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Abstract

Neural networks trained on datasets such as ImageNet
have led to major advances in visual object classification.
One obstacle that prevents networks from reasoning more
deeply about complex scenes and situations, and from in-
tegrating visual knowledge with natural language, like hu-
mans do, is their lack of common sense knowledge about the
physical world. Videos, unlike still images, contain a wealth
of detailed information about the physical world. However,
most labelled video datasets represent high-level concepts
rather than detailed physical aspects about actions and
scenes. In this work, we describe our ongoing collection
of the “something-something” database of video prediction
tasks whose solutions require a common sense understand-
ing of the depicted situation. The database currently con-
tains more than 100,000 videos across 174 classes, which
are defined as caption-templates. We also describe the chal-
lenges in crowd-sourcing this data at scale.

1. Introduction

Datasets and challenges like ImageNet [3] have been ma-
jor contributors to the recent dramatic improvements in neu-
ral network based object recognition [14, 30, 8], as well as
to improvements on a variety of other vision tasks thanks to
transfer learning (eg., [4, 27, 19]).

Despite their representational power, neural networks
trained on still images ignore of a wide range of scene
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Figure 1: An example video from our database, captioned
“Picking [something] up”. Crowd-workers are asked to
record videos and to complete caption-templates, by provid-
ing appropriate input-text for placeholders. In this example,
the text provided for placeholder “something” is “a shoe”.
We plan to increase the complexity and sophistication of
caption-templates over time, to the degree that models suc-
ceed at making predictions.

aspects, many of which are could be inferable from
video. These include 3-D geometry (which can reveal it-
self through multiple views [7]), material properties (such
as deformability, elasticity, stiffness, etc.), articulation, af-
fordances [34] or intuitive physics (for example, occlu-
sion/object permanence, gravity).

Motion patterns extracted from a video are not only ca-
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pable of revealing object properties but also of revealing
actions and activities. Not surprisingly, most of the cur-
rently popular labeled video datasets are action recognition
datasets [26, 17, 23, 12]. It is important to note, however,
that in a fine-grained understanding of visual concepts that
goes beyond “one-of-K”-labeling, actions and objects are
naturally intertwined, and the tasks of predicting one can-
not be treated independently of predicting the other. For
example, the phrase “opening NOUN” will have drasti-
cally different visual counterparts, depending on whether
“NOUN” in this phrase is replaced by “door”, “zipper”,
“blinds”, “bag”, or “mouth”. There are also commonali-
ties between these instances of “opening”, like the fact that
parts are moved to the sides giving way to what is behind.
It is, of course, exactly these commonalities which define
the concept of “opening”. So a true understanding of the
underlying meaning of the action word “opening” would
require the ability to generalize across these different cases.
A proper understanding of such concepts is closely related
to affordances. For example, the fact that a door can be
opened is much more likely to be taken into consideration,
or even learnable, by a robot searching for an object, if its
feature space is already structured such that it can distin-
guish between opening and closing doors.

Finally, not only words for objects and actions can be
grounded in the visual world, but also many abstract con-
cepts, because these are built by means of analogy on top
of more basic, every-day concepts [ 15, 10]. We believe that
visual grounding through video, to the degree that it can
be advanced, may ultimately become a building block for
language modeling and other areas in Al that appear to be
non-visual at their surface.

In this work, we describe our ongoing efforts in gener-
ating the “something something”-database, whose purpose
is to provide visual (and partially acoustic) counterparts of
simple, everyday aspects of the world. The goal of this
data is to encourage networks to develop the features re-
quired for making predictions which, by definition, involve
certain aspects of common sense information. The grow-
ing database' currently contains 108,499 short video clips
(with duration € [2, 6] seconds), that are labeled with sim-
ple textual descriptions. The videos show objects and ac-
tions performed on them. Labels are in textual form and
represent detailed information about the objects and actions
as well as other relevant information. Predicting labels from
the videos requires features that are capable of representing
physical properties of the objects and the world.

2. Related work

Although images still largely dominate research in visual
deep learning, a variety of sizeable labeled video datasets

'We made a version of the dataset available at: https://www.
twentybn.com/datasets/something-something

have been introduced in recent years. As mentioned, the
dominant application domain so far has been action recog-
nition, where the task is to predict a global action label for a
given video (for example, [23, 12, 17, 11, 5]). A drawback
of action recognition is that it is targeted at fairly high-level
aspects of videos and therefore does not encourage a net-
work to learn about motion primitives that can encode ob-
ject properties and intuitive physics. For example, the task
associated with the datasets described in [23, 12] is recog-
nizing sports, and in [17] they include high-level, human-
centered activities, such as “getting out of a car” or “fight-
ing”. A related issue is that, in many cases, good classifica-
tion performance can be achieved on these tasks using fea-
tures extracted with a convolutional network (pre-)trained
on still images [36].

Detailed labeling has been addressed also in various
video captioning datasets recently, where the goal is to pre-
dict an elaborate description, rather than a single label, for
a video [31, 24, 37, 13]. However, similar to many of the
action recognition datasets mentioned above, they typically
contain descriptions that reflect high-level, cultural aspects
of human life and commonly require a good knowledge of
rare or unusual facts and language. Recently, [38, 9] showed
how captioning models can “cheat” by generating sensible
sentences without necessarily understanding an observed
scene in detail.

A dataset focussing on lower-level, more physical con-
cepts is described in [35]. The dataset contains 17,408
videos of a small set of objects involved in a number of
physical experiments. These include, for example, letting
the object slide down a slope or dropping it onto a surface.
The supervision signal is given by (known) physical prop-
erties of the experiment, such as the angle of the slope or
the material of the object. In contrast to that work, besides
scaling to a much larger size, we use language as labels,
similar to captioning datasets. This allows us to generate a
much larger and more varied set of actions and labels. It
also allows us to go beyond a small and highly specialized
set of physical properties and actions prescribed by the ex-
perimental setup and by what can easily be measured.

Many shortcomings of existing video datasets may be
related to the fact that they are generated by annotating (or
using closed captionings of) existing video material, includ-
ing excerpts from Hollywood movies. Recently, [28] pro-
posed a way to overcome this problem by asking crowd-
workers to record videos themselves rather than to attach
labels to existing videos. In this work, we follow a simi-
lar approach using a scalable framework for crowd-sourced
video recording. Our crowd sourcing framework allowed
us to generate several hundred thousand videos so far, in-
cluding the dataset discussed in this paper. In contrast to
the dataset described in [28] we focus here on basic, phys-
ical concepts rather than on higher-level human activities.
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Avg. duration | Remarks

Dataset Domain # Videos
Physics 101 [35] intuitive physics | 17,408
MPII cooking [25] action (cooking) | 44
TACoS [22] action (cooking) | 127
Charades [28] action (human) 10, 000
KITTI [6] action (driving) | 21
Something-Something (ours) human-f) bject 108,499
1nteraction

101 objects with 4 different
scenarios (ramp, spring, fall, liquid)
600s -
360s -
30s -
30s -

174 fine-grained categories of
4.03s L . .
human-object interaction scenarios

Table 1: Comparison of video datasets recorded specifically for training models (information taken partially from [13])

A comparison with existing similar datasets is shown in Ta-
ble 1.

2.1. Learning intuitive physics

There has been an increasing interest recently in learning
representations of physical aspects of the world using neu-
ral networks. Such representations are commonly referred
to as intuitive or naive physics to contrast them with the
symbolic/mathematical descriptions of the world developed
in physics. Several recent papers address learning intuitive
physics by using physical interactions (robotics) [20, 1]. A
possible shortcoming of this line of work is that it is based
on using still images, which show, for example, how objects
appear before and after performing a certain action. Phys-
ical predictions are made using convolutional networks ap-
plied to the images. Any sequential information is thus re-
duced to predicting a causal relationship between action and
observations in a single feedforward computation, and any
information encoded in the motion itself is lost.

There has been a long-standing endeavor to use future
frames of a video as “free” labels for supervised training of
neural networks. See, for example, [18, 21] and references
therein. Unfortunately, predicting raw pixels is challenging,
both for computational and for statistical reasons. There are
simply a lot of aspects of the real world that a predictor of
raw pixels has to account for. This may be one reason why
unsupervised learning through video prediction has, like un-
supervised learning in general, not let do the breakthrough
that many have been hoping for.

A hybrid between learning from video and learning from
interactions is the work by [16] who use a game engine to
render block towers that collapse. A convolutional network
is then trained to predict, using an image of the tower as
input, whether it will collapse or not, as well as the trajec-
tories of parts while the tower collapses. Similar to [20, 1],
predictions are based on still images not videos.

3. The ‘“‘something-something” dataset

In this work, we introduce the “something-something”-
dataset. It currently contains 108, 499 videos across 174 la-

Dataset Specifications
Number of videos 108,499
Number of class labels 174
Average duration of videos (in seconds) | 4.03
Average number of videos per class 620

Table 2: Dataset summary

bels, with duration ranging from 2 to 6 seconds. Labels are
textual descriptions based on templates, such as “Dropping
[something] into [something]” containing slots (“[some-
thing]”) that serve as placeholders for objects. Crowd-
workers provide videos where they act out the templates.
They choose the objects to perform the actions on and enter
the noun-phrase describing the objects when uploading the
videos.

The dataset is split into train, validation and test-sets in
the ratio of 8:1:1. The splits were created so as to ensure
that all videos provided by the same worker occur only in
one split (train, validation, or test). See Table 2 for some
summary information about the dataset.

Including differences in case, stemming, use of deter-
miners, etc., the current version of the dataset containts
23, 137 distinct object names. We estimate the number of
actually distinct objects to be at least a few thousand. Fig-
ure 3 (bottom) shows the frequency of objects for the most
common objects.

In its current version, the dataset was generated by 1133
crowd workers with an average of 127.32 workers per class.
Figure 2 shows a truncated distribution of the number of
videos per class, with an average of roughly 620 videos per
class, a minimum of 77 for “Poking a hole into [some sub-
stance]” and a maximum of 986 for “Holding [something]”.
Figure 3 (top) shows a histogram of the duration of videos
(in seconds). A few examples of frame samples from the
collected videos is shown in Figure 4.

3.1. Crowdsourced video recording

The currently pre-dominant way of creating large, la-
beled datasets is to start by gathering a large collection of
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Figure 2: Numbers of videos per class (truncated for better visualisation).

0
9 30000
bl
>
‘6 20000
—
[}
Qo
£ 10000
=1
=2
0: .
01 2 3 4 5 6 7
Duration
2 3000
1)
o)
2 2000
(o]
E 1000
£
=]
= 0
X058 50X Cc 0 UG 5
SEFI8858SSF ESRS
<= gc Qg fg’
§
3
Object labels

Figure 3: Top: Video lengths (in seconds). Bottom: Fre-
quencies of occurrence of 15 most common objects

input items, such as images or videos. Usually, these are
found using online resources, such as Google image search
or Youtube. Subsequently, the gathered input examples
are labeled using crowdsourcing services like Amazon Me-
chanical Turk (see, for example, [3]).

As outlined is Section 2 videos available online are
largely unsuitable for the goal of learning simple (but fine-
grained) visual concepts. We therefore ask crowd work-
ers to provide videos given labels instead of the other way
around (a similar approach was recently described in [28]).

3.2. Natural language and curriculum learning

The number of “everyday concepts” that we want to cap-
ture with this dataset is huge, and it cannot be captured
within a fixed set of one-hot labels. Natural language de-
scriptions are a natural and obvious solution to this prob-
lem: natural language is capable of representing an ex-
tremely large number of “classes” and it is compositional
and thereby able to express this number highly economi-
cally.

Unfortunately, natural language provides a much weaker
learning signal than a one-hot label. This is one reason why
image and video captioning systems are currently trained
using an ImageNet pre-trained network as the vision com-
ponent.
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Pretending to put candy onto chair

T o

Pushing a green chilli so that it falls off the table

A

Moving puncher closer to scissor

Figure 4: Example videos and corresponding descriptions. Object entries shown in italics.

To obtain useful natural-language labels, but also be able
to train, and potentially bootstrap, networks to learn from
the data, we generate natural language descriptions auto-
matically by appropriately combining partly pre-defined,
and partly human-generated, parts of speech. Natural lan-
guage descriptions take the form of templates that crowd
workers provide along with videos, as we shall describe in
the next section. Analogous to how probabilistic graphical
models impose independence assumptions on a multivari-
ate distribution, these “structured captions”, can be viewed
as approximations to full natural language descriptions, that
allow us to control the complexity of learning by imposing
a rich (but restricted) structure on the labels.

In the current version of the dataset, we emphasize short
and simple descriptions, most of which contain only the
most important parts of speech, such as verbs, nouns and
prepositions. This choice was made, because common neu-
ral networks are not yet able to represent elaborate captions

and high-level concepts.

However, it is possible to increase the degree of com-
plexity as well as the sophistication of language over time
as the dataset grows. This approach can be viewed as “cur-
riculum learning” [2], where simple concepts are taught
first, and more complicated concepts are added progres-
sively over time. From this perspective, the level of com-
plexity of the current version of the dataset may be viewed
approximately as “teaching a one-year-old child”. Unlike
labels that are encoded using a fixed datatype, as described,
for example, in [39], natural language labels allow us to rep-
resent a spectrum of complexity, from simple objects and
actions encoded as one-hot labels, to full-fledged captions.
The use of natural language encodings for classes further-
more allows us to dynamically adjust the label structure in
response to how learning progresses. In other words, the
complexity of videos and natural language descriptions can
be increased as a function of the validation-accuracy achiev-

5846



able by networks trained on the data so far.

3.3. Sampling action-object combinations

Although it is more restricted than captions, the Carte-
sian product of actions and objects constitutes a space that
is so large that there is no hope to sample it sufficiently
densely as needed for practical applications. But the em-
pirical probability density of real-world cases in the space
of permissible actions and objects is far from uniform.
Many actions, such as “Moving an elephant on the table”
or “Pouring paper from a cup”, for example, have almost
zero density. And more reasonable combinations can still
have highly variable probabilities. Consider, for example,
“drinking from a plastic bag” (highly rare) vs. “dropping a
piece of paper” (highly common).

It is possible to exploit the low entropy of this distribu-
tion, by using the following sampling scheme: Each crowd
worker is presented with an action in the form of a template
that contains one or several placeholders for objects. Work-
ers then get to decide which objects to perform the action
on and generate a video clip. When uploading the video,
workers are required to enter their object choice(s) into a
provided mask.

3.4. Grouping and contrastive examples

The goal of the “something-something” collection effort
is to provide fine-grained discrimination tasks, whose solu-
tion will require a fairly deep understanding of the physical
world. However, especially in the early stage, where sim-
ple descriptions focussed on verbs and nouns dominate, net-
works can learn to “cheat”, for example, by extracting the
object type from one or several individual frames, and by
extracting the action using indirect cues, such as hand posi-
tion, overall velocity, camera shake, etc. This is an example
of dataset bias [32].

As a way to reduce bias, by forcing networks to classify
the actual actions and the underlying physics, we provide
action groups for most action types. An action group con-
tains multiple similar actions with minor visual differences,
so that fine-grained understanding of the activity is required
to distinguish the actions within a group. Providing action
groups to the crowd workers also encourages these to per-
form the multiple different actions with the same object,
such that a close attention to detail is required to correctly
identify the action within the group. We found that action
groups also serve the communication with crowdworkers in
clarifying to them the kinds of fine-grained distinctions in
the uploaded videos we expect.

Some groups contain pretending actions in addition to
the actual action to be performed. This will require any
system training on this data to closely observe the object in-
stead of secondary cues such as hand positions. It will also
require the networks to learn and represent indirect visual

cues, such as the fact that an object is present or not present
in a particular region in the image. Preventing a network
from “cheating” by distinguishing between actual and pre-
tended actions is reminiscent of teaching a child by asking
it to tell the difference between genuine and false actions.
Examples of action groups we use include:

* Putting something on top of something / Putting some-
thing next to something / Putting something behind
something

* Putting something behind something / Pretending to
put something behind something (but not actually leav-
ing it there)

» Poking something so lightly that it does not or almost
does not move / Poking something so it slightly moves
/ Poking something so that it falls over.

* Poking something / Pretending to poke something

A more comprehensive list of action groups and descrip-
tions examples are provided in the supplementary materials.

3.5. Data collection platform

Besides the requirements outlined above, crowdsourcing
the recording of video data according to a pre-defined label
structure poses a variety of technical challenges:

* Batch submission: Crowd workers need to be able to
initiate a job, and come back to it later potentially mul-
tiple times until it is completed, so that they can record
videos outside or at other places or times of the day, or
after having gathered the objects needed for the task.

* Worker-conditional choice of labels: To generate data
with sufficient variability, it is important that each label
is represented by videos from as many different crowd-
workers as possible. To this end, it is necessary to keep
track of the set of labels recorded by each individual
crowdworker. ‘The list of labels or action groups (as
defined below) to choose from can be generated dy-
namically once the crowdworker logs on to the plat-
form.

e Feedback on completed or partially completed submis-
sions: In the case of submissions that are fully or par-
tially rejected it is important that the crowd sourcing
operators can quickly provide feedback to the crowd
workers regarding what was wrong with the submis-
sion.

e Convenience: To reduce cost, crowd workers need to
face a convenient, easy-to-use and highly responsive
interface.

To address these challenges, we created a data collection
platform, with which both crowd workers and our operators
overseeing the crowdsourcing efforts interact during the on-
going crowdsourcing operation.
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When a crowdworker accepts a task he/she gets re-
directed to our platform, where the task is then completed
and reviewed. After completion of a task, our platform com-
municates the result back to the crowdsourcing service.

On the platform, workers get presented with a list
of action-templates to choose from (with action-templates
grouped as described in the previous section). By select-
ing action-templates, the platform creates video upload-
boxes where workers can upload the videos as required,
along with label-templates with variable-roles to be filled
by workers.

After uploading a video, all variable-roles in the label
template (represented by the word “something” in most of
our label templates) turn into input masks, and the worker
is asked to fill in the correct word (such as the noun describ-
ing the object used). Each uploaded video is displayed (as
screenshot) in a video playback-box and it can be played
back for easy inspection by the workers (as well as by the
operators as we describe below). After the worker reaches
the number of requested videos, a button “Submit Hit” gets
released, that allows the worker to submit the assignment
and get paid.

A submission is accepted automatically, if it passes a
number of quality control checks, which verify aspects such
as length and uniqueness of the videos. Every submission is
subsequently verified for correctness by a human operator.
For more details on the crowd acting platform and screen-
shots we refer to the supplementary materials.

4. Baseline experiments

We performed a few baseline experiments to assess the
difficulty of the task of predicting label templates from the
videos. In this work, we discuss classification tasks on the
label templates. Full captioning and performance on the ex-
panded labels will be discussed elsewhere. On the classifi-
cation tasks, we found 3d-convolutional networks to gener-
ally outperform 2d-convolutional networks and their com-
bination to work best. But we also found that many of
the subtle classes that were chosen explicitly to make the
task harder (Section 3.4), are hardly distinguishable using
these fairly standard architectures. More sophisticated ar-
chitectures are necessary to obtain better performance on
this data. A difficulty for both training and interpreting re-
sults is the presence of ambiguities in the labels. For re-
porting, these can be dealt with to some degree by resorting
to top-K error rate. Both ambiguities and the overall diffi-
culty of the prediction tasks can be alleviated by choosing
label subsets and by combining labels into groups, which
can allow fairly simple architectures to achieve reasonable
performance. We shall discuss several such simplified sub-
sets of classes below. We also found that this grouping can
help as an initialization for networks that are subsequently
fine-tuned on more complex class-choices.

10 selected classes
Dropping [something]
Moving [something] from right to left
Moving [something] from left to right
Picking [something] up
Putting [something]

Poking [something]

Tearing [something]

Pouring [something]
Holding [something]
Showing [something] (almost no hand)

Table 3: Subset of 10 hand-chosen “easy” classes.

4.1. Pre-processing

For the baseline runs, we sample frames from the videos
using a frame rate of 24 fps and resize them to a resolu-
tion of 84 x 84 pixels, except for those runs where we use
a pre-trained model (in which case we use the resolution is
determined by that model). We lowpass-filter the resulting
videos in time using a Gaussian kernel with zero mean and
variance of 48 pixels, which was chosen to largely elimi-
nate frequencies above the Nyquist-frequency, taking into
consideration the target frame-rate of 6 frames per second
(as discussed below).

We also perform temporal augmentation by choosing a
random offset between 0 and the downsampling factor (4)
during training. We use a fixed offset of O for validation and
testing. We have also experimented with other types of data
augmentation including flipping frames for invariant classes
and random rotation by a small angle, but we did not find
any significant performance gains for these.

4.2. Model specifications

Here we report results on the task of predicting action
templates using multiple different encoding methods. We
found dropout on the first fully-connected layer and batch-
normalization on the last layer to significantly improve
training. The encoding methods we used are:

2D-CNN + Avg: Using the VGG-16 net architecture
[29] to represent individual frames and averaging the ob-
tained features for each frame in the video to form the final
encoding. The weights of the network were trained from
scratch.

Pre-2D-CNN + Avg: Using an Imagenet-trained VGG-
16 architecture to represent individual frames and averaging
the obtained features for each frame in the video to form the
final encoding.

Pre-2D-CNN + LSTM: Using the above pre-trained
VGG network to represent individual frames and passing
the extracted features to an LSTM layer with a hidden state
size of 256. The last hidden state of the LSTM is then taken
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Error rate (%)
Method 10 classes 40 classes 174 classes
top-1 [ top-2 [ top-1 [ top-2 | top-1 | top-2 [ top-5
2D CNN + Avg 76.5 | 589 | 88.0 | 78.5 - - -
Pre-2D CNN + Avg 547 | 39.0 | 79.2 | 70.0 - - -
Pre-2D CNN + LSTM | 52.3 | 34.1 | 77.8 | 68.0 - - -
3D CNN + Stack 58.1 | 387 | 70.3 | 57.3 - - -
Pre-3D CNN + Avg 475 | 29.2 | 66.2 | 52.7 | 88.5 | 81.5 | 70.0
] 2D+3D-CNN \ 44.9 \ 27.1 \ 63.8 \ 50.7 \ - \ - \ - \

Table 4: Error rates on different subsets of the data.

as the video encoding.

3D-CNN + Stack: Using a 3D-CNN model trained from
scratch with specifications following [33], but with a size of
1024 units for the fully-connected layers and a clip size of
9 frames. We extract these features from non-overlapping
clips of size 9 frames (after padding all videos to a max-
imal length of 36 frames), and stack the obtained features
to obtain a 4096 dimensional representation (4 columns),
masking the column features, such that invalid frames (due
to padding) do not affect training.

Pre-3D-CNN + Avg: Using a 3D-CNN model initialized
on the sports-1m dataset [33] and finetuned on our dataset.
In this case, we use the framerate 8 fps for training and ex-
tract columns of size 16 frames with 8 frames overlap be-
tween columns, such that the total number of columns is 5.
We average the features across the clips.

2D+3D-CNN: A combination of the best performing
2D-CNN and 3D-CNN trained models, obtained by con-
catenating the two resulting video-encodings.

4.3. Results

We compared these networks mainly on two subsets of
the dataset with classes hand-picked to simplify the task
and benchmark the complexity of the dataset (we refer to
the supplementary materials for more details on selection of
classes): 10 selected classes: We first pre-select 41 “easy”
classes. We then generate 10 classes to train the networks
(shown in Table 3), where each class is formed by grouping
together one or more of the original 41 classes with simi-
lar semantics. The mapping from 41 to 10 classes is shown
in the appendix. The total number of videos in this case is
28198. 40 selected classes: Keeping the above 10 groups,
we select 30 additional common classes. The total number
of samples in this case is 53267. Some example predictions
from the 10-class model are shown in the appendix.

We show the error rates for these subsets using the base-
lines described above in Table 4. It shows that the difficulty
of the task grows significantly as the number of classes are
increased (despite the corresponding growth of the training-
set). Similar to datasets like Imagenet, ambiguities in the la-

bels make the naive classification performance look decep-
tively weak. However, even the top-2 performance shows
that there the dataset poses a significant challenge for these
architectures.

We also experimented on all 174 classes using a 3D
CNN model pre-trained on the 40 selected classes, and ob-
tained error rates of top-1: 88.5%, top-5: 70.3%.

Overall, our results demonstrate that the presence of sub-
tle distinctions (using grouping, contrastive examples, etc.)
makes this an extraordinarily difficult problem for standard
architectures. We also performed an informal human evalu-
ation on the complete dataset (174 classes) with 10 individ-
uals who classified ~ 700 test samples in total, achieving
an accuracy of ~ 60%. This shows that despite its difficulty
and the presence of ambiguities, there is a huge potential for
further research and modeling to improve the accuracy.

5. Discussion

Advances in common sense reasoning can come mainly
from two sources: through learning from interactions
with the world, and through learning from observing the
world. The first, interactions, rely crucially on advances in
robotics. Unlike human interactions, however, robotic in-
teractions lack sophisticated tactile sensing (which allows
human to learn about the world even without any vision).
It therefore is likely that even a robotics-based approach to
learning common sense will rely on highly capable visual
perception and on visuomotor policies that can deal with
video input.

This work falls into the second category: learning about
the world through vision. In contrast to unsupervised ap-
proaches, based on video-prediction, we propose approach-
ing the problem through supervised learning on fine-grained
labeling tasks. The database introduced in this paper is an
ongoing collection effort. We will continue to grow and ex-
tend it over time as a function of the ability of networks to
learn from the data.
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