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Abstract

This paper proposes a probabilistic approach to recover

affine camera calibration and objects position/occupancy

from multi-view images using solely the information from

image detections. We show that remarkable object locali-

sation and volumetric occupancy can be recovered by in-

cluding both geometrical constraints and prior information

given by objects CAD models from the ShapeNet dataset.

This can be done by recasting the problem in the context of a

probabilistic framework based on PPCA that enforces both

geometrical constraints and the associated semantic given

by the object category extracted by the object detector. We

present results on synthetic data and extensive real eval-

uation on the ScanNet datasets on more than 1200 image

sequences to show the validity of our approach in realistic

scenarios. In particular, we show that 3D statistical priors

are key to obtain reliable reconstruction especially when the

input detections are noisy, a likely case in real scenes.

1. Introduction

Recovering 3D information from multiple-view images

has been a long standing research topic in Computer Vision.

Most of the efforts have been put in the robust computation

of the 3D position of points extracted from 2D images cor-

respondences [26]. This trend has led to impressive results

showing accurate 3D points clouds obtained from realistic

objects, even at the very large scale [1, 57, 22, 51]. Such

description of the 3D world is however conveying a min-

imal semantic information: the point cloud provides just

the localisation of the 3D points without the information

associated, for instance, to the context of the scene it has

been reconstructed from. Differently, on a higher semantic

level, objects can provide an incredible amount of informa-

tion to increase robustness when solving for geometry in

multiple images and to improve performance of classifica-

tion/recognition tasks [29, 19].

Applications such as 3D-aware scene understanding [52,

Figure 1. The figure shows the proposed framework. A semantic

engine extracts and matches bounding boxes from objects in mul-

tiple frames using a CNN detector [47]. Given the object classes,

we use the ShapeNet dataset [9] to create a realistic prior on the

detected objects. Then, the Probabilistic Structure from Motion

with Objects (PSfMO) method provides the metric localisation,

occupancy and pose of object as a set of quadrics in the 3D space.

37, 54, 36], visual question and answering [59] and robot

object manipulation [8, 49] strongly require to localise ob-

jects in 3D and thus motivate a joint geometric and se-

mantic understanding. The usefulness of this problem is

also stressed by the attempts of previous works inject-

ing higher semantic in classical 3D reconstruction prob-

lems [4, 45, 55, 20, 14, 17]. This object-based geomet-

ric reasoning is now possible because of the accuracy and

generalisation of modern objects detectors that can provide

localization of several object classes in realistic scenarios

[27, 15, 47, 46]. Still, one relevant and open problem is

that most detectors provide this information onto the image

plane only, without giving an indication of the object posi-

tion and occupancy in 3D.

To this end, this paper proposes an efficient and robust
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approach to recover 3D objects position and occupancy

from multiple views using 3D object priors linked to the

object categories of general purpose detectors. Fig. 1 shows

the overall concept of our approach. We have a video pro-

cessing engine that extracts and matches bounding boxes in

multiple views for different object categories. Such associa-

tion at each frame is made using each object appearance by

proposing a variation of a tracking-by-detection approach

[23]. We then construct a geometrical 3D prior given by

the specific object classes. This step is done by process-

ing CAD models in the ShapeNet [9] dataset thus giving a

statistics about the object dimensions. We show that this

very effective prior can be matched and merged with the

semantic information obtained by the detector output.

Finally, ellipses and priors in multi-view are fed to a

Probabilistic Structure from Motion with Objects (PSfMO)

approach which outputs camera calibration and the objects

position, occupancy and pose in 3D. Interestingly, this prob-

lem can be formalised as the factorization of a matrix stor-

ing all the 2D ellipses representation and then solving a

3D quadric reconstruction problem given the multi-view el-

lipses [12]. We show that this factorization can be derived as

a Probabilistic Principal Component Analysis (PPCA) ap-

proach by injecting the priors computed from the ShapeNet

dataset [9]. This formulation compares favourably against

pure multi-view geometry approaches [11] since the prior

counter the shortcomings of the inaccuracies given by the

coarse localisation of the object detector.

1.1. Related Work

The proposed approach is a Structure from Motion

(SfM) method that uses priors in order to obtain a reliable

estimate of the geometry. There have been several examples

in the literature providing probabilistic solution for SfM,

mainly to improve the estimate of the 3D scene geometry.

Forsyth et al. [21] recast the decomposition of the bilinear

components in factorization, camera matrices and 3D points

coordinates, as a Bayesian inference problem. The motiva-

tion is to encode in the prior the metric constraints involved

in the problem, thus providing better results in the presence

of degenerate configurations of points. In face modelling

problems, the work of Solem and Kahl [53] used a learned

shape model to aid the 3D inference over regions for which

no 2D information is available. Del Bue et al. [18] used

the information of the rigidity of some points to obtain reli-

able estimations of the 3D object structure with deforming

objects. Information derived from object detections has al-

ready been used in SfM. The work described in [5] takes

advantage of both semantic and geometrical properties as-

sociated with objects in the perspective case.

Another factorization problem that highly relies on pri-

ors is non-rigid SfM. This is due to the presence of objects

3D deformations that make the problem severely ill-posed.

Torresani et al. [58] used Gaussian priors in a Probabilis-

tic Principal Components Analysis (PPCA) framework to-

gether with a linear dynamic model over the deformation

parameters. This framework is close to our method, how-

ever, our object representation enables us to build a bet-

ter prior which is representative of the scene instead of a

generic one. Similarly, [43] imposed a prior over tempo-

ral variations of the camera parameters combined with con-

straints over the proximity of projected 2D points and re-

constructed 3D points. Again related to 3D points estima-

tion, [16] defined a shape prior in a factorization based ap-

proach to help 3D reconstruction in case of degenerate mo-

tions. Akhter et al. [2] showed that a prior parametrization

of the 3D trajectory motion can provide more efficient re-

sults. The work of Gotardo and Martinez [25] proposed a

similar principle using DCT bases to represent the camera

motion in order to regularise intrinsic and extrinsic param-

eters. Finally, [10] used a novel Procrustean Normal distri-

bution to minimise geometrical deformations under an op-

timality criterion.

All these approaches deal with 2D point trajectories or

matches in multi-view, only few works directly localise ob-

jects in a factorization framework. Previous methods at-

tempted the joint reconstruction of different geometrical en-

tities such as lines, curves and conics [44, 41, 6, 50, 7, 40,

32, 33, 42, 12, 34, 48]. However, even if these methods

were able to obtain an inference of the 3D structure, none of

them was aimed at obtaining an object based representation

of the 3D world. Recently, the work of [11] proposed the

SfM with Objects (SfMO). This method provides a solution

to the localization of objects in a factorization framework

by using the output of detectors only. However, even if the

method is closed-form, it can lead to unreliable estimates,

especially for the object occupancy, if the detector output is

not accurate enough or if very few views are available.

Last but not least, two papers focusing on 3D object oc-

cupancy appeared at the same moment of this work [3, 31].

The first one learns a regression of the 3D bounding box

parameters, while the second system uses sampling inside

a EKF SLAM framework and exploits inertial sensor to ob-

tain the object scale.

Related to previous work, this paper provides the follow-

ing contributions:

• the probabilistic framework to include both object de-

tections and shape priors to estimate of object position,

occupancy and pose.

• an extensive experimental evaluation on approxi-

mately 1217 real sequences extracted from the Scan-

Net dataset.

Experimental evaluation shows that this framework can

provide object estimates, especially with unreliable object

detections extracted from real images.
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2. Probabilistic Structure from Motion with

Objects

We assume that different object have been detected in

an image sequence and that detections between consecu-

tive frames have been associated by tracking. After having

detections matched for all the image sequence, we switch

from a bounding box description by fitting an ellipse to the

rectangular contour as shown in Fig. 1 (top figure). Such

ellipse representation is certainly a coarse approximation of

the real object shape but it is a computationally appealing

function that allows the recovery of a better 3D position,

occupancy and pose of the object.

Precisely, the localisation of objects in 3D is instantiated

as a quadric (i.e. 3D ellipsoid) estimation from multiple 2D

ellipses problem [11]. In this estimation framework there is

no notion about the ratio of the different dimensions of the

object, the method obtains the estimation of object position

and occupancy from coarse multi-view relations only. We

aim here to provide a novel probabilistic framework that can

seamlessly include the priors into the multi-view geometri-

cal problem.

2.1. Quadric reconstruction from conics

Before explaining our probabilistic approach, we first

present the SfMO method and introduce the geometrical

formulation of the problem. Consider a set of image frames

indexed by f = 1 . . . F representing a 3D scene under dif-

ferent viewpoints. A set of i = 1 . . . O rigid objects in arbi-

trary positions are detected in each of the F images. Each

object i in each image frame f is identified by an ellipse

Dfi as described in the previous paragraph. The 3 × 3 ma-

trix Dfi is the expression of a 2D conic in homogeneous

coordinates. The aim of our problem is to find the 3D ellip-

soid given by the 4 × 4 quadric Ei whose projections onto

the image planes best fit the 2D ellipses Dfi. This will solve

for both the 3D localisation and occupancy of each object

starting from image detections in different views.

Since the relationship between Dfi and Ei is not straight-

forward in the primal space, i.e. the Euclidean space of 3D

points (2D points in the images), it is convenient to refor-

mulate it in dual space, i.e. the space of the planes (lines

in the images) [12]. In particular, the conics in 2D can be

represented by the envelope of all the lines tangent to the

conic curve, while the quadrics in 3D can be represented

by the envelope of all the planes tangent to the quadric

surface. Hence, the dual quadric is defined by the matrix

Qi = adj(Ei), where adj is the adjoint operator, and the

dual conic is defined by Cfi = adj(Dfi) [26].

Each quadric Qi, when projected onto the image plane,

gives a conic denoted with Cfi ∈ R
3×3. In this work, we as-

sume an orthographic camera matrix, however, this formal-

isation can be adapted to more generic affine cameras [35].

The relationship between Qi and Cfi is defined by the ortho-

graphic projection matrix Pf ∈ R
3×4 as:

Pf =

[

Rf tf

0
⊤
3 1

]

=





p11 p12 p13 p14
p21 p22 p23 p24
0 0 0 1



 (1)

where Rf ∈ R
2×3 is an orthographic camera matrix such

that RfR
⊤

f = I2×2, the vector tf is the camera translation

and 0m denotes a vector of m zeros.

The dual conic Cfi and the dual quadric Qi are defined

up to an overall scale factor that can be arbitrarily fixed by

setting the elements (3,3) of Cfi and (4,4) of Qi to−1. After

such normalisation, the relation between a dual quadric and

its dual conic projections can be written as:

Cfi = PfQiP
⊤

f . (2)

From each projection, it is possible to define a factor-

ization problem by first vectorizing Eq. (2) by defining

vi = vech(Qi) and cfi = vech(Cfi) as the vectorization

of symmetric matrices Qi and Cfi respectively1.

Then, let us arrange the products of the elements of Pf
and P⊤f in a unique matrix Gf ∈ R

6×10 as follows [28]:

Gf = Y(Pf ⊗ Pf )W (3)

where ⊗ is the Kronecker product and matrices Y ∈ R
6×9

and W ∈ R
16×10 are two matrices such that vech(X) =

Y vec(X) and vec(X) = W vech(X) respectively, where X is

a symmetric matrix. We can rewrite Eq. (2) for all frames

as:

ci = Gvi, (4)

Where c and vi are respectively a 6F and 10F dimension

vectors containing the conics and the ellipsoids in all the

frames, G is 6F × 10 matrix which contains the camera for

each view.

To solve this factorization problem and perform the met-

ric upgrade, the SfMO method uses the fact that the trans-

lation parameters of the quadrics can be solved separately.

In practice it consists in solving a classical SfM problem

where the 2D measurements correspond to the centres of

the ellipses. The solution provides both the centre t
e
i of

each ellipsoid vi and the camera matrix G.

To solve for the remaining parameters, namely the shape

and the orientation, the ellipsoids are registered to the ori-

gin. Let us denote by wi the 6 dimension vectorised quadric

which has been registered from the non-translated quadric

vi. It can be shown that with wi and its corresponding cen-

tred conics cri , the factorization equation Eq. (4) becomes:

c
r
i = G

r
wi (5)

1The operator vec serialises all the elements of a generic matrix. The

operator vech vectorises the elements of the lower triangular part of a

symmetric matrix, such that, given a symmetric matrix X ∈ R
n×n, the

vector x, defined as x = vech(X), is x ∈ R
g with g =

n(n+1)
2

.
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where the cri is a (3F )-vector containing all the centred con-

ics for the object i observed in F frames and Gr is a 3F × 6
matrix obtained from G. In practice, it consists simply in

selecting the rows and the columns related to the quadric

shape and disregarding the ones related to the translation

(that are equal to zero given the centring). At this point,

the SfMO method consists in multiplying by the pseudo in-

verse of Gr to obtain the remaining quadric parameters wi.

Our PSfMO approach differs from SfMO on this last step

where we use a probabilistic factorisation to include our ob-

ject prior.

2.2. Object pose and shape decomposition

We seek to perform an optimization constrained by an

apriori knowledge on the semi-axis lengths of each object.

Let us first show how these lengths appear explicitly in the

factorization problem defined by Eq. (4). A generic ellip-

soid in dual space Q∗ can be written as:

Q
∗ = ZQ̆

∗

Z
⊤ (6)

where Q̆
∗

is an ellipsoid centred on the origin and with the

axes aligned to the 3D coordinates and Z is an homoge-

neous transformation accounting for an arbitrary rotation

and translation. Then Z and Q̆
∗

can be written as:

Z =

[

R(θ) t

0
⊤
3 1

]

, Q̆
∗

=









a2 0 0 te1
0 b2 0 te2
0 0 c2 te3
0 0 0 −1









, (7)

where te = [t1, t2, t3]
⊤ is the translation vector, R(θ) is the

rotation matrix given by the Euler angles θ = [θ1, θ2, θ3]
⊤

and a, b, c are the three semi-axes of the ellipsoid.

Given the registered quadric wi used in Eq. 5, the trans-

lation t can be then decoupled from the quadric matrix so

we can register the ellipsoids to the origin by setting t
e to 0

and removing this variable from the equations. Now, let us

examine the expression of the registered quadric wi in more

details. This vector can be expressed in terms of the remain-

ing six quadric parameters. Defining the vector e ∈ R
6 as

e = [θ1, θ2, θ3, a, b, c]
⊤, we can evaluate a functional form

of the vector wi(e) as follow:

wi(e) =































r11(θ)
2
a
2 + r12(θ)

2
b
2 + r13(θ)

2
c
2

r11(θ)r21(θ)a
2 + r12(θ)r22(θ)b

2 + r13(θ)r23(θ)c
2

r11(θ)r31(θ)a
2 + r12(θ)r32(θ)b

2 + r13(θ)r33(θ)c
2

r21(θ)
2
a
2 + r22(θ)

2
b
2 + r23(θ)

2
c
2

r21(θ)r31(θ)a
2 + r22(θ)r32(θ)b

2 + r23(θ)r33(θ)c
2

r31(θ)
2
a
2 + r32(θ)

2
b
2 + r33(θ)

2
c
2































(8)

From now, we will again denote this vector by wi to sim-

plify notations. We observe that it is possible to decompose

it in the following way:

wi = Ri(θ)li, (9)

where Ri(θ) contains the orientation of the quadric and is

of size 6× 3:

Ri(θ) =





























r11(θ)
2 r12(θ)

2 r13(θ)
2

r11(θ)r21(θ) r12(θ)r22(θ) r13(θ)r23(θ)

r11(θ)r31(θ) r12(θ)r32(θ) r13(θ)r33(θ)

r21(θ)
2 r22(θ)

2 r23(θ)
2

r21(θ)r31(θ) r22(θ)r32(θ) r23(θ)r33(θ)

r31(θ)
2 r32(θ)

2 r33(θ)
2





























, (10)

where li = [a2, b2, c2]⊤ contains the three axes lengths.

This provides the separation between the rotational pose

and ellipse shape components making possible to impose

the priors over the axes. In the following and unless stated

otherwise, we will denote the orientation matrix with Ri to

simplify the notation.

2.3. Object 3D prior

The decomposition in Eq. 9 shows that the shape of the

ellipsoid is given by the square of the axis length li and we

will now describe how to build a prior distribution on such

axes. The prior is given by statistics on the dimensions of

the objects collected from the ShapeNet dataset [9]. For

each object i present in the dataset, we extract a 3 dimen-

sional vector hi = [a, b, c]T containing the lengths along

the main axes. These values have been normalised so that

|hi|
2 = 1 and thus providing the information about the ratio

of these axis. From the normalisation, we can deduce that

li lies in a 2-dimensional space. For each object category c,
we first use PCA to compute a 3x2 projection matrix Vc and

a mean µc to project each vector li in the 2D space. Sec-

ondly, we fit a 2D Gaussian parametrised by (0,Σc). This

Gaussian encodes our a priori information about the ratio of

the different dimensions of the object. Fig. 2 shows an ex-

ample in the case of the bottle category where we can notice

that the horizontal dimension accounts for the ratio between

x and y axes and the vertical one for the ratio between the

bottle diameter and its height.

In order to apply the prior on test images, we must select

one of the six possible correspondences between the axes of

the estimated ellipsoids and the prior axes i.e. the rows of

Vc and µc. In practice, we estimate the axes lengths for the

6 possible configurations and keep the one with the higher

likelihood. Lastly, we must estimate a scale factor z to ac-

count for the scale difference between the normalised axes

of the prior and the non normalised axis of the ellipsoids we

wish to estimate. This last variable is estimated from the

data as described in the following section.

The other parameters such as the camera translation and

orientation are estimated by our method directly from the

data using multi-view relations.
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Figure 2. The contour lines are the Gaussian sections of the prior

for the bottle category. Each blue cross corresponds to a CAD

model extracted from the ShapeNet database.

2.4. Probabilistic PCA with shape priors

From a generative point of view, our Probabilistic Prin-

cipal Component Analysis (PPCA)2 model assumes that

each centred conic vector cri is obtained by sampling a 2-

dimensional latent random vector si and an additive Gaus-

sian noise ǫ such that:

c
r
i = G

r
Ri zi (Vcisi + µci) + ǫ, (11)

where ǫ →֒ N [0, σId3F ]. The hidden variable si encodes

the axis lengths, and thus the ellipsoid shape, that we have

to estimate. µci and Vci are used to re-project the si into

the 3 dimensional axes length vector, where ci is the cate-

gory of the object i. Conversely from the standard PPCA,

we have a latent additional variable zi which accounts for

the scale difference between the prior and the reconstructed

ellipsoid. As in the decomposition of Eq. (9), Ri is the ro-

tation matrix defined in Eq. 10, and Gr is the camera matrix

defined in Eq. 5. Inference and parameter estimation with

PPCA is usually done with an EM algorithm. In the E-step,

we estimate sufficient statistics from the posterior distribu-

tion P (si|c
r
i ). In the M-step, we then compute the noise

variance parameter σ.

The posterior over the latent variables can be written as:

P (si, zi|c
r
i ) ∝ P (cri |si, zi)P (si) (12)

From Eq. 11, we can write that:

P (cri |si, zi) = N(xi, σId
3F ), (13)

where we used the notation xi = GrRizi(Vsi + µci). It has

been said in Sec. 2.3 that P (si) is the Gaussian N(0,Σci)

2For a more general and extensive description we refer to [56].

where ci is the category of object i. Skipping the constants

that do not depend on the latent variables, the logarithm of

the posterior can be written as:

log(P (si, zi|c
r
i )) ∝ (xi−c

r
i )

1

σ
Id3F (xi−c

r
i )+s

T
i

1

σ
Id3F si,

(14)

It can be noticed from this formula that the log likelihood

is simply a sum of two terms. The first one accounts for

the reprojection error with respect to the observed conics

c
r
i , and the second one refers to the prior. In particular,

the noise covariance parameter σ can be seen as a trade-off

parameter between the two terms which is automatically es-

timated from the data. Since this distribution is intractable,

we resort to Markov Chain Monte Carlo [24] (MCMC) to

estimate the expectation of the latent variables {ẑ, ŝi} under

the posterior.

The last element to estimate is the matrix containing the

ellipsoid orientation Ri. It has been shown in Eq. (10) that

this matrix is constructed from the three Euler angles θ.

One solution would be to include them as additional vari-

ables in the posterior, but we observe that the MCMC esti-

mation becomes unreliable. Instead, we propose to estimate

these angles by solving the following optimisation problem:

θ̂ = argmin
θ

‖x̂i − c
r
i ‖

2
, (15)

where x̂i = GrRiẑi(Vŝi + µ) we have explicitly writ-

ten the dependencies between Ri and θ. We optimise the

cost function with non-linear Least Squares by parametris-

ing rotations with quaternions. From the solution θ̂, we can

compute the orientation matrix Ri and obtain our quadric

estimate as:

ŵi = Ri(θ̂) ŝi ẑ (16)

In the M-step, we use our estimate of ŵi to estimate the

noise covariance parameter σ given by:

σ̂ =
1

3F

O
∑

i=1

{||cri ||
2 − 2ŵT

i G
r
c
r
i + trace(ŵT

i ŵiG
rT

G
r)}.

(17)

We provide an overview of the method in Alg. 1.

Initialisation. Given the ellipses in multiple views, we

first apply the SfMO method to obtain the camera matrix

Gr and estimation of the ellipsoid orientations θ. We use

these values as an initialisation for the PSfMO method.

3. Experiments

Our experiments aim at evaluating the proposed PSfMO

approach against the prior-less method SfMO [11]. We test

the behaviour of both methods in presence of noise in a syn-

thetic setting and show qualitative results on real examples
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Algorithm 1 PSfMO algorithm

Require: : Ellipses from multi-view images object detec-

tions C and initial noise covariance σ.

1: Initialisation: (Gr, θ̂)← SfMO (C);

2: while not converged do

3: estimate (z, si) by optimizing the posterior (14);

4: estimate quadric orientation θ̂ (15);

5: compute the centred quadric ŵi (16);

6: estimate σ̂ (17);

7: end while

in two freely available datasets. We collect CAD models

and defined priors for the categories of objects present in

our image sequences (bottles, monitors, chairs, cars, pot-

ted plant and coffee cup) for which hundreds of examples

were available in the ShapeNetCore dataset for each cat-

egory. Some examples of the priors have been shown in

Fig. 2.

3.1. Experiments on synthetic data

We generated ellipsoids, randomly placed inside a cube

of side 20 units. We generated a set of 5 objects drawn ran-

domly from the categories present in our CAD collection.

The length of the ellipsoid axes for each object category c
were generated from Gaussian distributions obtained with

the statistics µ̂c and Σ̂c that we computed from the CAD

collection.

Figure 3. Top images: Comparison of the volume overlap O3D and

noise variance σ given rotation error of the ellipse for the SfMO

(black dotted line) and the PSfMO (blue line) methods. Bottom

images: values for O3D and σ in the case of size errors in the ellip-

soid.

A set of 20 camera views were generated with a camera

trajectory computed such that azimuth and elevation angles

span the range [0◦, 10◦]. Given the orthographic camera

matrix projection Pf at each camera frame, ground-truth el-

lipses were calculated from the exact projections of the 3D

quadrics.

The ellipses were corrupted with two types of errors on

rotation and size. To impose such errors, the axes length l1,

l2 and the orientation α of the first axis were perturbed as

follows:

l̂j = lj
(

1 + νl
)

, α̂ = α+ να, (18)

where νtj , να and νl are random variables with uniform PDF

and mean value equal to zero, and l̄ = (l1 + l2)/2.

In order to highlight the specific impact of each error,

they were evaluated separately. Error magnitudes were set

tuning the boundary values of the uniform PDFs of νtj , να

and νl. In detail, for each kind of error, we considered 10
different values of νtj , νa and νl, with uniform spacing, and

we applied the resulting error realisations to the ellipse re-

projections related to all the ellipsoids. We run 100 trials for

each setup, described by the number of objects and error on

ellipses. The accuracy of the estimated 3D object position

and pose was measured by the volume overlap O3D given by

the intersection between ground-truth (GT) and estimated

(ES) ellipsoids respectively:

O3D =
1

N

N
∑

i=1

Qi ∩ Q̃i

Qi ∪ Q̃i

, (19)

where Qi and Q̃i denote the volume of GT and ES ellip-

soids in the dual space respectively thus the metric evalu-

ating an algebraic error. It might happen that the quadrics

obtained by the methods do not correspond to a valid ellip-

soid. In this case, we consider the test as failed. In Fig. 3,

we reported the results for both methods SfMO and PSfMO

in terms of 3D overlap O3D.

In the absence of noise, SfMO retrieves nearly perfect el-

lipsoids thanks to the closed-form solution. In this case, in-

cluding prior information can only degrade slightly or pro-

duce similar performances. However, PSfMO is able to

retrieve better ellipsoids when the ellipse orientations and

sizes are corrupted. This effect is more important for the

size error. This effect is expected, our prior information

has a particular effect on the estimation of the axes lengths.

We also observe that as the noise increases, the estimation

of σ produces higher values, meaning that the method relies

more on the prior. This indicates that the automatic trade-off

between data and prior is effective and working as expected.

3.2. Experiments on ScanNet dataset

We provide exhaustive experimental evaluation over the

ScanNet dataset [13] which consists of 1500 indoors RGBD

scans annotated with 3D camera poses, surface reconstruc-

tions, and mesh segmentation related to several object cate-

gories. Such annotations enable us to construct 3D ground-

truth (GT) data by fitting ellipsoids to each object’s mesh so

evaluating the accuracy of PSfMO in realistic environments.
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In more details, the GT ellipsoids are computed as the one

that include all the labelled 3D points in the mesh and have

minimal volume. Given the available camera matrices, we

can then reproject each object’s mesh onto the image plane

so localising the object as a 2D point cloud. Then, we draw

a bounding box around the obtained 2D point cloud and

consider this as a putative object detection for our system.

From the bounding box, we finally construct an ellipse by

taking the centre of the bounding box, its axes lengths as the

width and high of the box and its orientation aligned to the

axes of the box.

We also take into account occlusions when computing

the bounding boxes. As occluded objects are typically

missed by object detectors, we impose that at least 80% of

the object surface should be visible, i.e. not occluded by

another object, in the current frame to be detected. More-

over, we only keep images when more than three objects are

appearing and we set the minimum length of a sequence to

three frames. This experimental protocol provides us with

1217 sequences overall.

As with the synthetic experiments, we compare the

SfMO and the proposed PSfMO with the O3D overlap mea-

sure. As it is in standard in 3D reconstruction, we use the

Procrustes method to align the centres t
e
i of the estimated

ellipsoids with the centres of the GT ellipsoids and then pro-

ceed with the error evaluation.
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Figure 4. Each couple of bar shows the accuracy for both SfMO

and PSfMO methods for the ten object categories the most present

in our dataset.

In Fig 4, we show the O3D for the ten object categories

most represented in our sequences (83% of the objects)

as well as the average for all categories. The results con-

firm the findings of the synthetic experiments: The PSfMO

method shows the best performances by using the prior built

on the ShapeNet dataset. The average O3D for all the 1217
sequences is 0.72 for SfMO and 0.82 for PSfMO.

We can see that the prior is especially useful for category

with low intra-class variability. For instance the dimensions

of a trash bin category is rather constrained as x and y-axes

have usually equal lengths. On the opposite, categories such

as table and couch have higher variability.

We have also evaluated the camera estimation by using

the GT perspective camera matrices provided by the Scan-

Net dataset. To recover camera poses in the affine case we

solved a PnP problem [38] given the affine camera intrinsic,

the 3D GT ellipsoid centres and the 2D noisy conic centres.

We then align the estimated camera poses with the given GT

poses. The relative average translation error (normalised by

the sequence length) is 20% and the rotation error is 32 de-

gree on average. These errors might be relevant for some

applications and future work on better camera estimation

could improve the overall results.

The figure 5 shows an illustration of the results. We can

see that SfMO has difficulties when estimating the ellipsoid

axis which is more parallel to the optical camera axis. By

using prior knowledge, PSfMO retrieves more accurate el-

lipsoids and constrain the shape to the right occupancy. Due

to the ambiguity of the problem, there are many ellipsoid

configurations which can project closely to the observed el-

lipses. Our PSfMO method selects the one which is the

closest to the prior.

Figure 5. Illustration of results with ScanNet data. The top rows

are color frames with object detections. The midddle and bot-

tom rows display the scan with the ellipsoids. The green are the

ground-truth, the red ones on the left are obtained with SfMO and

the blue ones on the right with our method PSfMO.

Similar results can be noticed in Fig. 6 where the cam-

era has a minimal baseline and rotation, thus making more

challenging the accurate estimation of the objects size in

the scene. To notice that the PSfMO solution provides a
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remarkable alignment over the room furniture.

Figure 6. Illustration of results with ScanNet data. The top rows

are color frames with object detections. The middle and bot-

tom rows display the scan with the ellipsoids. The green are the

ground-truth, the red ones are obtained with SfMO and the blue

ones with PSfMO.

We also tested the proposed algorithm on the KINECT

dataset [5] to demonstrate its generality to other datasets. In

this experiment, automatic detection and tracking are used

but no ground-truth is available. It is composed by five

sequences, each one showing a different office desk, with

about 10 − 15 objects, from a variable number of frames.

Bounding boxes associated to each object are also provided.

Given all the extracted detections in each frame, we use

a modified tracking by detection method [23] to associate

the bounding boxes among different frames. This algorithm

computes a distance matrix using patch appearance and as-

sociate detections using the Hungarian method for bipartite

matching. We relaxed the part associated to the smoothness

of the object trajectory because we might have consistent

camera motion among consecutive frames thus causing the

corresponding consecutive bounding boxes to be far apart.

When using all the images from the sequences, we ob-

served that both SfMO and PSfMO have similar results.

However, if we reduce the number of views, we observe

that the prior has a major role. Illustrative results for both

the SfMO and the PSfMO methods are shown in Fig. 7 for

the five sequences of the dataset. Since the angles spanned

by the cameras views is narrow, SfMO failed at estimating

the ellipsoid axis which is close to the optical camera axis.

This behaviour is a similar as the one observed in the Scan-

Net experiments.

Figure 7. Each row corresponds to one sequence from the KINECT

dataset. From left to right: An image frame with the ellipses ob-

tained from the bounding box detections, a frontal view and a top

view of the estimated 3D ellipsoids. The red ellipsoids are given

by SfMO while the blue ones from PSfMO.
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4. Conclusion

We presented a probabilistic factorization method to es-

timate objects occupancy and position from bounding box

detections in multiple views. The main contribution of the

method is its ability to use simple statistics collected from

CAD datasets to achieve higher robustness to noise and be

able to provide good results even if very few views are avail-

able. As a future works and perspectives, different kind of

prior information could be tested. First, a classifier with

coarse pose information would provide constraint on the el-

lipsoid orientation. Then higher-level semantic using scene

context [30] and relation between objects [39] could be ex-

tracted to guide the ellipsoid centre estimation.
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