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Abstract

Temporal Action Proposal (TAP) generation is an im-

portant problem, as fast and accurate extraction of se-

mantically important (e.g. human actions) segments from

untrimmed videos is an important step for large-scale video

analysis. We propose a novel Temporal Unit Regression

Network (TURN) model. There are two salient aspects of

TURN: (1) TURN jointly predicts action proposals and re-

fines the temporal boundaries by temporal coordinate re-

gression; (2) Fast computation is enabled by unit feature

reuse: a long untrimmed video is decomposed into video

units, which are reused as basic building blocks of tempo-

ral proposals. TURN outperforms the previous state-of-the-

art methods under average recall (AR) by a large margin

on THUMOS-14 and ActivityNet datasets, and runs at over

880 frames per second (FPS) on a TITAN X GPU. We fur-

ther apply TURN as a proposal generation stage for existing

temporal action localization pipelines, it outperforms state-

of-the-art performance on THUMOS-14 and ActivityNet.

1. Introduction

We address the problem of generating Temporal Action

Proposals (TAP) in long untrimmed videos, akin to gener-

ation of object proposals in images for rapid object detec-

tion. As in the case for objects, the goal is to make action

proposals have high precision and recall, while maintaining

computational efficiency.

There has been considerable work in action classifica-

tion task where a “trimmed” video is classified into one of

specified categories [24, 29]. There has also been work

on localizing the actions in a longer, “untrimmed” video

[6, 23, 35, 33], i.e. temporal action localization. A straight-

forward way to use action classification techniques for lo-

calization is to use temporal sliding windows, however there

is a trade-off between density of the sliding windows and

computation time. Taking cues from the success of pro-

∗ indicates equal contributions.

ground truth sliding window prediction location refinement

Timeline

Figure 1. Temporal action proposal generation from a long

untrimmed video. We propose a Temporal Unit Regression Net-

work (TURN) to jointly predict action proposals and refine the

location by temporal coordinate regression.

posal frameworks in object detection tasks [7, 21], there has

been recent work for generating temporal action proposals

in videos [23, 4, 2] to improve the precision and accelerate

the speed of temporal localization.

State-of-the-art methods [23, 2] formulate TAP gener-

ation as a binary classification problem (i.e. action vs.

background) and apply sliding window approach as well.

Denser sliding windows usually would lead to higher re-

call rates at the cost of computation time. Instead of bas-

ing on sliding windows, Deep Action Proposals (DAPs) [4]

uses a Long Short-term Memory (LSTM) network to en-

code video streams and infer multiple action proposals in-

side the streams. However, the performance of average re-

call (AR), which is computed by the average of recall at

temporal intersection over union (tIoU) between 0.5 and 1,

suffers at small number of predicted proposals compared

with the sliding window based method [23] 1.

To achieve high temporal localization accuracy and effi-

cient computation cost, we propose to use temporal bound-

ary regression. Boundary regression has been a successful

practice for object localization, as in [21]. However, tempo-

ral boundary regression for actions has not been attempted

in the past work.

We present a novel method for fast TAP genera-

tion: Temporal Unit Regression Network (TURN). A long
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untrimmed video is first decomposed into short (e.g. 16

or 32 frames) video units, which serve as basic process-

ing blocks. For each unit, we extract unit-level visual fea-

tures using off-the-shelf models (C3D and two-stream CNN

model are evaluated) to represent video units. Features from

a set of contiguous units, called a clip, are pooled to cre-

ate clip features. Multiple temporal scales are used to cre-

ate a clip pyramid. To provide temporal context, clip-level

features from the internal and surrounding units are con-

catenated. Each clip is then treated as a proposal candidate

and TURN outputs a confidence score, indicating whether

it is an action instance or not. In order to better estimate

the action boundary, TURN outputs two regression offsets

for the starting time and ending time of an action in the

clip. Non-maximum suppression (NMS) is then applied to

remove redundant proposals. The source code is available

at https://github.com/jiyanggao/TURN-TAP.

DAPs [4] and Sparse-prop [2] use Average Recall vs. Aver-

age Number of retrieved proposals (AR-AN) to evaluate the

TAP performance. There are two issues with AR-AN met-

ric: (1) the correlation between AR-AN of TAP and mean

Average Precision (mAP) of action localization was not ex-

plored ; (2) the average number of retrieved proposals is

related to average video length of the test dataset, which

makes AR-AN less reliable when evaluating across differ-

ent datasets. Spatio-temporal action detection [34, 30] used

Recall vs. Proposal Number (R-N), however this metric

does not take video lengths into consideration.

There are two criteria for a good metric: (1) it should be

capable of evaluating the performance of different methods

on the same dataset effectively; (2) it should be capable of

evaluating the performance of the same method across dif-

ferent datasets (generalization capability). We should ex-

pect better TAP would lead to better localization perfor-

mance, using the same localizer. We propose a new metric,

Average Recall vs. Frequency of retrieved proposals (AR-

F), for TAP evaluation. In Section 4.2, we validate that the

proposed method satisfies the two criteria by quantitative

correlation analysis between TAP performance and action

localization performance.

We test TURN on THUMOS-14 and ActivityNet for

TAP generation. Experimental results show that TURN out-

performs the previous state-of-the-art methods [4, 23] by a

large margin under AR-F and AR-AN. For run-time perfor-

mance, TURN runs at over 880 frames per second (FPS)

with C3D features and 260 FPS with flow CNN features on

a single TITAN X GPU. We further plug TURN as a pro-

posal generation step in existing temporal action localiza-

tion pipelines, and observe an improvement of mAP from

state-of-the-art 19% to 25.6% (at tIoU=0.5) on THUMOS-

14 by changing only the proposals. State-of-the-art local-

1Newly released evaluation results from DAPs authors show that

SCNN-prop [23] outperforms DAPs.

ization performance is also achieved on ActivityNet. We

show state-of-the-art performance on generalization capa-

bility by training TURN on THUMOS-14 and transfer it to

ActivityNet without fine-tuning, strong generalization capa-

bility is also shown by test TURN across different subsets

in ActivityNet without fine-tuning.

In summary, our contributions are four-fold:

(1) We propose a novel architecture for temporal action

proposal generation using temporal coordinate regression.

(2) Our proposed method achieves high efficiency (>800

fps) and outperforms previous state-of-the-art methods by a

large margin.

(3) We show state-of-the-art generalization performance

of TURN across different action datasets without dataset

specific fine-tuning.

(4) We propose a new metric, AR-F, to evaluate the per-

formance of TAP and compare AR-F with AR-AN and AR-

N by quantitative analysis.

2. Related Work

Temporal Action Proposal. Sparse-prop [2] proposes

the use of STIPs [15] and dictionary learning for class-

independent proposal generation. S-CNN [23] presents a

two-stage action localization system, in which the first stage

is temporal proposal generation, and shows the effective-

ness of temporal proposals for action localization. S-CNN’s

proposal network is based on fine-tuning 3D convolutional

networks (C3D) [27] to binary classification task. DAPs [4]

adopts LSTM networks to encode a video stream and pro-

duce proposals inside the video stream.

Temporal Action Localization. Based on the progress

of action classification, temporal action localization has

been received much attentions recently. Ma et al. [17]

address the problem of early action detection. They pro-

pose to train a LSTM network with ranking loss and merge

the detection spans based on the frame-wise prediction

scores generated by the LSTM. Singh et al. [25] extend

two-stream [24] framework to multi-stream bi-directional

LSTM networks and achieved state-of-the-art performance

on MPII-Cooking dataset [22]. Sun et al. [26] transfer

knowledge from web images to address temporal localiza-

tion in untrimmed web videos. S-CNN [23] presents a two-

stage action localization framework: first using proposal

networks to generate temporal proposals and then score the

proposals with localization networks, which is trained with

classification and localization loss.

Spatio-temporal Action Localization. A handful of ef-

forts have been seen in spatio-temporal action localization.

Gkioxari et al. [9] extract proposals from RGB images with

SelectiveSearch [28] and then apply R-CNN [8] on both

RGB and optical flow images for action detection. Wein-

zaepfel et al. [31] replace SelectiveSearch [28] with Edge-

Boxes [36]. Mettes et al. [18] propose to use sparse points
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Figure 2. Architecture of Temporal Unit Regression Network (TURN). A long video is decomposed into short video units, and CNN

features are calculated for each unit. Features from a set of contiguous units, called a clip, are pooled to create clip features. Multiple

temporal scales are used to create a clip pyramid at an anchor unit. TURN takes a clip as input, and outputs a confidence score, indicating

whether it is an action instance or not, and two regression offsets of start and end times to refine the temporal action boundaries.

as supervision for action detection to save tedious annota-

tion work.

Object Proposals and Detection. Object proposal gen-

eration methods can be classified into two types based the

features they use. One relies on hand-crafted low-level vi-

sual features, such as SelectiveSearch [28] and Edgebox

[36]. R-CNN [8] and Fast R-CNN [7] are built on this type

of proposals. The other type is based on deep ConvNet fea-

ture maps, such as RPNs [21], which introduces the use of

anchor boxes and spatial regression for object proposal gen-

eration. YOLO [20] and SSD [16] divide images into grids

and regress object bounding boxes based on the grid cells.

Bounding box coordinate regression is a common design

shared in second type of object proposal frameworks. In-

spired by object proposals, we adopt temporal regression in

action proposal generation task.

3. Methods

In this section, we will describe the Temporal Unit Re-

gression Network (TURN) and the training procedure.

3.1. Video Unit Processing

As we discussed before, the large-scale nature of video

proposal generation requires the solution to be computa-

tionally efficient. Thus, extracting visual feature for the

same window or overlapped windows repeatedly should be

avoided. To accomplish this, we use video units as the ba-

sic processing units in our framework. A video V contains

T frames, V = {ti}
T
1 , and is divided into T/nu consecu-

tive video units , where nu is the frame number of a unit.

A unit is represented as u = {ti}
sf+nu
sf , where sf is the

starting frame, sf + nu is the ending frame. Units are not

overlapped with each other.

Each unit is processed by a visual encoder Ev to get a

unit-level representation fu = Ev(u). In our experiments,

C3D [27], optical flow based CNN model and RGB image

CNN model [24] are investigated. Details are given in Sec-

tion 4.2.

3.2. Clip Pyramid Modeling

A clip (i.e. window) c is composed of units, c =
{uj}

su+nc
su

, where su is the index of starting unit and nc

is the number of units inside c. eu = su + nc is the index

of ending unit, and {uj}
eu
su

is called internal units of c. Be-

sides the internal units, context units for c are also modeled.

{uj}
su
su−nctx

and {uj}
eu+nctx
eu

are the context before and af-

ter c respectively, nctx is the number of units we consider

for context. Internal feature and context feature are pooled

from unit features separately by a function P . The final fea-

ture fc for a clip is the concatenation of context features and

the internal features; fc is given by

fc = P ({uj}
su
su−nctx

) ‖ P ({uj}
eu
su
) ‖ P ({uj}

eu+nctx
eu

)

where ‖ represents vector concatenation and mean pooling

is used for P . We scan an untrimmed video by building

window pyramids at each unit position, i.e. an anchor unit.

A clip pyramid p consists of temporal windows with differ-

ent temporal resolution, p = {cnc}, nc ∈ {nc,1, nc,2, ...}.

Note that, although multi-resolution clips would have tem-

poral overlaps, the clip-level features are computed from

unit-level features, which are only calculated once.

3.3. Unitlevel Temporal Coordinate Regression

The intuition behind temporal coordinate regression is

that human can infer the approximate start and end time
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of an action instance (e.g. shooting basketball, swing golf)

without watching the entire instance, similarly, neural net-

works might also be able to infer the temporal boundaries.

Specifically, we design a unit regression model that takes a

clip-level representation fc as input, and have two sibling

output layers. The first one outputs a confidence score in-

dicating whether the input clip is an action instance. The

second one outputs temporal coordinate regression offsets.

The regression offsets are

os = sclip − sgt, oe = eclip − egt (1)

where sclip, eclip is the index of starting unit and ending

unit of the input clip; sgt, egt is the index of starting unit

and ending unit of the matched ground truth.

There are two salient aspects in our coordinate regres-

sion model. First, instead of regressing the temporal coordi-

nates at frame-level, we adopt unit-level coordinate regres-

sion. As the basic unit-level features are extracted to encode

nu frames, the feature may not be discriminative enough

to regress the coordinates at frame-level. Comparing with

frame-level regression, unit-level coordinate regression is

easier to learn and more effective. Second, in contrast to

spatial bounding box regression, we don’t use coordinate

parametrization. We directly regress the offsets of the start-

ing unit coordinates and the ending unit coordinates. The

reason is that objects can be re-scaled in images due to cam-

era projection, so the bounding box coordinates should be

first normalized to some standard scale. However, actions’

time spans can not be easily rescaled in videos.

3.4. Loss Function

For training TURN, we assign a binary class label (of be-

ing an action or not) to each clip (generated at each anchor

unit). A positive label is assigned to a clip if: (1) the win-

dow clip with the highest temporal Intersection over Union

(tIoU) overlaps with a ground truth clip; or (2) the window

clip has tIoU larger than 0.5 with any of the ground truth

clips. Note that, a single ground truth clip may assign pos-

itive labels to multiple window clips. Negative labels are

assigned to non-positive clips whose tIoU is equal to 0.0

(i.e. no overlap) for all ground truth clips. We design a

multi-task loss L to jointly train classification and coordi-

nates regression.

L = Lcls + λLreg (2)

where Lcls is the loss for action/background classification,

which is a standard Softmax loss. Lreg is for temporal co-

ordinate regression and λ is a hyper-parameter. The regres-

sion loss is

Lreg =
1

Npos

N∑

i=1

l∗i |(os,i − o∗s,i) + (oe,i − o∗e,i)| (3)

L1 distance is adopted. l∗i is the label, 1 for positive sam-

ples and 0 for background samples. Npos is the number of

positive samples. The regression loss is calculated only for

positive samples.

During training, the background to positive samples ratio

is set to be 10 in a mini-batch. The learning rate and batch

size are set as 0.005 and 128 respectively. We use the Adam

[14] optimizer to train TURN.

4. Evaluation

In this section, we introduce the evaluation metrics, ex-

perimental setup and discuss the experimental results.

4.1. Metrics

We consider three different metrics to assess the quality

of TAP, the major difference is in the way to consider the

retrieve number of proposals: Average Recall vs. Number

of retrieved proposals (AR-N) [34, 11], Average Recall vs.

Average Number of retrieved proposals (AR-AN) [4], Av-

erage Recall vs. Frequency of retreived proposals (AR-F).

Average Recall (AR) is calculated as a mean value of recall

rate at tIoU between 0.5 and 1.

AR-N curve. In this metric, the numbers of retrieved

proposals (N) for all test videos are the same. This curve

plots AR versus number of retrieved proposals.

AR-AN curve. In this metric, AR is calculated as a

function of average number of retrieved proposals (AN).

AN is calculated as: Θ = ρΦ, ρ ∈ (0, 1]. In which,

Φ = 1

n

∑n

i=1
Φi is the average number of all proposals of

test videos. ρ is the ratio of picked proposals to evaluate. n
is the number of test videos and Φi is the number of all pro-

posals for each video. By scanning the ratio ρ from 0 to 1,

the number of retrieved proposals in each video varies from

0 to number of all proposals and thus the average number of

retrieved proposals also varies.

AR-F curve. This is the new metric that we propose. We

measure average recall as a function of proposal frequency

(F), which denotes the number of retrieved proposals per

second for a video. For a video of length li and proposal

frequency of F , the retrieved proposal number of this video

is Ri = Fli.

We also report Recall@X-tIoU curve: recall rate at X

with regard to different tIoU. X could be number of re-

trieved proposals (N), average number of retrieved propos-

als (AN) and proposal frequency (F).

For the evaluation of temporal action localization, we

follow the traditional mean Average Precision (mAP) metric

used in THUMOS-14 and ActivityNet. A prediction is re-

garded as positive only when it has correct category predic-

tion and tIoU with ground truth higher than a threshold. We

use the official evaluation toolkit provided by THUMOS-14

and ActivityNet.
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4.2. Experiments on THUMOS14

Datasets. The temporal action localization part of

THUMOS-14 contains over 20 hours of videos from 20

sports classes. This part consists of 200 videos in valida-

tion set and 213 videos in test set. TURN model is trained

on the validation set, as the training set of THUMOS-14

contains only trimmed videos.

Experimental setup. We perform the following exper-

iments: (1) different temporal proposal evaluation metrics

are compared; (2) the performance of TURN and other TAP

generation methods are compared under evaluation metrics

(i.e AR-F and AR-AN) mentioned above; (3) different TAP

generation methods are compared on the temporal action

localization task with the same localizer/classifier. Specifi-

cally, we feed the proposals into a localizer/classifier, which

outputs the confidence scores of 21 classes (20 classes

of action plus background). Two localizer/classifiers are

adopted: (a) SVM classifiers: one-vs-all linear SVM clas-

sifiers are trained for all 21 classes using C3D fc6 features;

(b) S-CNN localizer: the pre-trained localization network

of S-CNN [23] is adopted.

For TURN model, the context unit number nctx is 4, λ
is 2.0, the dimension of middle layer fm is 1000, temporal

window pyramids is built with {1, 2, 4, 8, 16, 32} units. We

test TURN with different unit sizes nu ∈ {16, 32}, and dif-

ferent unit features, including C3D [27], optical flow based

CNN feature and RGB CNN feature [24]. The NMS thresh-

old is set to be 0.1 smaller than tIoU in evaluation. We im-

plement TURN model in Tensorflow [1].

Comparison of different evaluation metrics. To val-

idate the effectiveness of different evaluation metrics, we

compare AR-F, AR-N, AR-AN by a correlation analysis

with localization performance (mAP). We generate seven

different sets of proposals, including random proposals, sli-

dinig windows and variants of S-CNN [23] proposals (de-

tails are given in the supplementary material). We then test

the localization performance using the proposals, as shown

in Figure 3 (a)-(c). SVM classifiers are used for localiza-

tion.

A detailed analysis of correlation and video length is

given in Figure 3 (d). The test videos are sorted by video

lengths and then divided evenly into four groups. The aver-

age video length of the group is the x-axis, and y-axis repre-

sents the correlation coefficient between action localization

performance and TAP performance of the group. Each point

in 3 (d) represents the correlation of TAP and localization

performance of one group under different evaluation met-

rics. As can be observed in Figure 3, the correlation coef-

ficient between mAP and AR-F is consistently higher than

0.9 at all video lengths. In contrast, correlation of AR-N

and mAP is affected by video length distribution. Note that,

AR-AN also shows a stable correlation with mAP, this is

partially because the TAP generation methods we use gen-

(a) (b) (c)

(d)

Figure 3. (a)-(c) show the correlation between temporal action

localization performance and TAP performance under different

metrics. (d) shows correlation coefficient between temporal ac-

tion localization and TAP performance versus video length on

THUMOS-14 dataset.

erate proportional numbers of proposals to video length.

To assess generalization, assume that we have two differ-

ent datasets, S0 and S1, whose average number of all pro-

posals are Φ0 and Φ1 respectively. As introduced before,

average number of retrieved proposals Θ = ρΦ, ρ ∈ (0, 1]
is dependent on Φ. When we compare AR at some certain

AN = Θx between S0 and S1, as Φ0 and Φ1 are different,

we need to set different ρ0 and ρ1. It means that the ratios

between retrieved proposals and all generated proposals are

different for S0 and S1, which make the AR calculated for

S0 and S1 at the same AN = Θx can not be compared

directly. For AR-F, the number of proposals retrieved is

based on “frequency”, which is independent with the aver-

age number of all generated proposals.

In summary, AR-N cannot evaluate TAP performance

effectively on the same dataset, as number of retrieved

proposals should vary with video lengths. AR-AN can-

not be used to compare TAP performance among different

datasets, as the retrieval ratio depends on dataset’s video

length distribution, which makes the comparison unreason-

able. AR-F satisfies both requirements.

Comparison of visual features. We test TURN with

three unit-level features to assess the effect of visual fea-

tures on AR performance: C3D [27] features, RGB CNN

features with temporal mean pooling and dense flow CNN

[32] features. The C3D model is pre-trained on Sports1m

[13], all 16 frames in a unit are input into C3D and the

output of fc6 layer is used as unit-level feature. For RGB

CNN features, we uniformly sample 8 frames from a unit,

extract “Flatten 673” features using a ResNet [10] model
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Figure 4. Comparison of TURN variants on THUMOS-14 dataset

(pre-trained on training set of ActivityNet v1.3 dataset [32])

and compute the mean of these 8 features as the unit-level

feature. For dense flow CNN features, we sample 6 con-

secutive frames at the center of a unit and calculate optical

flow [5] between them. The flows are then fed into a BN-

Inception model [32, 12] that is pre-trained on training set of

ActivityNet v1.3 dataset [32]. The output of “global pool”

layer of BN-Inception is used as the unit-level feature.

As shown in Figure 4, dense flow CNN feature (TURN-

FL) gives the best results, indicating optical flow can cap-

ture temporal action information effectively. In contrast,

RGB CNN features (TURN-RGB) show inferior perfor-

mance and C3D (TURN-C3D) gives competitive perfor-

mance.

Temporal context and unit-level coordinate regres-

sion. We compare four variants of TURN to show the effec-

tiveness of temporal context and unit regression: (1) binary

cls w/o ctx: binary classification (no regression) without the

use of temporal context, (2) binary cls w/ ctx: binary clas-

sification (no regression) with the use of context, (3) frame

reg w/ ctx: frame-level coordinate regression with the use

of context and (4) unit reg w/ ctx: unit-level coordinate re-

gression with the use of context (i.e. our full model). The

four variants are compared with AR-F curves. As shown

in Figure 4, temporal context helps to classify action and

background by providing additional information. As shown

in AR-F curve, unit reg w/ ctx has higher AR than the

other variants at all frequencies, indicating that unit-level re-

gression can effectively refine the proposal location. Some

TURN proposal results are shown in Figure 6.

Comparison with state-of-the-art. We compare TURN

with the state-of-the-art methods under AR-AN, AR-F,

Recall@AN-tIoU, Recall@F-tIoU metrics. The TAP gener-

ation methods include DAPs [4], SCNN-prop [23], Sparse-

prop [2], sliding window, and random proposals. For DAPs,

Sparse-prop and SCNN-prop, we plot the curves using the

proposal results provided by the authors. “Sliding window

proposals” include all sliding windows of length from 16

to 512 overlapped by 75%, each window is assigned with

a random score. “Random proposals” are generated by as-

signing random starting and ending temporal coordinates

(ending temporal coordinate is larger than starting temporal

AR-F AR-AN

Recall@F-tIoU Recall@AN-tIoU

Figure 5. Proposal performance on THUMOS-14 dataset under 4

metrics: AR-F, AR-AN, Recall@F-tIoU, Recall@AN-tIoU. For

AR-AN and Recall@AN-tIoU, we use the codes provided by [4]

coordinate), each random window is assigned with a ran-

dom score. As shown in Figure 5, TURN outperforms the

state-of-the-art consistently by a large margin under all four

metrics.

How unit size affects AR and run-time performance?

The impact of unit size on AR and computation speed is

evaluated with nu ∈ {16, 32}. We keep other hyper-

parameters the same as in Section 4.2. Table 1 shows

comparison of the three TURN variants (TURN-FL-16,

TURN-FL-32, TURN-C3D-16) and three state-of-the-art

TAP methods, in terms of recall (AR@F=1.0) and run-time

(FPS) performance. We randomly select 100 videos from

THUMOS-14 validation set and run TURN-FL-16, TURN-

FL-32 and TURN-C3D-16 on a single Nvidia TITAN X

GPU. The run-time of DAPs [4] and SCNN-prop [23] are

provided in [4], which were tested on a TITAN X GPU and

a GTX 980 GPU respectively. The hardware used in [2] is

not specified in the paper.

Table 1. Run-time and AR Comparison on THUMOS-14.

method AR@F=1.0 (%) FPS

DAPs [4] 35.7 134.3

SCNN-prop [23] 38.3 60.0

Sparse-prop [2] 33.3 10.2

TURN-FL-16 43.5 129.4

TURN-FL-32 42.4 260.6

TURN-C3D-16 39.3 880.8

As can be seen, there is a trade-off between AR and FPS:

smaller unit size leads to higher recall rate, and also higher

computational complexity. We consider unit size as tempo-
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ral coordinate precision, for example, unit size of 16 and 32

frames represent approximately half second and one second

respectively. The major part of computation time comes

from unit-level feature extraction. Smaller unit size leads to

more number of units, which increases computation time;

on the other hand, smaller unit size also increases temporal

coordinate precision, which improves the precision of tem-

poral regression. C3D feature is faster than flow CNN fea-

ture, but with a lower performance. Compared with state-

of-the-art methods, we can see that TURN-C3D-16 outper-

forms current state-of-the-art AR performance, but acceler-

ates computation speed by more than 6 times. TURN-FL-

16 achieves the highest AR performance with competitive

run-time performance.

TURN for temporal action localization. We feed pro-

posal results of different TAP generation methods into the

same temporal action localizers/classifiers to compare the

quality of proposals. The value of mAP@tIoU=0.5 is re-

ported in Table 2. TURN outperforms all other methods in

both the SVM classifier and S-CNN localizer. Sparse-prop,

SCNN-prop and DAPs all use C3D to extract features. It

is worth noting that the localization results of four differ-

ent proposals suit well with their proposal performance un-

der AR-F metric in Figure 5: the methods that have better

performance under AR-F achieve higher mAP in temporal

action localization.

Table 2. Temporal action localization performance (mAP %

@tIoU=0.5) evaluated on different proposals on THUMOS-14.

DAPs SVM[4] Our SVM S-CNN

Sparse-prop[2] 7.8 8.1 15.3

DAPs[4] 13.9 9.5 16.3

SCNN-prop[23] 7.62 14.0 19.0

TURN-C3D-16 - 16.4 22.5

TURN-FL-16 - 17.8 25.6

A more detailed comparison of state-of-the-art localiza-

tion methods is given in Table 3. It can be seen that, by

applying TURN with linear SVM classifiers for action lo-

calization, we achieve comparable performance with the

state-of-the-art methods. By further incorporating S-CNN

localizer, we outperform all other methods by a large mar-

gin at all tIoU thresholds. The experimental results prove

the high-quality of TURN proposals.

TURN helps action localization on two aspects: (1)

TURN serves as the first stage of a localization pipeline

(e.g. S-CNN, SVM) to generate high-quality TAP, and thus

increases the localization performance; (2) TURN acceler-

ates localization pipelines by filtering out many background

segments, thus reducing the unnecessary computation.

2 This number should be higher, as DAPs authors adopted an incorrect

frame rate when using S-CNN proposals.

Table 3. Temporal action localization performance (mAP %) com-

parison at different tIoU thresholds on THUMOS-14.

tIoU 0.1 0.2 0.3 0.4 0.5

Oneata et al.[19] 36.6 33.6 27.0 20.8 14.4

Yeung et al.[33] 48.9 44.0 36.0 26.4 17.1

Yuan et al. [35] 51.4 42.6 33.6 26.1 18.8

S-CNN [23] 47.7 43.5 36.3 28.7 19.0

TURN-C3D-16 + SVM 46.4 41.5 34.3 24.9 16.4

TURN-FL-16 + SVM 48.3 43.2 35.1 26.2 17.8

TURN-C3D-16 +S-CNN 48.8 45.5 40.3 31.5 22.5

TURN-FL-16 + S-CNN 54.0 50.9 44.1 34.9 25.6

GT TP reg prop TP cls prop FP reg prop FP cls prop

Time

Time

Time

57.2 63.1 63.9

8.6 10.4 11.1 12.9 14.2 33.3 34.0 34.9 37.2 38.4

29.9 33.1 35.7 37.4 115.2 116.7 123.9121.6 122.5

57.6 61.9

Figure 6. Qualitative examples of retrieved proposals by TURN on

THUMOS-14 dataset. GT indicates ground truth. TP and FP in-

dicate true positive and false positive respectively. “reg prop” and

“cls prop” indicate regression proposal and classification proposal.

4.3. Experiments on ActivityNet

Datasets. ActivityNet datasets provide rich and diverse

action categories. There are three releases of ActivityNet

dataset: v1.1, v1.2 and v1.3. All three versions define a

5-level hierarchy of action classes. Nodes on higher level

represent more abstract action categories. For example,

the node “Housework” on level-3 has child nodes “Interior

cleaning”, “Sewing, repairing, & maintaining textiles” and

“Laundry” on level-4. From the hierarchical action cate-

gories definition, a subset can be formed by including all

action categories that belong to a certain node.

Experiment setup. To compare with previous work,

we do experiments on v1.1 (on subsets of “Works” and

“Sports”) for temporal action localization [3, 33], v1.2 for

proposal generalization capability following the same eval-

uation protocol as in [4]. On v1.3, we design a different ex-

perimental setup to test TURN’s cross-domain generaliza-

tion capability: four subsets having distinct semantic mean-

ings are selected, including “Participating in Sports, Exer-

cise, or Recreation”, “Vehicles”, “Housework” and “Arts

and Entertainment”. We also check that the action cat-

egories in different subsets are not semantically related:

for example, ”archery”, ”dodge ball” in “Sports” subset,
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Figure 7. Comparison of generalizability on ActivityNet v1.2

dataset

”changing car wheels”, ”fixing bicycles” in “Vehicles” sub-

set, ”vacuuming floor”, ”cleaning shoes” in “Housework”

subset, ”ballet”, ”playing saxophone” in “Arts” subset.

The evaluation metrics include AR@AN curve for tem-

poral action proposal and mAP for action localization.

AR@F=1.0 is reported for comparing proposal perfor-

mance on different subsets. The validation set is used for

testing as the test set is not publicly available.

To train TURN, we set the number of frames in a unit nu

to be 16, the context unit number nctx to be 4, L to be 6 and

λ to be 2.0. We build the temporal window pyramid with

{2, 4, 8, 16, 32, 64, 128} number of units. The NMS thresh-

old is set to be 0.1 smaller than tIoU in evaluation. For the

temporal action localizer, SVM classifiers are trained with

two-stream CNN features in “Sports” and “Works” subsets.

Generalization capability of TURN. One important

property of TAP is the expectation to generalize beyond the

categories it is trained on.

On ActivityNet v1.2, we follow the same evaluation pro-

tocol from [4]: model trained on THUMOS-14 validation

set and tested in three different sets of ActivityNet v1.2: the

whole set of ActivityNet v1.2 (all 100 categories), Activi-

tyNet v1.2 ∩ THUMOS-14 (on 9 categories shared between

the two) and ActivityNet v1.2 6 1024 frames (videos with

unseen categories with annotations up to 1024 frames). To

avoid any possible dataset overlap and enable direct com-

parison, we use C3D (pre-trained on Sports1M) as feature

extractor, the same as DAPs did. As shown in Figure 7,

TURN has better generalization capability in all three sets.

On ActivityNet v1.3, we implement a different setup for

evaluating generalization capability on subsets that contain

semantically distinct actions: (1) we train TURN on one

subset and test on the other three subsets, (2) we train on the

ensemble of all 4 subsets and test on each subset. TURN

is trained with C3D unit features, to avoid any overlap of

training data. We also report performance of sliding win-

Table 4. Proposal generalization performance (AR@F=1.0 %) of

TURN-C3D-16 on different subsets of ActivityNet.
Arts Housework Vehicles Sports

Sliding Windows 24.44 27.63 27.59 25.72

Arts (23; 685) 44.30 44.38 40.85 38.43

Housework (10; 373) 40.27 44.30 38.65 36.54

Vehicles (5; 238) 38.43 40.05 42.22 30.70

Sports (26; 1294) 43.26 43.58 41.40 46.62

Ensemble (64; 2590) 45.30 48.12 42.33 46.72

dows (lengths of 32, 64, 128, 256, 512, 1024 and 2048,

overlap 50% ) in each subset. Average recall at frequency

1.0 (AR@F=1.0) are reported in Table 4. The left-most col-

umn lists subsets used for training. The numbers of action

classes and training videos with each subset are shown in

brackets. The top row lists subsets for test. The off-diagonal

elements indicate that the training data and test data are

from different subsets; the diagonal elements indicate the

training data and test data are from the same subsets.

As can be seen in Table 4, the overall generalization ca-

pability is strong. Specifically, the generalization capabil-

ity when training on “Sports” subset is the best compared

with other subsets, which may indicate that more training

data would lead to better generalization performance. The

“Ensemble” row shows that using training data from other

subsets would not harm the performance of each subset.

TURN for temporal action localization. Temporal ac-

tion localization performance is evaluated and compared on

“Works” and “Sports” subsets of ActivityNet v1.1. TURN

trained with dense flow CNN features is used for compari-

son. On v1.1, TURN-FL-16 proposal is fed into one-vs-all

SVM classifiers which trained with two-stream CNN fea-

tures. From the results shown in Table 5, we can see that

TURN proposals improve localization performance.

Table 5. Temporal action localization performance (mAP%

@tIoU=0.5) on ActivityNet v1.1

Subsets [3] [33] Sliding Windows TURN-FL-16

Sports 33.2 36.7 27.3 37.1

Work 31.1 39.9 29.6 41.2

5. Conclusion

We presented a novel and effective Temporal Unit Re-

gression Network (TURN) for fast TAP generation. We

proposed a new metric for TAP: Average Recall-Proposal

Frequency (AR-F). AR-F is robustly correlated with tem-

poral action localization performance and it allows perfor-

mance comparison among different datasets. TURN can

runs at over 880 FPS with the state-of-the-art AR perfor-

mance. TURN is robust on different visual features, in-

cluding C3D and dense flow CNN features. We showed

the effectiveness of TURN as a proposal generation stage in

localization pipelines on THUMOS-14 and ActivityNet.
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