29.58 dB 0.95 32.09 dB 0.99 32.30 dB 2.11 28.70 dB 1.19 32.21 dB 1.69 31.38 dB

Table 1. Summary of the overall performance of all algorithms for three image restoration tasks on the CelebA and SUN397 datasets. (See

Supp. for similar results on denoising). Overall performance is measured by the mean L2 loss (in ‰, lower is better) and mean PSNR

(higher is better) averaged over all sub-tasks. Numbers are obtained over 20 trials with standard error (SE) approximately 5×10−6 for L2

loss and 3×10−3 for PSNR on average. A paired t-test shows the results are significant with p-value 5×10−30.

Fixated Model (Easy): The image restoration network is

trained only on one level of lightly corrupted images.

Rigid Joint Learning: The image restoration network is

trained on all sub-tasks of different difficulty levels (level

1-N) jointly. We allocate the same number of training ex-

amples for each sub-task per batch.

Staged Curriculum Learning: The network starts at the

easiest sub-task (level 1) and gradually switches to more

difficult sub-tasks. At any time, the network trains on only

one sub-task. It trains on each sub-task for 300 epochs.

Staged Anti-Curriculum Learning: The network per-

forms as the above, but reverses the curriculum to start with

the most difficult task (level N).

Cumulative Curriculum Learning: The network starts

at the easiest sub-task (level 1) and gradually adds more dif-

ficult sub-tasks and learns them jointly. More specifically,

the baseline model is first trained on level 1 sub-task for 300

epochs, and then performs rigid joint learning on sub-tasks

of level 1 and 2 for 300 epochs, followed by performing

rigid joint learning on sub-tasks of level 1,2,3 for another

300 epochs, and so on.

Cumulative Anti-Curriculum Learning: The network

performs as the above, but reverses the curriculum.

Hard Mining: For each task, we create a dataset of 1M

images with various corruptions. We directly train on the

dataset for 50 epochs, then continue training with hard min-

ing until convergence. To select hard examples, we identify

those with the largest reconstruction loss and use them to

compute and back propagate gradients. Specifically, in each

batch, we select the 10 with highest loss.

As far as source training data, the fixated model base-

lines represent the status quo in using deep learning for

image restoration tasks [27, 31, 43, 41, 16, 3, 35], while

the rigid joint learning baseline represents the natural solu-

tion of pooling all training data [16, 30]. The curriculum

methods are of our own design. The hard mining baseline

is designed to best mimic traditional hard negative mining

strategies. Our system never receives more training images

than any baseline; only the distribution of distortions among

those images evolves over epochs. We test all algorithms

across the whole spectrum of difficulty (sub-task 1-N and an

extra level), and synthesize corresponding testing instances

randomly over 20 trials. No methods have prior knowl-

edge of the test distribution, thus none are able to benefit

from better representing the expected test distribution dur-

ing training.

6.4. Fixated Model vs. Our Model

We first show that our on-demand algorithm successfully

addresses the fixation problem, where the fixated models

employ an identical network architecture to ours. For in-

painting, the fixated model (hard/easy) is only trained to in-

paint 32×32 or 5×5 central blocks, respectively; for pixel

interpolation, 80% (hard) or 10% (easy) pixels are deleted;

for deblurring, σx = σy = 5 (hard) or σx = σy = 1 (easy);

for denoising, σ = 90 (hard) or σ = 10 (easy).

Fig. 4 summarizes the test results on images of various

corruption levels on CelebA (See Supp. for all). The fixated

model overfits to a specific corruption level (easy or hard).

It succeeds beautifully for images within its specialty (e.g.,

the sudden spike in Fig. 4 (right)), but performs poorly when

forced to attempt instances outside its specialty. For inpaint-

ing, the fixated models also overfit to the central location,

and thus cannot perform well over the whole spectrum. In

contrast, models trained using our algorithm perform well

across the spectrum of difficulty.

6.5. Comparison to Existing Inpainter

We also compare our image inpainter against a state-of-

the-art inpainter from Pathak et al. [31]. We adapt their

provided code4 and follow the same procedures as in [31] to

train two variants on CelebA: one is only trained to inpaint

central square blocks, and the other is trained to inpaint

regions of arbitrary shapes using random region dropout.

Table 2 compares both variants to our model on the held

out CelebA test set. Their first inpainter performs very

well when testing on central square blocks (left cols), but

it is unable to produce satisfactory results when tested on

square blocks located anywhere in the image (right cols).

Their second model uses random region dropout during

training, but our inpainter still performs much better. The

“all-rounder” inpainter trained under our on-demand learn-

4https://github.com/pathak22/context-encoder
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Image 
Inpainting

Image 
Deblurring

Original Corrupted Rigid-Joint Fixated Ours Original Corrupted Rigid-Joint Fixated Ours

Figure 5. For each task, the first row shows testing examples of CelebA dataset, and the second row shows examples of SUN397 dataset.

While the fixated model can only perform well at one level of difficulty (right col), the all-rounder models trained using our proposed

algorithm perform well on images with various corruption levels. See Supp. for similar results on pixel interpolation and image denoising.

ing framework does similarly well in both cases. It is

competitive—and stronger on the more difficult task—even

without the use of adversarial loss as used in their frame-

work during training. Please also see Supp. for some real-

world applications (e.g., object removal in photos).

Method
Central Square Block Arbitrary Square Block

L2 Loss PSNR L2 Loss PSNR

Pathak et al. [31] Center 0.83% 22.16 dB 6.84% 11.80 dB

Pathak et al. [31] +Rand drop 2.47% 16.18 dB 2.51% 16.20 dB

Ours 0.93% 20.74 dB 1.04% 20.31 dB

Table 2. Image inpainting accuracy for CelebA on two test sets.

6.6. On­Demand Learning vs. Alternative Models

We next compare our method to the hard mining, cur-

riculum and multi-task baselines. Table 1 shows the re-

sults (Please see Supp. for similar results on image denois-

ing). We report average L2 loss and PSNR over all test

images. Our proposed algorithm consistently outperforms

the well-designed baselines. Hard mining overfits to the

hard examples in the static pool of images, and the Staged

(Anti-)Curriculum Learning algorithms overfit to the last

sub-task they are trained on, yielding inferior overall per-

formance. The Cumulative (Anti-)Curriculum Learning al-

gorithms and Rigid Joint Learning are more competitive,

because they learn sub-tasks jointly and try to perform well

on sub-tasks across all difficulty levels. However, the higher

noise levels dominate their training procedure by providing

stronger gradients. As training goes on, these methods can-

not provide the optimal distribution of gradients across cor-

ruption levels for effective learning. By automatically guid-

ing the balance among sub-tasks, our algorithm obtains the

best all-around performance. Especially, we observe our

approach generalizes better to difficulty levels never seen

before, and performs better on the “extra credit” sub-task.

Fig. 5 shows qualitative examples output by our method

for inpainting and deblurring. See Supp. for similar results

of interpolation and denoising. These illustrate that models

trained using our proposed on-demand approach perform

well on images of different degrees of corruption. With a

single model, we inpaint blocks of different sizes at arbi-

trary locations, restore corrupted images with different per-

centage of deleted pixels, deblur images at various degrees

of blurriness, and denoise images of various noise levels. In

contrast, the fixated models can only perform well at one

level of difficulty that they specialize in. Even though we

experiment with images of small scale (64× 64) for effi-

ciency, qualitative results of our method are still visually

superior to other baselines including rigid-joint learning.

We argue that the gain of our algorithm does not rest

on more training instances of certain sub-tasks, but rather a

suitable combination of sub-tasks for effective training. In-

deed, we never use more training instances than any base-

line. To emphasize this point, we separately train a rigid-

joint learning model using 200,000 training images (the

original 100,000 and the extra 100,000) from CelebA. 5 We

observe that the extra training instances do not help rigid

joint training converge to a better local minimum. This re-

sult suggests on-demand learning’s gains persist even if our

method is put at the disadvantage of having access to 50%

fewer training images.

How does the system focus its attention as it learns?

To get a sense, we examine the learned allocation of sub-

tasks during training. Initially, each sub-task is assigned the

same number of training instances per batch. In all tasks, as

training continues, the network tends to dynamically shift

5The other datasets lack sufficient data to run this test.
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Image [1] [7] [3] [13] [34] [5] Ours

Barbara 29.49 30.67 29.21 31.24 28.95 29.41 28.92 / 29.63

Boat 29.24 29.86 29.89 30.03 29.74 29.92 30.11 / 30.15

C.man 28.64 29.40 29.32 29.63 29.29 29.71 29.41 / 29.78

Couple 28.87 29.68 29.70 29.82 29.42 29.71 30.04 / 30.02

F.print 27.24 27.72 27.50 27.88 27.02 27.32 27.81 / 27.77

Hill 29.20 29.81 29.82 29.95 29.61 29.80 30.03 / 30.04

House 32.08 32.92 32.50 33.22 32.16 32.54 33.14 / 33.03

Lena 31.30 32.04 32.12 32.24 31.64 32.01 32.44 / 32.36

Man 29.08 29.58 29.81 29.76 29.67 29.88 29.92 / 29.96

Montage 30.91 32.24 31.85 32.73 31.07 32.29 32.34 / 32.74

Peppers 29.69 30.18 30.25 30.40 30.12 30.55 30.29 / 30.48

Table 3. PSNRs (in dB, higher is better) on standard test images,

σ = 25. We show the performance of both our all-rounder model

(left) and fixated model (right) of our image denoising system.

Note that our on-demand learning model is the only one that does

not exploit the noise level (σ ) of test images.

its allocations to put more emphasis on the “harder” sub-

tasks, while never abandoning the “easiest” ones. The right

proportions of difficulty lead to the superior overall perfor-

mance of our model.

6.7. Comparison to Existing Denoising Methods

In previous sections, we have compared our on-demand

learning denoising model with alternative models. To facil-

itate comparison to prior work and demonstrate the compet-

itiveness of our image restoration framework, in this section

we perform a case study on the image denoising task using

our denoising system. See Supp. for details about how we

denoise images of arbitrary sizes.

We test our image denoising system on DB11 [7, 3].

We first compare our model with state-of-the-art denoising

algorithms on images with a specific degree of corruption

(σ = 25, commonly adopted to train fixated models in the

literature). Table 3 summarizes the results6. Although us-

ing a simple encoder-decoder network, we still have very

competitive performance. Our on-demand learning model

outperforms all six existing denoising algorithms on 5 out

of the 11 test images (7 out of 11 for the fixated version

of our denoising system), and is competitive on the rest.

Note that our on-demand learning model does not need to

know the noise level of test images. However, all other com-

pared algorithms either have to know the exact noise level

(σ value), or train a separate model for this specific level of

noise (σ = 25).

More importantly, the advantage of our method is more

apparent when we test across the spectrum of difficulty lev-

els. We corrupt the DB11 images with AWG noise of in-

creasing magnitude and compare with the denoising algo-

rithms BM3D [7] and MLP [3] based on the authors’ public

code78 and reported results [3]. We compare with two MLP

models: one is trained only on corrupted images of σ = 25,

and the other is trained on images with various noise levels.

6We take the reported numbers [3] or use the authors’ public available

code [13, 34, 5] to generate the results in Table 3.
7http://www.cs.tut.fi/˜foi/GCF-BM3D/
8http://people.tuebingen.mpg.de/burger/neural_

denoising/

Figure 6. Comparisons of the performance of image denoising sys-

tems at different noise levels. Our system is competitive over the

whole spectrum of noise levels without requiring knowledge of the

corruption level of test images. Best viewed in color.

BM3D and MLP both need to be provided with the correct

level of the noise (σ ) during testing. We also run a variant

of BM3D for different noise levels but fix the specified level

of noise to σ = 25 .

Fig. 6 shows the results. We see that the MLP model [3]

trained on a single noise level only performs well at that

specific level of corruption. Similarly, BM3D [7] needs the

correct input of noise level in order to perform well across

the spectrum of noise levels. In contrast, our image denois-

ing system consistently performs well on all noise levels,

yet we do not assume knowledge of σ during testing. This

is an essential advantage for real-world applications.

7. Conclusion

We have addressed a common problem in existing work

that leverages deep models to solve image restoration tasks:

overfitting. We devise a symmetric encoder-decoder net-

work amenable to all image restoration tasks, and propose

a simple but novel on-demand learning algorithm that turns

a fixated model into one that performs well on a task across

the spectrum of difficulty. Experiments on four tasks on

three diverse datasets demonstrate the effectiveness of our

method. Our on-demand learning idea is a general concept

not restricted to image restoration tasks, and may be appli-

cable in other domains as well, e.g., self-supervised feature

learning. As future work, we plan to design continuous sub-

tasks to avoid discrete sub-task bins, and we will explore

ways to make an image restoration task more self-paced by

allowing the network to design the most desired sub-task on

its own. Finally, another promising direction is to explore

combinations of different types of distortions.
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