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Abstract

How much does a single image reveal about the envi-

ronment it was taken in? In this paper, we investigate how

much of that information can be retrieved from a foreground

object, combined with the background (i.e. the visible part

of the environment). Assuming it is not perfectly diffuse, the

foreground object acts as a complexly shaped and far-from-

perfect mirror. An additional challenge is that its appearance

confounds the light coming from the environment with the

unknown materials it is made of. We propose a learning-

based approach to predict the environment from multiple re-

flectance maps that are computed from approximate surface

normals. The proposed method allows us to jointly model

the statistics of environments and material properties. We

train our system from synthesized training data, but demon-

strate its applicability to real-world data. Interestingly, our

analysis shows that the information obtained from objects

made out of multiple materials often is complementary and

leads to better performance.

1. Introduction

Images are ubiquitous on the web. Users of social media

quite liberally contribute to this fast growing pool, but also

companies capture large amounts of imagery (e.g. street

views). Simultaneously, users have grown aware of the risks

involved, forcing companies to obfuscate certain aspects of

images, like faces and license plates.

We argue that such images contain more information than

people may expect. The reflection in a foreground object

combined with the background - the part of the environment

revealed directly by the image - can be quite telling about

the entire environment, i.e. also the part behind the photog-

rapher. Apart from privacy issues, several other applications

can be based on the extraction of such environment maps.

Examples include the relighting of the foreground object in

a modified environment, the elimination of the photographer

in the reflection by the foreground object, or figuring out that

Figure 1. Given approximate surface normals, our approach pre-

dicts a truthful reconstruction of the environment from a single low

dynamic range image of a (potentially multi-material) object.

a photo might have been nicely framed, but that the actual

surroundings may not be quite as attractive as one might

have been lead to believe (e.g. browsing through real estate).

By combining large amount of synthesized data and deep

learning techniques, we present an approach that utilizes

partial and ambiguous data encoded in surface reflectance in

order to reconstruct a truthful appearance of the surrounding

environment the image was taken in. While we assume a

rough scene geometry to be given, we do not make any strong

assumptions on the involved materials or the surrounding

environment. Yet, we obtain a high level of detail in terms

of color and structure of that environment. Beyond the new

level of reconstruction quality obtained by our method, we

show that our learned representations and final predictions

lend to a range of application scenarios. Experiments are

conducted on both synthetic and real images from the web.

Prior work on estimating the illuminating environment

has either focused on retrieving a template map from a

database (e.g. [18]) or recovering key elements to approxi-

mate it (e.g. [46]), but both directions are limited in terms of

the achievable fidelity. Equally, prior work on inverse ren-

dering [27, 24, 23] has the potential to derive arbitrary maps

with radiometric accuracy, but to date are not able to do so

with accurate appearance. In this spirit, we seek a different

tradeoff. By not constraining our solution to be radiomet-

rically accurate, we investigate how far we can push the
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quality of overall appearance of the map. We hope that these

two approaches can complement each other in the future.

Our work can be seen as an extension of the ideas pre-

sented in [13] and is the first to recover such highly detailed

appearance of the environment. We achieve this in a learning-

based approach that enables joint learning of environment

and material statistics. We propose a novel deep learning

architecture that combines multiple, partially observed re-

flectance maps together with a partial background observa-

tion to perform a pixel-wise prediction of the environment.

2. Previous work

Object appearance is the result of an intriguing jigsaw

puzzle of unknown shape, material reflectance, and illumi-

nation. Decomposing it back into these intrinsic properties

is far from trivial [3]. Typically, one or two of the intrinsic

properties are assumed to be known and the remaining one

is estimated. In this work, we focus on separating materi-

als and illumination when the partial reflectance maps of

multiple materials seen under the same illumination plus a

background image are known. Such an input is very typical

in images, yet not so often studied in the literature.

Key to this decomposition into intrinsic properties is

to have a good understanding of their natural statistics.

Databases of material reflectance [7, 28, 4] and environ-

mental illumination [8, 11] allow the community to make

some first attempts. Yet, exploiting them in practical de-

compositions remains challenging.

Beyond image boundaries Revealing ”hidden” informa-

tion about the environment in which an image was taken, has

been used for dramatic purposes in movies and tv shows, but

it has also attracted research interest. In [41], Torralba et al.

are using a room as a camera obscura to recover the scene

outside the window. Nishino et al. [30] estimate panoramas

from the environment reflected in a human eye. On the other

hand, [48] estimate a plausible panorama from a cropped

image by looking at images with similar structure, while

[43] extend the content of the image by high level graph

matching with an image database. Moreover, a single image

can contain hidden ”metadata” information, such as GPS

coordinates [16] or the photographer identity [40].

Reflectance maps Reflectance maps [17] assign appear-

ance to a surface orientation for a given scene/material, thus

combining surface reflectance and illumination. Reflectance

maps can be extracted from image collections [15], from a

known class [34, 33], or using a CNN [35]. In computer

graphics, reflectance maps are used to transfer and manip-

ulate appearance of photo-realistic or artistic “lit spheres”

[39] or “MatCaps” [37]. Khan [19] made diffuse objects in

a photo appear specular or transparent using manipulations

of the image background that require manual intervention.

Factoring illumination Classic intrinsic images factor

an image into shading and reflectance [3]. Larger-scale

acquisition of reflectance [28] and illumination [8] have

allowed to compute their statistics [11] helping to better

solve inverse and synthesis problems. Nevertheless, intrinsic

images typically assume diffuse reflectance. Barron and

Malik [2] decompose shaded images into shape, reflectance

and illumination, but only for scalar reflectance, i.e. diffuse

albedo, and for limited illumination frequencies. Richter et

al. [36] estimated a diffuse reflectance map represented in

spherical harmonics using approximate normals and refined

the normal map using the reflectance map as a guide, but their

approach is suitable to represent low-frequency illumination,

while our environment maps reproduce fine details.

Separating material reflectance (henceforth simply re-

ferred to as ’material’) and illumination was studied by Lom-

bardi and Nishino [24, 23, 26]. In [24, 23], they present

different optimization approaches that allow for high-quality

radiometric estimation of material and illumination from

known 3D shape and a single HDR RGB image, whereas

in [26], they use multiple HDR RGBZ images to acquire

material and illumination and refine shape using a similar

optimization-based framework also handling indirect light-

ing. Here, we address a more general problem than these

approaches: they consider one or more objects with a single,

unknown material on their surface (homogeneous surface

reflectance) observed under some unknown natural illumina-

tion. However, most real-life objects are made of multiple

materials and as noted in [21, 49, 25] multiple materials

help to estimate surface reflectance under a single point light

source. Furthermore, they throw away the image background

that is naturally captured in their images anyway.

In this paper, we assume that the objects consist of any

number of materials (we investigate up to 5), that they are

segmented into their different materials as well as from the

background, and that the reflectance maps of all materials

are extracted (conditions that are met by e.g. using a Google

Tango phone as in [47]). We then ask how these multiple

materials under the same non-point light illumination plus

the background can help a deep architecture to predict the

environment. Note that, unlike [24, 23] our primary goal is

to estimate a ”textured” environment map that is perceptually

close to ground truth and can provide semantic information

(e.g. the object is placed in a forest); later in Sec. 6 we exam-

ine if we can recover the dynamic range too as a secondary

goal. Most importantly, we aim to do this starting from

standard LDR images, as the HDR ones used in [24, 23, 26]

imply the capture of multiple exposures per image making

the capturing process impractical for non-expert users.

Barron et al. [1] made use of similar data to resolve

spatially-varying, local illumination. While ours is spatially

invariant (distant), we can extract it both with more details,

in HDR and from non-diffuse surfaces.

Earlier work has also made use of cues that we did not

consider, such as shadows [38], as they may only be available
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Figure 2. a) Illustration of Sec. 3. b) Converting 3 example input

pixels into reflectance map pixels using normals and segmentation.

in some scenes. The work of [20, 46] has shown how to fit a

parametric sky model from a 2D image, but cannot reproduce

details such as buildings and trees and excludes non-sky, i.e.

indoor settings. Karsch et al. [18] automatically inferred

environment maps by selecting a mix of nearest neighbors

(NN) from a database of environment maps that can best

explain the image assuming diffuse reflectance and normals

have been estimated. They demonstrate diffuse relighting but

specular materials, that reveal details of a reflection, hardly

agree with the input image as seen in our results section.

3. Overview

We formulate our problem as learning a mapping from

nmat partial LDR reflectance maps [17] and a background

LDR image to a single consensual HDR environment map.

In particular, we never extract illumination directly from

images, but indirectly from reflectance maps. We assume

the reflectance maps were extracted using previous work

[12, 44, 22, 35]. In our datasets, we analyze the limits of

what reflectance map decomposition can do and we do not

consider the error introduced by the reflectance map itself.

A reflectance map Lo(ω) represents the appearance of an

object of a homogeneous material under a specific illumi-

nation. Under the assumptions of (i) a distant viewer, (ii)

distant illumination, (iii) in the absence of inter-reflections

or shadows (convex object) and (iv) a homogeneous material,

the appearance depends only on the surface orientation ω in

camera space and can be approximated as a convolution of

illumination and material (i.e. BRDF) [32].

The full set of orientations in R
3 is called the 3D Gauss

sphere Ω (the full circle in Fig. 2 a and b). Note, that only

at most half of the orientations in R
3 are visible in camera

space, i.e. the ones facing into the direction of the cam-

era. This defines the positive Gauss sphere Ω+ (the brown

half-circle in Fig. 2 a). Also note, that due to the laws of

reflections, surfaces oriented towards the viewer also expose

illumination coming from behind the camera. The ideal case

is a one-material spherical object, that completely contains

all observable normals. When its surface behaves like a per-

fect mirror, that is even better. Then a direct (but partial)

environment map is directly observable. In practice, we only

observe some orientations for some materials and other ori-

entations for other materials. Sometimes, multiple materials

are observed for one orientation, but it also happens that

for some orientations, no material might be observed at all.

Moreover, the materials tend to come with a substantially

diffuse component in their reflectance, thus smearing out

information about the environment map. In Fig. 2 a, the

brown part shows the half-sphere of the reflectance map and

the yellow part within shows the object normals actually

observed in the image, for the example object in the figure.

A second piece of input comes from the background. The

visible part of the background in the image shows another

part of the illumination, this time from the negative half

sphere. In Fig. 2 a, the visible part of the background is

shown in red, the rest - occluded by the foreground - in blue.

The illumination Li(ω) we will infer from both these

inputs covers the full sphere of orientations Ω (the full circle

in Fig. 2 a). Other than the reflectance map, it typically

is defined in world space as it does not change when the

viewer’s pose changes. For the actual computations, both the

input (partial reflectance maps and partial background) and

the output (illumination) are represented as two-dimensional

images using a latitude-longitude parameterization.

The mapping f := Lo → Li we seek to find is repre-

sented using a deep CNN. We propose a network that com-

bines multiple convolutional stages - one for each reflectance

map, that share weights, and another one for the background

- with a joint de-convolutional stage that consolidates the

information into a detailed estimate of the illumination.

The training data consists of tuples of reflectance maps

lo with a single background image, i.e. inputs, and a corre-

sponding illumination li, i.e. output.

4. Dataset

Our dataset consists of synthetic training and testing data

(Sec. 4.1) and a manually-acquired set of test images of real

objects captured under real illumination (Sec. 4.2). Upon

publication, the dataset and code will be made available.

4.1. Synthetic data

We now explain how to synthesize train and test data.

Rendering Images are rendered at a resolution of 512×
512 using variations of geometry, illumination, materials

and views. The geometry is a random object from the

ShapeNet [5] class “car”. Later, we show results of our

pipeline for both cars and other shapes though (e.g. Fig. 1).

As large 3D shape datasets from the Internet do not come

with a consistent segmentation into materials, we perform a

simple image segmentation after rasterization. To this end,

we perform k-means clustering (k = nmat) based on posi-

tions and normals, both weighted equally and scaled to the

range (−1, 1), to divide the shapes into three regions, to be

covered with three different ‘materials’. Per-pixel colors
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Figure 3. Example images from our dataset. 1st col: Synthetic

images of cars with a single material. 2nd col: Synthetic images of

cars with multiple materials. 3rd col: Photographs of spheres with

a single material. 4th col: Photographs of toy cars with a single

material. 5th col: Photographs of toy cars with multiple materials.

are computed using direct (no global illumination and shad-

ows) image-based illumination [10]. We also store per-pixel

ground-truth positions and normals. As materials we used

the 100 BRDF samples from the MERL database [28]. The

illumination is randomly selected from a set of 105 publicly

available HDR environment maps that we have collected.

The views are sampled randomly over the sphere, with a

fixed field-of-view of 30 degrees. Synthetic examples can be

seen in the first two columns of Fig. 3.

Extracting reflectance maps The pixel j in the re-

flectance map of material i is produced by averaging all

pixels with material i and orientation ωj . This is shown for

three pixels from three different materials in Fig. 2 b. The

final reflectance maps contain 128× 128 pixels. These are

typically partial with sometimes as little as 10% of all nor-

mals observed (see some examples in Fig. 4). Even sparser

inputs have not been studied (e.g. hallucination works [14]).

Background extraction The background is easily identi-

fied for these synthetic cases, by detecting all pixels where

the geometry did not project to. To make the network aware

of depth-of-field found in practice, the masked background

is filtered with a 2D Gaussian smoothing kernel (σ = 2).

Building tuples To test our approach for an arbitrary num-

ber of materials, nmat, we build tuples by combining nmat

random reflectance maps extracted from images with a sin-

gle material. For each tuple we make sure to use mutually

exclusive materials observed under the same illumination.

Splitting For the single-material case, from the 60 k syn-

thetic images generated, 54 k are used for training and 6 k for

testing. Note that, no environment map is shared between

the two sets - 94 for training and 11 for testing, with the

split generated randomly once. For the multi-material case,

we used the same protocol (identical split) for two different

sub-cases: multiple single-material objects (i.e. the tuples),

and single multi-material objects (e.g. Fig. 3, 2nd column).

In both cases, the environment maps are augmented by rota-

tions around the y axis, which is essential for preventing the

networks to memorize the training samples.

4.2. Real data

While training can be done on massive synthetic data, the

network ultimately is to be tested on real images. To this

end, we took photographs of naturally illuminated single-

material and multi-material objects with known geometry.

All images in this set - 112 in total - were used for testing

and never for training. Moreover, all 3D models, materials

and illuminations in this set are unknown to the train set.

Capture The images are recorded in LDR with a

common DSLR sensor at a resolution of 20 M pix-

els and subsequently re-scaled to match the training

data. To compare with reference, we also acquired

the environment map in HDR using a chrome sphere.

We recorded 7 f -stops [9], which

is a compromise between shadow

fidelity and capture time, but as

the inset figure shows - an example

rendering with an estimated envi-

ronment map (Fig. 8, row 2) - it is

enough to produce clearly directed

shadows. Three variants were acquired: spheres, single-

material objects and multi-material objects (see Fig. 3). For

the single-material case, 84 images were taken, showing

6 spheres and 6 toy cars with different materials each and

placed under 7 different illuminations. The multi-material

data comprises of 30 images, showing 6 different objects (4

cars and 2 non-cars), each painted with 3 materials, captured

under 9 different illuminations (6 and 3 respectively). Some

materials repeat, as overall 12 different materials were used.

Extracting reflectance maps and background From all

images, reflectance maps are extracted in the same way as

for the synthetic images. Per-pixel normals are produced

using virtual replica geometry from online repositories or

scanned using a structured-light scanner. These models were

manually aligned to the 2D images. Material and background

segmentation was also done manually for all images.

5. Network Architecture

Our network consists of three parts (Fig. 4) - some of

them identical in structure and some sharing weights. First,

there is a convolutional background network. Second, nmat

convolutional de-reflection networks that share parameters

but run on the reflectance maps of different materials. Third,

a final de-convolutional fusion network takes as input inter-

mediate stages as well as end results from all reflectance nets,

together with the result of the background net, to produce

the HDR environment map as an output. All parts are trained

jointly end-to-end using an L1 loss on the illumination sam-

ples, after applying the natural logarithm and converting

them to CIE Lab space. We experimentally found that these

choices nicely balance between learning the dynamic range,

structure and color distribution of the environment map.
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Figure 4. Our CNN architecture (from left to right). First, the background image is encoded using one independent sub-network (blue).

Next, each partial reflectance map is encoded using nmat de-reflection sub-networks that share parameters(blue). Finally, these two sources

of information are fused in a de-convolution network (orange). Here, information from all levels of the partial reflectance maps is included

(violet) as well as the global encoding of the background (green). Sub-network details are found in the text and supplementary material.

Background network Input to the background network

(blue part in Fig. 4, a) is an LDR background image in full

resolution i.e. 128×128 converted to CIE Lab space. The

output is a single, spatially coarse encoding of resolution

4×4. The reduction in spatial resolution is performed as

detailed in supplementary material. Only the final output of

the encoding step will contribute to the fusion (Fig. 4, d).

De-reflection network The de-reflection network (blue

parts in Fig. 4, b) consumes partial, LDR environment maps

also converted to CIE Lab space, where undefined pixels

are set to black. It has the same structure as the background

network. It starts with the full, initial reflectance map at a

resolution of 128×128 and reduces to a spatial resolution

of 4×4. We can support an arbitrary number of materials

nmat; however the network needs to be trained for a specific

number of materials. In any case, the de-reflection networks

are trained with shared parameters (siamese architecture;

locks in Fig. 4). We want each of these networks to perform

the same operations so the reflectance maps do not need to

come in a particular order.

Fusion network The fusion network (Fig. 4, e) combines

the information from the background and the de-reflection

network. The first source of information are the intermediate

representations from the reflectance maps (violet, Fig. 4,

c). They are combined using plain averaging with equal

weights. This is done at each scale of the de-reflection,

respectively, at each level of the fusion. The second source

of information is the background (green in Fig. 4, d). Here,

only a single, spatial level is considered, i.e. that of its

output. This encoding is concatenated with the average of

the encodings from all reflectance maps on the coarsest level

(i.e. their spatial resolution matches). Result of this sub-

network is the final 64×64 HDR environment map.

Missing pixels Although the input reflectance maps are

partial, the output environment map is complete. This is

an advantage of the proposed CNN architecture, as in the

absence of information the fusion network learns how to

perform sparse data interpolation for the missing pixels, as in

[35]. Our learning-based approach naturally embeds priors

from the statistics of reflectance and illumination in the

training data (e.g. the sky is blue and always on top) which is

hard to model with physics-based analytic formulas [24, 23].

Training details We use mini-batch (size 4) gradient de-

scent, a log-space learning rate of (-3, -5, 50), a weight decay

of .0005, a momentum of .95 and train for 50 iterations.

6. Results

6.1. Quantitative evaluation

We quantify to which extent our approach can infer the

environment from an LDR input. Since we are interested in

estimating an environment map that is closer to the truthful

illumination and does not only have HDR content, we use the

perceptualized DSSIM [45] (less is better) as our evaluation

metric. This metric captures the structural similarity between

images [29, 35, 31, 6], that is of particular importance when

the environment’s reflection is visible in a specular surface,

such as the ones we target in this paper. The evaluation

protocol includes the next steps: The .90-percentile is used

to find a reference exposure value for the ground truth HDR

environment map. We then apply the same tone-mapper with

this authoritative exposure to all HDR alternatives. This way

we ensure that we achieve a fair comparison of the different

alternatives also w.r.t. HDR.

Model variants and baselines The results of different

variants of our approach and selected baseline methods are

presented in terms of performance in Table 1 and visual qual-

ity in Fig. 5. Below, we describe the different approaches:

• SINGLET uses only a single reflectance map, i.e. our de-

reflection network with nmat = 1, but without background.

• SINGLET+BG also uses a single reflectance map, as be-

fore, but includes the background network too.

• BEST-OF-SINGLETS executes the nmat = 1 de-reflection-

plus-background network for each singlet of a triplet indi-

vidually and then chooses the result closest to the reference

by an oracle (we mark all oracle methods in gray).

• NEAREST NEIGHBOR is equivalent - an upper bound - to

[18], but as their dataset of illuminations is not publicly avail-
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able, we pick the nearest neighbor to ground-truth from our

training dataset by an oracle so that DSSIM is minimized.1

• MASK-AWARE MEAN executes nmat = 1 de-reflection-

plus-background network for each singlet of a triplet indi-

vidually and then averages the predicted environment maps

based on the sparsity masks of the input reflectance maps.

• TRIPLET combines the information from three reflectance

maps via our de-reflection (nmat = 3) and fusion networks,

without using background information.

• TRIPLET+BG represents our full model that combines the

de-reflection (nmat = 3), fusion and background networks.

Numerical comparison All variants are run on all sub-

sets of our test set: synthetic and real, both single and multi-

material, for all objects. Results are summarized in Ta-

ble 1. Note that, as the table columns refer to different

cases, cross-column comparisons are generally not advised,

but below we try to interpret the recovered results. For the

synthetic cars, we see a consistent improvement by adding

background information already for the SINGLET - even out-

performing BEST-OF-SINGLETS. Across all experiments,

there is consistent improvement from SINGLET to TRIPLET

to TRIPLET+BG. TRIPLET+BG has consistently the best

results - in particular outperforming the NEAREST NEIGH-

BOR, which indicates generalization beyond the training

set environment maps as well as the hand-crafted fusion

scheme MASK-AWARE MEAN. Overall, it is striking that

performance for the multi-material case is very strong. This

is appealing as it is closer to real scenarios. But it might

also be counter-intuitive, as it seems to be the more chal-

lenging scenario involving multiple unknown materials with

less observed orientations. In order to analyze this, we first

observe that for SINGLET, moving from the single to the

multi-material scenario does not affect performance much.

We conclude that our method is robust to such sparser obser-

vation of normals. More interestingly, our best performance

in multi-material scenario is only partially explained by ex-

ploiting the “easiest” material, which we see from BEST-OF-

SINGLETS. The remaining margin to TRIPLET indicates that

our model indeed exploits all 3 observations and that they

contain complementary information.

Visual comparison Example outcomes of these experi-

ments, are qualitatively shown in Fig. 5. Horizontally, we

see that individual reflectance maps can indeed estimate il-

lumination, but contradicting each other and somewhat far

from the reference (columns labeled SINGLET in Fig. 5).

Adding the BG information can improve color sometimes

(columns +BG in Fig. 5). We also see that a nearest neighbor

oracle approach (column NN in Fig. 5) does not perform

well. Proceeding with triplets (column TRIPLET in Fig. 5)

we get closer to the true solution. Further adding the back-

ground (OURS in Fig. 5) results in the best prediction. We

1Note that, [18] is the only other published work with the same input (a

single LDR image) and output (a HDR non-parametric environment map).

see that as the difficulty increases from spheres over single-

and multi-material to complex shapes, the quality decreases

while a plausible illumination is produced in all cases. Most

importantly, the illumination can also be predicted from

complex, non-car multi-material objects such as the dinosaur

geometry as seen in the last row. Supplementary material

visualizes all the alternatives for the test dataset.

Varying the number of materials In another line of ex-

periments we look into variation of nmat in Table 2. Here,

the number of input reflectance maps increases from 1 up

to 5. In each case we include the background and run both

on spheres and single-material cars, for which these data are

available for nmat > 3. Specifically, we use the real singlets,

that we combine into tuples of reflectance maps according to

the protocol defined in Sec. 4. We see that, although we have

not re-trained our network but rather copy the shared weights

that were learned using nmat = 3 materials, our architecture

does not only retain efficiency across an increasing number

of materials in both cases, but in fact uses the mutual in-

formation to produce even an increase in quality. This is

in agreement with observations that humans are better in

factoring illumination, shape and reflectance from complex

aggregates than for simple ones [42].

Further analysis To assess the magnitude of the recov-

ered dynamic range in Fig. 6 a we plot the distribution of

luminance over the test dataset (yellow color) and compare

it to the distribution of estimated illuminations (red color).

Despite the fact that our method operates using only LDR

inputs, we observe that in the lower range the graphs overlap

(orange color), but in the higher we do not reproduce some

brighter values found in the reference. This indicates that

our results are both favorable in structure as seen from Ta-

ble 1 and Table 2 as well as according to more traditional

measures such as log L1 or L2 norms [24, 23].

We also evaluate the spatiality of the recovered illumina-

tion, i.e. dominant light source direction. In 97.5% of the

test dataset environment maps, the estimated brightest pixel

(dominant light) is less than 1 pixel away from ground-truth,

which indicates a fairly accurate prediction.

From the numerical and visual analysis presented above

and in supplementary material we can extract useful insights.

First, we plot the DSSIM w.r.t. the sparsity of the input re-

flectance maps on the test set (see Fig. 6 c). We observe that

for sparser reflectance maps, the DSSIM becomes higher

(the error increases). For sparser reflectance maps the net-

work has more unobserved normals (pixels in the reflectance

map) to hallucinate, making inference relatively harder. Sec-

ond, we study the visual quality of the results w.r.t. material

attributes like specularity. Fig. 6 b visualizes from left to

right the recovered visual details for an increasing specu-

larity. The visual quality increases as the more specular a

material is, the more it reveals about the environment.

Comparison with related work It is important to ex-
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Table 1. DSSIM error (less is better) for different variants (rows) when applied to different subsets of our test set (columns). The best

alternative is shown in bold. Oracle analysis using ground-truth information are shown in gray. Variant images are seen in Fig. 5.

——— Synthetic ———- ——————————- Real ——————————-

Cars (Single) Cars (Multi) Spheres Cars (Single) Cars (Multi) Non-cars

SINGLET .311±.011 .316±.011 .324±.002 .337±.002 .335±.005 .315±.002

SINGLET + BG .281±.010 .277±.008 .360±.003 .360±.002 .366±.005 .341±.002

BEST-OF-SINGLETS .304±.011 .307±.011 .314±.001 .330±.002 .324±.004 .312±.004

NEAR. NEIGH. .277±.009 .277±.009 .360±.002 .360±.002 .332±.007 .313±.004

MASK-AWARE MEAN .290±.012 .293±.012 .306±.002 .324±.002 .305±.004 .285±.002

TRIPLETS .268±.011 .277±.011 .313±.001 .332±.002 .284±.002 .288±.001

TRIPLETS + BG .210±.007 .226±.007 .305±.001 .315±.001 .272±.004 .279±.001

Figure 5. Alternative approaches (left to right): 1) input(s). 2, 4 and 6) our approach for nmat = 1. 3, 5 and 7) the same, including a

background. 8) the nearest neighbor approach. 9) the mask-aware mean approach. 10) our approach for nmat = 3. 11) the same, including a

background, i.e. full approach. 12) reference. For a quantitative version of this figure see Table 1. For all images see supplementary material.

Table 2. Reconstruction on different number of materials nmat.

Spheres Cars (Single)

SINGLET + BG .360±.003 .360±.002

DOUBLETS + BG .320±.002 .327±.002

TRIPLETS + BG .305±.001 .315±.001

QUADRUPLETS + BG .309±.001 .306±.001

QUINTUPLETS + BG .292±.001 .295±.001

Reference
Ours
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Figure 6. Result analysis: a) Predicted vs. ground-truth luminance

distribution, b) Visual quality w.r.t. material specularity, c) DSSIM

error w.r.t. reflectance map sparsity.

plain why existing approaches are not directly applicable in

our case. [24, 23] do not handle multiple materials. One

might argue that they can still be applied to the segmented

subregions, but then it is unclear how to merge the differ-

ent generated outputs; the papers do not provide a solution.

     Input           [21], HDR inputs          [20], HDR inputs          Ours, LDR inputs             Reference

Figure 7. Visual comparison with [24, 23]. Images were taken

from the respective papers. [24, 23] use HDR inputs, we use LDR.

In this case, one would still need techniques like BEST-OF-

SINGLETS or MASK-AWARE MEAN to proceed. Instead, our

method naturally fuses the features from the segmented ma-

terials and background producing a single output. [25] uses

multiple materials but works for point light sources and can

not be assumed to extend to natural illumination. [26] works

with multiple single-material objects under natural illumina-

tion but requires multiple images as input (≥ 3 according to

the authors). Most importantly, all of [25, 24, 23, 26] require
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Figure 8. Results for our approach on real objects: spheres, single-

material cars, multi-material cars, multi-material non-cars. a) input

LDR images. b) our predicted HDR environment. c) the ground-

truth. Exhaustive results are found in supplementary material.

Figure 9. Comparison of re-rendering using the reference, ours,

and nearest neighbor for a specular material. Ours is more similar

to the reference, while not requiring to acquire an HDR light probe.

HDR images as input (i.e. taking multiple pictures under

different exposures) making them unworkable for our single-

shot LDR input, and do not leverage the image background

that is naturally captured in their images anyway.

Nevertheless, we provide an indicative visual compar-

ison between our method and [24, 23] for the dataset of

[24] in Fig. 7. While [24, 23] are able to capture the major

light components of the scene, our approach recovers de-

tailed structures not only from the lights but also from the

surrounding elements (e.g. buildings and trees).

6.2. Qualitative results and applications

The visual quality is best assessed from Fig. 8, that shows,

from left to right, the input(s) (a), our estimated (b) and

ground-truth environment map (c). The difficulty ranges:

starting from spheres, we proceed to scenes that combine

three single-material objects over single objects with multi-

ple materials to non-car shapes with multiple materials. This

shows how non-car shapes at test time can predict illumina-

tion, despite training on cars and car parts. In each case, a

reasonable estimate of illumination is generated as seen from

the two last columns in Fig. 8 and supplementary material.

Relighting To verify the effectiveness in a real relighting

application, we show how re-rendering with a new material

looks like when illumination is captured using our method vs.

a light probe. In the traditional setup (which we also used

to acquire the reference for our test data) one encounters

Figure 10. Material/shape edits on web images (see the text below).

multiple exposures, (semi-automatic) image alignment, and

a mirror ball with known reflectance and geometry. Instead,

we have an unknown object with unknown material and

a single LDR image. Note how similar the two rendered

results are in Fig. 9. This is only possible when the HDR is

also correctly acquired. Instead, a nearest-neighbor oracle

approach already performs worse; the reflection alone is

plausible, but far from the reference. For more relighting

examples see the supplemental video.

Images from the web Ultimately, our method is to be

used on images from the web. Fig. 10 shows examples of

scenes (top row), on which we run our method and then re-

render editing either the material (middle row) or the shape

(bottom row). The rendered results look nevertheless con-

vincing. The supplementary material contains more results

that indicate the method’s performance on everyday images.

7. Conclusion

We have shown an approach to estimate natural illumi-

nation in HDR when observing a shape with multiple, un-

known materials captured using an LDR sensor. We phrase

the problem as a mapping from reflectance maps to envi-

ronment maps that can be learned by a suitable novel deep

convolution-de-convolution architecture we propose. Train-

ing and evaluation are both made feasible thanks to a new

dataset combining both synthetic and acquired information.

Due to its learning-based nature, we believe that our ap-

proach can be possibly extended to compensate for known

material segmentation and geometry, and achieve higher

fidelity results if trained on a larger ”in the wild” dataset.
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