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Abstract

The goal of the semantic object correspondence problem
is to compute dense association maps for a pair of images
such that the same object parts get matched for very dif-
ferent appearing object instances. Our method builds on
the recent findings that deep convolutional neural networks
(DCNNs) implicitly learn a latent model of object parts even
when trained for classification. We also leverage a key cor-
respondence problem insight that the geometric structure
between object parts is consistent across multiple object in-
stances. These two concepts are then combined in the form
of a novel optimization scheme. This optimization learns
a feature embedding by rewarding for projecting features
closer on the manifold if they have low feature-space dis-
tance. Simultaneously, the optimization penalizes feature
clusters whose geometric structure is inconsistent with the
observed geometric structure of object parts. In this man-
ner, by accounting for feature space similarities and feature
neighborhood context together, a manifold is learned where
features belonging to semantically similar object parts clus-
ter together. We also describe transferring these embedded
features to the sister tasks of semantic keypoint classifica-
tion and localization task via a Siamese DCNN. We pro-
vide qualitative results on the Pascal VOC 2012 images and
quantitative results on the Pascal Berkeley dataset where we
improve on the state of the art by over 5% on classification
and over 9% on localization tasks.

1. Introduction

The semantic object correspondence problem has gar-
nered considerable attention in the vision community in
recent times. The objective of this problem is to densely
match objects that belong to the same semantic category but
are completely different in visual appearance space. Fig-
ure[T]shows an example of two semantically similar objects
namely the California quail and the sharp-shinned hawk.
The bottom row shows the dense correspondence map for
these two images as computed by our method. To bring out
the correctly matched object parts we have drawn lines be-

B. S. Manjunath
University of California Santa Barbara

manj@ece.ucsb.edu

Figure 1. Dense semantic correspondence map for a pair of im-
ages visualized through color mapping. The foreground of the left
image was artificially colored to mark different semantic regions.
The color of the right image was generated by mapping the color
of the best matched point on the left image.

tween them across the two instances. All object parts such
as head (red), tail(blue) back(purple/magenta), flank(green)
are correctly matched by our method based on the images’
class label alone. More examples of what we consider se-
mantically similar objects are shown in figure 2] blocks 1-4.

Object instances in the natural world appear very differ-
ent due to a combination of factors including different type
(Siamese vs. tabby cat, monorail vs. bullet train, fighter
vs. passenger aircraft), pose and viewpoint. Due to the
vast variance in the appearance of these instances, tradi-
tional hand-crafted feature descriptors such as SIFT[19]] or
SURF]1] cannot readily match them at the object-part level.

Finding semantic object correspondence is an important
problem. A variety of applications can benefit from the
matching and recognizing of dense object parts and their
geometric structure. Examples of such applications include
semantic keypoint classification and localization problem,
object part segmentation and complex activity recognition.

Unfortunately, there are no true ground-truth datasets
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Figure 2. The leftmost image for each block is used as a template image and the three other images are densely matched with it. Dense
semantic correspondence visualization scheme is the same as figure[I] Our method can effectively match rigid and non-rigid objects alike.

available for dense semantic associations, making it difficult
to use existing deep learning strategies to learn such associ-
ations. Thus this problem requires knowledge transfer from
other domains for any noteworthy matching performance.
A few research works have provided good results for this
problem. The work in [33] presented a clever technique to
use cyclic consistency between real images and CAD model
images with known parameters to create a deep network su-
pervisory signal. However, this method is limited to rigid
objects with available 3D CAD models and still requires
human intervention to orient model images to real images.
Very recently [6] proposed using optical flow ground-truth
to fine-tune a flow network to compute dense correspon-
dence that works well for sparse semantic correspondence.

Contributions In this work we present a method to gen-
erate true dense semantic correspondence for rigid and non-
rigid objects alike. We propose a novel optimization scheme
to re-purpose deep convolutional features from a classifi-
cation network to group semantically similar object parts.
This is achieved by maximizing intra-class correlation in a
learned embedded feature space regularized by inter-class
penalties in the geodesic (feature neighborhood) space. We
also introduce a mechanism to circumvent the NP-hardness
inherent to the joint analysis of the above factors by break-
ing the problem down into two well-understood cyclic com-
ponents, albeit at the cost of an exact solution.

As noted in [32]] and [21]], DCNN layers tend to implic-
itly learn object part models at various abstraction levels.
Despite this representational ability, their deep features sep-

arate objects of different categories on the hyperplane as a
result of being trained with a classification loss function. In
this work our primary goal is to leverage this representa-
tional power and refocus it for recognizing semantic object
parts (SOPs). We accomplish this task by utilizing the fea-
ture neighborhood context cues extracted from the feature
maps of the convolutional layer in conjunction with the fea-
ture space similarities, as shown simplistically in figure 3]

The DCNN filters operate in local image neighborhoods
(e.g. 3x3) so the spatially local patterns present in natu-
ral images extend to the deep convolutional feature maps
as well. Intuitively, this implies that deep features in the
same feature map locality are highly likely to belong to
the same object part, impervious to their similarity in the
feature space. For instance, a feature corresponding to the
tail of the object bird should have other tail features in its
close proximity. These spatially local patterns lend us ad-
ditional feature connectivity information between deep fea-
tures which is an excellent indicator of semantic similarity.

We extract feature maps from the convolutional layers
and thus get access to the associated feature connectivity
information. For this work, we make use of the convolu-
tional feature maps from the VGG16 [26] network where a
feature map for a given image is a 44x44 dimensional grid
and each “pixel” on this grid is a 512 length deep feature.
We use pre-trained features from ImageNet dataset and call
it the source dataset. We provide qualitative results for the
Pascal VOC 2012 dataset and refer to it as target dataset for
the rest of the paper.
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Figure 3. H=head, F=Flank, T=Tail features. Deep feature simi-
larities do not correspond very well to object parts. With the help
of geodesic space constraints, we project them to a manifold to
obtain embedded features that recognize semantic object parts.

1.1. Related work

Solving dense correspondence is inherently challenging
as it belongs to the class of inverse problems. The funda-
mental strategy for solving correspondence problems is to
assume regularity on image properties such as viewpoint
and brightness [12],[31]. Hand-crafted well-known features
including HOG, SURF and DAISY have found widespread
applications to numerous computer vision tasks [1, 28 [7].
However, such methods are susceptible to environmental
and scene changes. Inspired by differential techniques for
optical flow [20], SIFT-flow first introduced the idea of se-
mantic correspondence by aligning an image to its near-
est neighbors [17]. The resulting displacement fields from
SIFT-flow are sparse and post processing to obtain dense
fields does not yield favorable results. Long et al.[18] origi-
nally matched deep features computed at dense locations to
perform image alignment. Their performance for the align-
ment or keypoint dataset is not too far from SIFT-flow.

For many computer vision problems semantic parts bear
crucial information, for e.g., keypoint localization and vis-
ibility prediction. Traditionally, to solve these problems,
the spatial relationships between parts have been modeled
as star-shaped using geometric constraints[16], using tree
structured methods [35]], estimating viewpoints[29] or pose-
lets [3]. These models, however, have struggled against
large deformations and shape variance.

Recently, joint image-set alignment has been used to
tackle correspondence problem using supervised and fully
unsupervised methods as shown by Learned-Miller’s con-
gealing procedure[13]]. Congealing exhibited excellent re-
sults on MNIST data [[15]] and has been extended further to
handle more difficult real-world images [13]]. FlowWeb][34]
uses compositions of flow fields for modeling a common
image structure consistently among a large set of images
of the same category. The results however vary widely de-
pending on initialization quality. Carreira et al. [5] propose
a middle ground by leveraging class information to infer
dense correspondence. They construct a network connect-
ing objects in similar viewpoints. Geodesics on this graph
is used for pose prediction and object detection. Taniai
et al. [27] compute dense correspondence jointly with a
co-segmentation of an image set. Proposal flow[11] uti-

Figure 4. Semantic correspondence performance improvement
over the optimization iterations as neighborhood context reshapes
the manifold. Images correspond to second column of blocks 1, 2
and 3 from figure[2]

lized object proposals[30] combined with geometric con-
straints to find dense correspondences for objects. Univer-
sal Correspondence Network [6] is a supervised, end-to-
end network primarily trained for dense geometric corre-
spondence which is shown to compute sparse semantic cor-
respondences as well. Our method is weakly supervised
and produces high quality dense semantic maps. Unlike
the methods mentioned above, our method is very robust
to strong affine transformations of the object instances.

Performance quantification Due to the lack of dense
semantic correspondence ground-truth data, we look to-
wards other natural applications of this problem to quan-
tify the performance of our method. The keypoint localiza-
tion and classification problem is closely related to our task
since the keypoints are defined semantically on the classes
of PASCAL VOC 2011 and thus require the classifier to
have a semantic understanding of the dataset.

2. Method

As noted earlier, deep features from pre-trained DCNNs
tend to separate inter-class objects instead of intra-class ob-
ject parts. However, we aim to learn a manifold such that
the features belonging to the same semantic object parts
are projected closer to each other on the manifold. Let ¢
be an embedding representing such a manifold, parameter-
ized by w on the deep features f such that f¢ = ¢(f;w),
where f¢ are the embedded features. Directly solving for ¢
by jointly analyzing feature neighborhood connectivity and
feature space similarities for all the images is NP-hard. This
is due to the exponential growth of connectivity parameters
with a linear increase in features.

At the cost of an exact solution, we circumvent the NP-
hardness by introducing a transient variable ¢ which repre-
sents the semantic object part (SOP) labeling on the entire
feature set. Here, an SOP label of a feature point is the index
of the semantic object part to which it belongs (an SOP label
may correspond to an eye, wing, tail etc. for category bird,
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however the exact label information is neither known nor
necessary for the algorithm.). The labeling ¢ functions as a
link that connects feature similarity-based analysis and the
feature neighborhood context-based analysis in our model
and enables us to breakdown the original objective into two
cyclic terms as follows.

For simplicity of explanation, assume that we know the
true SOP labels for the entire feature set represented by ‘.
Then the manifold learning objective can be specifically de-
fined as one where the embedded features when clustered
by some function H in a deterministic manner, produce the
labeling ¢. This can be formulated as:

¢ = argmin(|H(f?) — ] (1)

If there exists an optimal labeling { that can correctly sepa-
rate semantic object parts in the original feature space, then
the optimal embedding ¢ can be computed exactly such that
features of the same SOPs are projected closer on the mani-
fold. Conversely, if ¢ is known that can completely separate
features of different semantic object parts on some mani-
fold, then we can exactly compute a labeling ? such that the
similar SOPs are assigned the same label:

(= arglmin(|\Il(€, f9) = @geo(l, f))) @)

here ¥ encodes the label-cluster similarity in the embedded
feature space whereas ® represents mislabeling penalties
in the geodesic (feature neighborhood) space. In this fash-
ion, we can transform the otherwise NP-hard problem into
one of label optimization with two well-understood com-
ponents strung together. The optimization for the system
proceeds by first keeping the labeling constant and learning
an improved embedding to reorganize features on the mani-
fold. In the next step, this embedding is held constant while
neighborhood-based refinement readjusts the feature label-
ing based on their connectivity statistics. Figure {] demon-
strates the effect of the optimization iterations on semantic
correspondence performance.

2.1. Overview

Section [3| describes the manifold learning process and
the construction of SOP models. For a set of target features
and an initial labeling ¢/, an embedding is learned to min-
imize/maximize the intra and inter-class feature distances
on the manifold. A clustering on the embedded features is
performed and a model of semantic object parts (SOPs) is
learned from the distribution of the feature clusters thus ob-
tained. Subsequently, the likelihood of each feature point
belonging to a SOP model is computed.

In section ] we detail the feature neighborhood context
analysis which takes as an input the labeling ¢ and feature
SOP likelihood values from the above step and performs
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Figure 5. A schematic diagram depicting our Siamese DCNN and
the interaction with the manifold learning module. The Euclidean
loss computed against the embedded feature correspondences) is
distributed to the network via backpropagation.

the neighborhood context-based label refinement. At this
step spatial distances on the feature map are utilized to re-
label frequently co-occurring features. This results in co-
occurring features being projected closer on the manifold in
the next manifold learning iteration. The above two steps
are repeated until the SOP models remain unchanged.

After the manifold has been refined, Euclidean distances
between embedded features are used to compute dense cor-
respondence to train a Siamese network. Motivation for
and construction of a Siamese pixel predictor network along
with its training from manifold correspondence maps as su-
pervisory signal is explained in section[5] Finally, experi-
ment details and a discussion of results is provided in sec-
tion

3. Learning Object Part Semantics

For a given category of a target dataset, a feature set
is constructed by extracting the convolutional deep feature
maps for all the images belonging to that category. We only
concern ourselves with feature space similarity of feature
points at this stage and not the neighborhood information.
Accordingly, the feature maps’ local neighborhood infor-
mation is disregarded and all the features are aggregated
into a single bag. Simple cluster analysis in this feature
space is inadequate at bringing the SOP features together.
This is due to the true distribution of each SOP cluster being
highly anisotropic and non-linearly distributed in the cur-
rent feature space. As discussed earlier, the reason for this
is the classification loss function which emphasizes inter-
class separation and does not account for intra-class object
part separation.

In order to address this issue, we seek to find an expres-
sive structure-preserving embedding that could effectively
manage the anisotropic cluster shapes and be able to dis-
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criminate between the non-linear SOP distributions, on the
manifold. Recall that in section 2l we introduced the SOP
labeling /¢ for the entire feature set in order to transform
the original objective. To accommodate this label for each
feature point and to ensure that the embedded features be-
longing to the same SOP label fall close-by on the mani-
fold, and farther away from the features of other models,
we must use a supervised manifold learning method. For
the manifold learning task, we employ Kernel Fisher dis-
criminant (KFD) analysis [22] which is a supervised low-
dimensional embedding technique. Since KFD uses the ker-
nel trick to perform the linear operations of Fisher’s linear
discriminant in a reproducing kernel Hilbert space, it is able
to account for the data non-linearity in the original deep fea-
ture space. In our case, the different SOP labels constitute
the classes and class means are represented by computing
between-class scatter matrix S}’; and the class variance by
within-class scatter matrix Sg’v for feature set f and label-
ing £. The embedding is parameterized by vector w which
is obtained by searching for a non-linear mapping ® from
the input space to some high-dimensional feature space F,
where the Fisher criterion is maximized:

T Q¢
J(w) = w* Spw

B wTS{wa

3)

Due to the implicit feature space F being high-dimensional,
direct computations in this space are avoided by rewriting
the Fisher criterion in dot-products of the data only. The
projection of new data point f? is computed as:

[ =" 2(f)) €))

For further details on KFD analysis and the closed form
solution for the optimization in equation [3] the reader is re-
ferred to [22]]. We normalize the features to unit L? norm
and use the polynomial kernel function for the mapping.
Since the convolutional deep features are very sparse in the
original space due to the ReL.U filtering, we use 32 discrim-
inants for the final embedding which corresponds to the av-
erage number of non-zero activations.

Statistical SOP Modeling. Given the embedded fea-
tures f? thus obtained, we perform hierarchical agglomera-
tive clustering (HAClustering) with a fixed maximum clus-
ter size of 15. Here each feature point starts out as an ini-
tial cluster and subsequently gets merged with other clus-
ters during the construction of the hierarchy. The maximum
cluster size here is a free parameter and corresponds to the
number of expected semantic object parts.

To represent the likelihood of a feature point belonging
to an SOP, we need to statistically model the distribution of
each cluster obtained earlier in the KFD feature space F.

Algorithm 1: Manifold Learning & Label Refinement

Input: Deep features {f}<_, for each object category
Output: Embedded features { ¢}, labeling {¢}/

1 Initialize ¢ = HAClustering( f)
2 repeat
3 Stepl: Learn manifold & generate SOP clusters
4 a) Compute embedding ¢
s & argmas ;jj;;%ju )
6 b) Project features
7 fo=(w-o(f?))
8 ¢) Compute labeling via clustering
9 { = HAClustering (%)
10 d) Model cluster distribution as Gaussian
1 p(f|c;) = Ce= 3 —n) "o (£ —p)
12
13 Step2: Refine labels wrt. geodesic distance
14 a) Feature similarity-based likelihood term
15 U(ei| f7) = —log(P(cil £7))
16 b) Compute geodesic-based penalty term
b by _ =l =17 llgeo
17 <I>(ci7cj|fi,fj)—exp{T}
18 if C; 7é Cj
19 ¢) Minimize energy to refine labels
20 g:argminzﬁsev \I/(ci|fi¢)+
w 5o soyem ®cis 17 1)

21 until SOP model unchanged

We collect the embedded feature values for each cluster ¢;
and their distributions are modeled by a simple multi-variate
Gaussian thus producing SOP models:

L e T @ L
p(F7ei) = p(f?, piy i) = Cem 23U (T mm),
)

Having modeled the SOP cluster distributions, we can now
compute the likelihood of an embedded feature f¢ belong-
ing to a SOP model ¢; as:

pleil £2) o< p(f2]ei)p(ci), (6)

where the prior p(c;) for a cluster is the membership frac-
tion of all features belonging to that cluster. This likelihood
term represents a confidence score of the feature’s associa-
tion with each of the semantic object parts model. We note
here that to initialize the labeling ¢ for the first iteration, the
above process is performed on the deep features albeit with
an identity matrix as the embedding.

4. Local Context-based Model Refinement

As mentioned earlier, the spatially local patterns present
in natural images extend to the deep convolutional feature

1739



Table 1. Keypoint classification accuracies on the twenty categories of PASCAL 2011 from Berkeley PASCAL keypoint dataset. The
parameters for SIFT-flow (radius) and Conv-flow (layer) are placed in the first column.

aero bike bird boat bttl bus car cat chair cow table dog horse mbike prsn plant sheep sofa train tv mean

SIFT-flow[17] 20 37 50 39 35 74 67 47 40 36 43 68 38 42 48 33 70 44 52 68 77 50
(radius) 40 35 54 37 41 76 68 47 37 39 40 69 36 42 49 32 69 39 52 74 78 51
80 33 43 37 42 75 66 42 30 43 36 70 31 36 51 27 70 35 49 69 77 48
Conv-flow[18] 4 44 53 49 42 78 70 45 55 41 48 68 51 51 53 41 76 49 52 73 76 56
(layer) 5 44 51 49 41 77 68 44 53 39 45 63 50 49 52 39 73 47 47 71 15 54
Ours 52 59 57 45 80 74 58 68 43 49 72 59 56 52 4 78 52 53 77 81 61

maps as well. Thus all the features belonging to an object
part are highly likely to manifest in the same feature map
locale regardless of their similarity in the feature space. For
instance, a feature corresponding to the eye of a bird should
not have a fail feature in its close proximity. Hence min-
ing for feature co-occurrence statistics constrained to local
feature neighborhoods across the target dataset serves as an
excellent indicator of semantic similarity.

The convolutional deep features used in this work come
from a DCNN trained on a classification loss function which
is very different from our optimization objective. So the
deep features which belong to very different parts of the
same object oftentimes have high similarity in the deep fea-
ture space and thus a high likelihood of belonging to the
same SOP, which is incorrect. Conversely, features that be-
long to the same object part and co-occur frequently exhibit
very low feature-space similarity.

To account for neighborhood context, we need to ensure
that features that frequently co-occur together and do not
exhibit a high likelihood association with any one SOP clus-
ter get assigned the same label. Whereas features that co-
incide but exhibit a strong association to their cluster retain
their label and become be the edge features. To accom-
plish this the labels computed in section [3|for all feature are
mapped back to the original feature map grid from where
these features originated, thus obtaining a 2D label matrix
for each of the images of the given category.

Given the label matrix of a feature map, we define a
graph G = {V, E}, where the nodes V are given by the
individual features of the feature map and are connected by
an edge { ff , f;p} € F if the features fj’ and fj) are 8-
connected on the feature map. We can define a likelihood
energy term U for each node (i.e. feature) in G directly
following section 3] equation [6}

U(eilf7) = ~log(pleil ;1)) @)
This term explains the likelihood of feature ff belonging
to the SOP cluster ¢;, learned via the statistical model in
section It ensures that the labeling ¢ is coherent with
the observed data such that the label ¢; to feature ff) is pe-
nalized if it is too different with the observed data in the
feature-space.

A pairwise energy term ¢ can be defined for each pair
of features constituting an edge in G to ensure that any two
neighboring feature labels ff and ff are penalized if their
labels do not co-occur frequently in the dataset. It can be
defined as the average geodesic distance between the fea-
tures of ¢; and ¢; across all the label matrices:

0 if Ci = ¢y
L i [P
p{ I /i llge

g

(I)(Civcj | f?’f;ﬁ) = {ex

}  otherwise,

®)

Here the distance between the two feature points || - || geo
is defined as the geodesic distance between the median lo-
cation of c; feature points and c¢; feature points for all the
images. The penalty imposed by ® ensures that the cost
of switching labels between two features that are far on the
learned manifold yet very close in the geodesic space (dis-
tance on feature map) is low. Thus frequently co-occurring
features can be assigned the same label with a low cost.

An energy function can now be defined on the graph G
that essentially learns a labeling ¢ that maximizes intra-SOP
correlation in the embedded space while being regularized
by the inter-SOP similarities in the geodesic space:

W)=Y V(al|f!)+w

frev

S Oei ol ff 17
(f7.17))€E

€))

The regularization parameter w balances the influence be-
tween the confidence in the manifold learning and the
neighborhood context-based refinement. The energy func-
tion in equation [9)can be solved through the standard multi-
label graph-cuts optimization [4]. The labeling ¢ obtained
as the result of equation [J] assigns the same label to fre-
quently co-occurring features while accounting for label
outliers.

In the next iteration of the manifold learning process, the
features corresponding to the refined labels are projected
even closer on the manifold by the embedding and a new set
of labels are computed via the HAClustering. This process
is repeated until the SOP models remain unchanged.
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Table 2. Keypoint prediction results on PASCAL VOC 2011 from Berkeley PASCAL 2011 keypoint dataset. The average accuracy of
localization is listed for percentage of correct keypoint (PCK) criteria with o = 0:1, similar to [18]

aero bike bird boat bttl bus car cat chair cow

table dog horse mbike prsn plant sheep sofa train tv mean

SIFT-flow(17] 17.9 16.5 15.3 15.6 25.7 21.7 22.0 12.6 11.3 7.6
[17]+prior 33.5 36.9 22.7 23.1 44.0 42.6 39.3 22.1 18.5 23.5
CONVS5[18] 38.5 37.6 29.6 25.3 54.5 52.1 28.6 31.5 8.9 30.5
[18]+prior 50.9 48.8 35.1 32.5 66.1 62.0 45.7 34.2 21.4 41.1

6.5 125 183 15.1 159 213 147 15.1 92 199 15.7
11.2 20.6 32.2 339 26.7 30.6 25.7 26.5 21.9 324 28.4
24.1 23.77 35.8 29.9 39.3 382 30.5 24.5 41.5 42.0 33.3
27.2 293 46.8 45.6 47.1 42.5 38.8 37.6 50.7 45.6 42.5

Ours 62.2 58.6 51.1 39.3 74.7 77.2 65.1 48.0 26.9 53.4

31.2 445 59.1 54.2 58.8 51.3 43.9 41.7 57.5 62.1 53.1

5. Training a Siamese Network

Due to the lack of true dense semantic correspon-
dence ground-truth data we quantify the performance of
the learned features on standard semantic keypoint predic-
tion and classification datasets. For this purpose we need a
model that is easily fine-tunable to these sister tasks. We
simply train a Siamese DCNN from the manifold corre-
spondence maps since this network can be fine-tuned to
predict and classify key points at a later stage. Siamese
DCNNs are the de facto standard for flow computations
([81[34)[33]). They enable comparison and differentiation
between two data streams in the deep feature space with-
out the need for explicit modeling. Please refer to figure [3]
(right) for a schematic diagram of our Siamese DCNN.

We reuse the DCNN from section [3] and duplicate it so
as to parallel process two image streams. These two copies
of the network share weights so that the feature extractors
operating on the two images are identical. The last fully-
connected layer (F'C'9) of our VGG-16 network is a fully
convolutional layer in the current DCNN. The two networks
are combined at this layer and the feature maps from the
previous layer are simply stacked. Finally, to upsample the
correspondences in the decoder, we use the convolution-
transpose layers and concatenate it with corresponding fea-
ture maps of the encoder part.

To train the network, we utilize the truncated Euclidean
loss similar to [33]. Let Fi,j be the semantic correspon-
dence between images ¢ and j as computed by our DCNN,
and Fj ; be the pseudo ground-truth semantic correspon-
dence computed via nearest neighbor search on embedded
feature similarities, then the truncated Euclidean loss be-
tween the two flows is given by :

5= I = 2
Liow(Fi g, Fig) =Y min(|F ;(p) — Fi (0)]*, T?),
p€l;;

(10)

The loss function is based on artificial ground-truth ob-
tained by finding correlations in the space of embedded fea-
tures obtained from section 3] and [4] and the value of T2 is
kept equal to the long edge of the image. This network di-
rectly computes dense correspondences and is trained end-
to-end via back propagation.

6. Experimental Results

For our experiments we use deep convolutional features
from the VGG16 classification network trained on the Ima-
geNet 1000-class dataset [24]. We provide qualitative dense
correspondence for images in the Pascal VOC 2012 dataset.
The ImageNet dataset and the Pascal VOC dataset do not
share any class labels, however, many classes are seman-
tically similar across the datasets. For additional experi-
mental results on the Taniai and proposal flow benchmarks,
please visit vision.ece.ucsb.edu/research/dense-semantic-
object-correspondence

In order to learn the SOP manifold, a per-class train-
ing image set is formed by selecting images containing a
single object instance for each of the 20 classes from the
Pascal VOC 2012 [10] dataset and deep features are ex-
tracted from the DCNN. We note here that during testing
time, it is not required to know the class of any image pair
to compute dense correspondence between them. As a pre-
processing step, we process the features with a rectified lin-
ear unit (ReL.U) non-linearity so that the feature maps con-
tain positive activations only. Since Pascal VOC is a sim-
pler dataset, it does not activate the full range of VGG16
neurons. This step leads to very sparse features that can be
easily projected to a low-dimensional embedding without
loss of its representative power.

Since our feature extractor DCNN (section was
trained for classification, high-magnitude feature activa-
tions belonging to the most discriminative part of the object
class often end up overpowering other features. To correct
this imbalance, we normalize features to unit L2 norm to
match agreements between different neurons. This is also
in accordance with the findings of [25], [23] who recom-
mend doing this in order to stabilize the gradients for train-
ing. For clustering, we divide the embedded features for
each object class into 15 clusters, using the same number as
the expected semantic object parts.

After the manifold learning process concludes, we com-
pute similarities between the embedded features for each
pair of images in the per-class training image set. The
dense correspondences thus obtained are treated as syn-
thetic dataset for the training of the Siamese DCNN. In or-
der to avoid over-fitting the network, a widely used strategy
is to augment the training data via various geometric trans-
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Figure 6. Left: Randomly sampled correspondence points obtained via matching embedded deep features across various environmental and
scale variations for different PASCAL VOC 2012 categories. Right: Results of fine-tuning our DCNN for the task of keypoint localization
results on the Berkeley PASCAL keypoint dataset for different object classes. Ground-truth points are represented by red circles whereas
corresponding predictions made by our method are shown in yellow crosses.

formations [[14][9]. During the training epochs, we ran-
domly apply rotations sampled from [—16°,16°] and scal-
ing from [0.9,2.0] to all the image pairs in the mini-batch,
as well as their corresponding ground-truth data.

Qualitative results for the correspondence process are
shown in figure [ Our network is able to map semantic
parts across a wide variety of foreground and background
variations. The semantic correspondences are robust to
viewpoint changes as well. We note that some features of
an object (e.g. head for most animals) match more precisely
and with a higher similarity score, as opposed to features
belonging to other parts (e.g. breast or flank of a bird). We
believe this to be the result of these dominant features be-
ing more discriminative for the original task of classification
hence better recognized by our network. Due to the lack of
dense semantic correspondence ground-truth data, we look
towards the sister tasks of keypoint localization and classi-
fication to quantify the performance of our method. This
problem is a natural application of correspondence problem
since the keypoints are defined semantically on the classes
of PASCAL VOC 2011 and thus require the classifier to
have a semantic understanding of the dataset[2]).

Similar to [18], we use 80% of the data for training and
keep the rest for validation. The network fine-tuning and
training data augmentation is performed in the manner de-
scribed earlier. For a given query image, top K images are
extracted from keypoint training dataset based on normal-
ized L? distance between their deep features (K = 25).
Next, dense correspondences are computed between the
query image and each of these K images via our Siamese
DCNN. Thus, a keypoint estimate on the query image is
computed through mapping the known keypoints of the K
images onto the query image and averaging the classifica-
tion scores and the location coordinates. Mapping process is
linear time in number of keypoints of the K images, which
on average are less than a dozen per image.

The localization performance is measured via percent-
age of correct keypoints (PCK) metric originally used in
[18][34]. Note that our results are not post-processed in

any way. Figure [f] (right) shows example results from dif-
ferent categories. Our method is able to correctly predict
the absence of keypoints in the query image as well. Each
cross represents the ground-truth keypoints, whereas a cir-
cle represents the corresponding point found by our algo-
rithm. Our method evidently performs better than conv-
flow and outperforms SIFT-flow by a large margin (table
[I). Compared with other contemporary techniques, our
method works well even for keypoints belonging to small
object parts (e.g. eyes and nose). This is due to the ability
of our network to obtain high-resolution correspondences
via multiple upconvolutional layers, similar to FCN-8 [18]].

7. Discussion

We presented a method to extract the implicit semantic
object part knowledge present in existing image classifica-
tion DCNNSs by the means of utilizing feature neighborhood
context. A manifold was learned where the embedded fea-
ture distances reflected the combination of geodesic space
similarities and feature space similarities. The informa-
tion contained in this manifold was imparted to a Siamese
DCNN by training it to compute dense semantic flow field
against a loss function based on the embedded feature sim-
ilarities. This DCNN can now be adapted to any suitable
computer vision task that can benefit from implicit under-
standing of SOPs. In order to demonstrate the efficacy of
our method, we fine-tuned the Siamese DCNN for the task
of semantic keypoint prediction and localization. For both
these tasks, our network outperformed the classical SIFT-
flow, which is the dominant method for semantic correspon-
dences, thus validating our knowledge transfer process from
pre-trained classification networks. Our method also out-
performed the conv-flow method based on simple applica-
tion of Conv features for semantic task, thus corroborating
the efficacy of our SOP modeling framework.
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