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Abstract

Neural networks trained on datasets such as ImageNet

have led to major advances in visual object classification.

One obstacle that prevents networks from reasoning more

deeply about complex scenes and situations, and from in-

tegrating visual knowledge with natural language, like hu-

mans do, is their lack of common sense knowledge about the

physical world. Videos, unlike still images, contain a wealth

of detailed information about the physical world. However,

most labelled video datasets represent high-level concepts

rather than detailed physical aspects about actions and

scenes. In this work, we describe our ongoing collection

of the “something-something” database of video prediction

tasks whose solutions require a common sense understand-

ing of the depicted situation. The database currently con-

tains more than 100,000 videos across 174 classes, which

are defined as caption-templates. We also describe the chal-

lenges in crowd-sourcing this data at scale.

1. Introduction

Datasets and challenges like ImageNet [3] have been ma-

jor contributors to the recent dramatic improvements in neu-

ral network based object recognition [14, 30, 8], as well as

to improvements on a variety of other vision tasks thanks to

transfer learning (eg., [4, 27, 19]).

Despite their representational power, neural networks

trained on still images ignore of a wide range of scene

Figure 1: An example video from our database, captioned

“Picking [something] up”. Crowd-workers are asked to

record videos and to complete caption-templates, by provid-

ing appropriate input-text for placeholders. In this example,

the text provided for placeholder “something” is “a shoe”.

We plan to increase the complexity and sophistication of

caption-templates over time, to the degree that models suc-

ceed at making predictions.

aspects, many of which are could be inferable from

video. These include 3-D geometry (which can reveal it-

self through multiple views [7]), material properties (such

as deformability, elasticity, stiffness, etc.), articulation, af-

fordances [34] or intuitive physics (for example, occlu-

sion/object permanence, gravity).

Motion patterns extracted from a video are not only ca-
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pable of revealing object properties but also of revealing

actions and activities. Not surprisingly, most of the cur-

rently popular labeled video datasets are action recognition

datasets [26, 17, 23, 12]. It is important to note, however,

that in a fine-grained understanding of visual concepts that

goes beyond “one-of-K”-labeling, actions and objects are

naturally intertwined, and the tasks of predicting one can-

not be treated independently of predicting the other. For

example, the phrase “opening NOUN” will have drasti-

cally different visual counterparts, depending on whether

“NOUN” in this phrase is replaced by “door”, “zipper”,

“blinds”, “bag”, or “mouth”. There are also commonali-

ties between these instances of “opening”, like the fact that

parts are moved to the sides giving way to what is behind.

It is, of course, exactly these commonalities which define

the concept of “opening”. So a true understanding of the

underlying meaning of the action word “opening” would

require the ability to generalize across these different cases.

A proper understanding of such concepts is closely related

to affordances. For example, the fact that a door can be

opened is much more likely to be taken into consideration,

or even learnable, by a robot searching for an object, if its

feature space is already structured such that it can distin-

guish between opening and closing doors.

Finally, not only words for objects and actions can be

grounded in the visual world, but also many abstract con-

cepts, because these are built by means of analogy on top

of more basic, every-day concepts [15, 10]. We believe that

visual grounding through video, to the degree that it can

be advanced, may ultimately become a building block for

language modeling and other areas in AI that appear to be

non-visual at their surface.

In this work, we describe our ongoing efforts in gener-

ating the “something something”-database, whose purpose

is to provide visual (and partially acoustic) counterparts of

simple, everyday aspects of the world. The goal of this

data is to encourage networks to develop the features re-

quired for making predictions which, by definition, involve

certain aspects of common sense information. The grow-

ing database1 currently contains 108, 499 short video clips

(with duration ∈ [2, 6] seconds), that are labeled with sim-

ple textual descriptions. The videos show objects and ac-

tions performed on them. Labels are in textual form and

represent detailed information about the objects and actions

as well as other relevant information. Predicting labels from

the videos requires features that are capable of representing

physical properties of the objects and the world.

2. Related work

Although images still largely dominate research in visual

deep learning, a variety of sizeable labeled video datasets

1We made a version of the dataset available at: https://www.

twentybn.com/datasets/something-something

have been introduced in recent years. As mentioned, the

dominant application domain so far has been action recog-

nition, where the task is to predict a global action label for a

given video (for example, [23, 12, 17, 11, 5]). A drawback

of action recognition is that it is targeted at fairly high-level

aspects of videos and therefore does not encourage a net-

work to learn about motion primitives that can encode ob-

ject properties and intuitive physics. For example, the task

associated with the datasets described in [23, 12] is recog-

nizing sports, and in [17] they include high-level, human-

centered activities, such as “getting out of a car” or “fight-

ing”. A related issue is that, in many cases, good classifica-

tion performance can be achieved on these tasks using fea-

tures extracted with a convolutional network (pre-)trained

on still images [36].

Detailed labeling has been addressed also in various

video captioning datasets recently, where the goal is to pre-

dict an elaborate description, rather than a single label, for

a video [31, 24, 37, 13]. However, similar to many of the

action recognition datasets mentioned above, they typically

contain descriptions that reflect high-level, cultural aspects

of human life and commonly require a good knowledge of

rare or unusual facts and language. Recently, [38, 9] showed

how captioning models can “cheat” by generating sensible

sentences without necessarily understanding an observed

scene in detail.

A dataset focussing on lower-level, more physical con-

cepts is described in [35]. The dataset contains 17, 408
videos of a small set of objects involved in a number of

physical experiments. These include, for example, letting

the object slide down a slope or dropping it onto a surface.

The supervision signal is given by (known) physical prop-

erties of the experiment, such as the angle of the slope or

the material of the object. In contrast to that work, besides

scaling to a much larger size, we use language as labels,

similar to captioning datasets. This allows us to generate a

much larger and more varied set of actions and labels. It

also allows us to go beyond a small and highly specialized

set of physical properties and actions prescribed by the ex-

perimental setup and by what can easily be measured.

Many shortcomings of existing video datasets may be

related to the fact that they are generated by annotating (or

using closed captionings of) existing video material, includ-

ing excerpts from Hollywood movies. Recently, [28] pro-

posed a way to overcome this problem by asking crowd-

workers to record videos themselves rather than to attach

labels to existing videos. In this work, we follow a simi-

lar approach using a scalable framework for crowd-sourced

video recording. Our crowd sourcing framework allowed

us to generate several hundred thousand videos so far, in-

cluding the dataset discussed in this paper. In contrast to

the dataset described in [28] we focus here on basic, phys-

ical concepts rather than on higher-level human activities.
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Dataset Domain # Videos Avg. duration Remarks

Physics 101 [35] intuitive physics 17,408 -
101 objects with 4 different

scenarios (ramp, spring, fall, liquid)

MPII cooking [25] action (cooking) 44 600s -

TACoS [22] action (cooking) 127 360s -

Charades [28] action (human) 10, 000 30s -

KITTI [6] action (driving) 21 30s -

Something-Something (ours)
human-object

interaction
108,499 4.03s

174 fine-grained categories of

human-object interaction scenarios

Table 1: Comparison of video datasets recorded specifically for training models (information taken partially from [13])

A comparison with existing similar datasets is shown in Ta-

ble 1.

2.1. Learning intuitive physics

There has been an increasing interest recently in learning

representations of physical aspects of the world using neu-

ral networks. Such representations are commonly referred

to as intuitive or naive physics to contrast them with the

symbolic/mathematical descriptions of the world developed

in physics. Several recent papers address learning intuitive

physics by using physical interactions (robotics) [20, 1]. A

possible shortcoming of this line of work is that it is based

on using still images, which show, for example, how objects

appear before and after performing a certain action. Phys-

ical predictions are made using convolutional networks ap-

plied to the images. Any sequential information is thus re-

duced to predicting a causal relationship between action and

observations in a single feedforward computation, and any

information encoded in the motion itself is lost.

There has been a long-standing endeavor to use future

frames of a video as “free” labels for supervised training of

neural networks. See, for example, [18, 21] and references

therein. Unfortunately, predicting raw pixels is challenging,

both for computational and for statistical reasons. There are

simply a lot of aspects of the real world that a predictor of

raw pixels has to account for. This may be one reason why

unsupervised learning through video prediction has, like un-

supervised learning in general, not let do the breakthrough

that many have been hoping for.

A hybrid between learning from video and learning from

interactions is the work by [16] who use a game engine to

render block towers that collapse. A convolutional network

is then trained to predict, using an image of the tower as

input, whether it will collapse or not, as well as the trajec-

tories of parts while the tower collapses. Similar to [20, 1],

predictions are based on still images not videos.

3. The “something-something” dataset

In this work, we introduce the “something-something”-

dataset. It currently contains 108, 499 videos across 174 la-

Dataset Specifications

Number of videos 108,499

Number of class labels 174

Average duration of videos (in seconds) 4.03

Average number of videos per class 620

Table 2: Dataset summary

bels, with duration ranging from 2 to 6 seconds. Labels are

textual descriptions based on templates, such as “Dropping

[something] into [something]” containing slots (“[some-

thing]”) that serve as placeholders for objects. Crowd-

workers provide videos where they act out the templates.

They choose the objects to perform the actions on and enter

the noun-phrase describing the objects when uploading the

videos.

The dataset is split into train, validation and test-sets in

the ratio of 8:1:1. The splits were created so as to ensure

that all videos provided by the same worker occur only in

one split (train, validation, or test). See Table 2 for some

summary information about the dataset.

Including differences in case, stemming, use of deter-

miners, etc., the current version of the dataset containts

23, 137 distinct object names. We estimate the number of

actually distinct objects to be at least a few thousand. Fig-

ure 3 (bottom) shows the frequency of objects for the most

common objects.

In its current version, the dataset was generated by 1133
crowd workers with an average of 127.32 workers per class.

Figure 2 shows a truncated distribution of the number of

videos per class, with an average of roughly 620 videos per

class, a minimum of 77 for “Poking a hole into [some sub-

stance]” and a maximum of 986 for “Holding [something]”.

Figure 3 (top) shows a histogram of the duration of videos

(in seconds). A few examples of frame samples from the

collected videos is shown in Figure 4.

3.1. Crowdsourced video recording

The currently pre-dominant way of creating large, la-

beled datasets is to start by gathering a large collection of
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Figure 2: Numbers of videos per class (truncated for better visualisation).

Figure 3: Top: Video lengths (in seconds). Bottom: Fre-

quencies of occurrence of 15 most common objects

input items, such as images or videos. Usually, these are

found using online resources, such as Google image search

or Youtube. Subsequently, the gathered input examples

are labeled using crowdsourcing services like Amazon Me-

chanical Turk (see, for example, [3]).

As outlined is Section 2 videos available online are

largely unsuitable for the goal of learning simple (but fine-

grained) visual concepts. We therefore ask crowd work-

ers to provide videos given labels instead of the other way

around (a similar approach was recently described in [28]).

3.2. Natural language and curriculum learning

The number of “everyday concepts” that we want to cap-

ture with this dataset is huge, and it cannot be captured

within a fixed set of one-hot labels. Natural language de-

scriptions are a natural and obvious solution to this prob-

lem: natural language is capable of representing an ex-

tremely large number of “classes” and it is compositional

and thereby able to express this number highly economi-

cally.

Unfortunately, natural language provides a much weaker

learning signal than a one-hot label. This is one reason why

image and video captioning systems are currently trained

using an ImageNet pre-trained network as the vision com-

ponent.
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Putting a white remote into a cardboard box

Pretending to put candy onto chair

Pushing a green chilli so that it falls off the table

Moving puncher closer to scissor

Figure 4: Example videos and corresponding descriptions. Object entries shown in italics.

To obtain useful natural-language labels, but also be able

to train, and potentially bootstrap, networks to learn from

the data, we generate natural language descriptions auto-

matically by appropriately combining partly pre-defined,

and partly human-generated, parts of speech. Natural lan-

guage descriptions take the form of templates that crowd

workers provide along with videos, as we shall describe in

the next section. Analogous to how probabilistic graphical

models impose independence assumptions on a multivari-

ate distribution, these “structured captions”, can be viewed

as approximations to full natural language descriptions, that

allow us to control the complexity of learning by imposing

a rich (but restricted) structure on the labels.

In the current version of the dataset, we emphasize short

and simple descriptions, most of which contain only the

most important parts of speech, such as verbs, nouns and

prepositions. This choice was made, because common neu-

ral networks are not yet able to represent elaborate captions

and high-level concepts.

However, it is possible to increase the degree of com-

plexity as well as the sophistication of language over time

as the dataset grows. This approach can be viewed as “cur-

riculum learning” [2], where simple concepts are taught

first, and more complicated concepts are added progres-

sively over time. From this perspective, the level of com-

plexity of the current version of the dataset may be viewed

approximately as “teaching a one-year-old child”. Unlike

labels that are encoded using a fixed datatype, as described,

for example, in [39], natural language labels allow us to rep-

resent a spectrum of complexity, from simple objects and

actions encoded as one-hot labels, to full-fledged captions.

The use of natural language encodings for classes further-

more allows us to dynamically adjust the label structure in

response to how learning progresses. In other words, the

complexity of videos and natural language descriptions can

be increased as a function of the validation-accuracy achiev-
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able by networks trained on the data so far.

3.3. Sampling action­object combinations

Although it is more restricted than captions, the Carte-

sian product of actions and objects constitutes a space that

is so large that there is no hope to sample it sufficiently

densely as needed for practical applications. But the em-

pirical probability density of real-world cases in the space

of permissible actions and objects is far from uniform.

Many actions, such as “Moving an elephant on the table”

or “Pouring paper from a cup”, for example, have almost

zero density. And more reasonable combinations can still

have highly variable probabilities. Consider, for example,

“drinking from a plastic bag” (highly rare) vs. “dropping a

piece of paper” (highly common).

It is possible to exploit the low entropy of this distribu-

tion, by using the following sampling scheme: Each crowd

worker is presented with an action in the form of a template

that contains one or several placeholders for objects. Work-

ers then get to decide which objects to perform the action

on and generate a video clip. When uploading the video,

workers are required to enter their object choice(s) into a

provided mask.

3.4. Grouping and contrastive examples

The goal of the “something-something” collection effort

is to provide fine-grained discrimination tasks, whose solu-

tion will require a fairly deep understanding of the physical

world. However, especially in the early stage, where sim-

ple descriptions focussed on verbs and nouns dominate, net-

works can learn to “cheat”, for example, by extracting the

object type from one or several individual frames, and by

extracting the action using indirect cues, such as hand posi-

tion, overall velocity, camera shake, etc. This is an example

of dataset bias [32].

As a way to reduce bias, by forcing networks to classify

the actual actions and the underlying physics, we provide

action groups for most action types. An action group con-

tains multiple similar actions with minor visual differences,

so that fine-grained understanding of the activity is required

to distinguish the actions within a group. Providing action

groups to the crowd workers also encourages these to per-

form the multiple different actions with the same object,

such that a close attention to detail is required to correctly

identify the action within the group. We found that action

groups also serve the communication with crowdworkers in

clarifying to them the kinds of fine-grained distinctions in

the uploaded videos we expect.

Some groups contain pretending actions in addition to

the actual action to be performed. This will require any

system training on this data to closely observe the object in-

stead of secondary cues such as hand positions. It will also

require the networks to learn and represent indirect visual

cues, such as the fact that an object is present or not present

in a particular region in the image. Preventing a network

from “cheating” by distinguishing between actual and pre-

tended actions is reminiscent of teaching a child by asking

it to tell the difference between genuine and false actions.

Examples of action groups we use include:

• Putting something on top of something / Putting some-

thing next to something / Putting something behind

something

• Putting something behind something / Pretending to

put something behind something (but not actually leav-

ing it there)

• Poking something so lightly that it does not or almost

does not move / Poking something so it slightly moves

/ Poking something so that it falls over.

• Poking something / Pretending to poke something

A more comprehensive list of action groups and descrip-

tions examples are provided in the supplementary materials.

3.5. Data collection platform

Besides the requirements outlined above, crowdsourcing

the recording of video data according to a pre-defined label

structure poses a variety of technical challenges:

• Batch submission: Crowd workers need to be able to

initiate a job, and come back to it later potentially mul-

tiple times until it is completed, so that they can record

videos outside or at other places or times of the day, or

after having gathered the objects needed for the task.

• Worker-conditional choice of labels: To generate data

with sufficient variability, it is important that each label

is represented by videos from as many different crowd-

workers as possible. To this end, it is necessary to keep

track of the set of labels recorded by each individual

crowdworker. ‘The list of labels or action groups (as

defined below) to choose from can be generated dy-

namically once the crowdworker logs on to the plat-

form.

• Feedback on completed or partially completed submis-

sions: In the case of submissions that are fully or par-

tially rejected it is important that the crowd sourcing

operators can quickly provide feedback to the crowd

workers regarding what was wrong with the submis-

sion.

• Convenience: To reduce cost, crowd workers need to

face a convenient, easy-to-use and highly responsive

interface.

To address these challenges, we created a data collection

platform, with which both crowd workers and our operators

overseeing the crowdsourcing efforts interact during the on-

going crowdsourcing operation.
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When a crowdworker accepts a task he/she gets re-

directed to our platform, where the task is then completed

and reviewed. After completion of a task, our platform com-

municates the result back to the crowdsourcing service.

On the platform, workers get presented with a list

of action-templates to choose from (with action-templates

grouped as described in the previous section). By select-

ing action-templates, the platform creates video upload-

boxes where workers can upload the videos as required,

along with label-templates with variable-roles to be filled

by workers.

After uploading a video, all variable-roles in the label

template (represented by the word “something” in most of

our label templates) turn into input masks, and the worker

is asked to fill in the correct word (such as the noun describ-

ing the object used). Each uploaded video is displayed (as

screenshot) in a video playback-box and it can be played

back for easy inspection by the workers (as well as by the

operators as we describe below). After the worker reaches

the number of requested videos, a button “Submit Hit” gets

released, that allows the worker to submit the assignment

and get paid.

A submission is accepted automatically, if it passes a

number of quality control checks, which verify aspects such

as length and uniqueness of the videos. Every submission is

subsequently verified for correctness by a human operator.

For more details on the crowd acting platform and screen-

shots we refer to the supplementary materials.

4. Baseline experiments

We performed a few baseline experiments to assess the

difficulty of the task of predicting label templates from the

videos. In this work, we discuss classification tasks on the

label templates. Full captioning and performance on the ex-

panded labels will be discussed elsewhere. On the classifi-

cation tasks, we found 3d-convolutional networks to gener-

ally outperform 2d-convolutional networks and their com-

bination to work best. But we also found that many of

the subtle classes that were chosen explicitly to make the

task harder (Section 3.4), are hardly distinguishable using

these fairly standard architectures. More sophisticated ar-

chitectures are necessary to obtain better performance on

this data. A difficulty for both training and interpreting re-

sults is the presence of ambiguities in the labels. For re-

porting, these can be dealt with to some degree by resorting

to top-K error rate. Both ambiguities and the overall diffi-

culty of the prediction tasks can be alleviated by choosing

label subsets and by combining labels into groups, which

can allow fairly simple architectures to achieve reasonable

performance. We shall discuss several such simplified sub-

sets of classes below. We also found that this grouping can

help as an initialization for networks that are subsequently

fine-tuned on more complex class-choices.

10 selected classes

Dropping [something]

Moving [something] from right to left

Moving [something] from left to right

Picking [something] up

Putting [something]

Poking [something]

Tearing [something]

Pouring [something]

Holding [something]

Showing [something] (almost no hand)

Table 3: Subset of 10 hand-chosen “easy” classes.

4.1. Pre­processing

For the baseline runs, we sample frames from the videos

using a frame rate of 24 fps and resize them to a resolu-

tion of 84 × 84 pixels, except for those runs where we use

a pre-trained model (in which case we use the resolution is

determined by that model). We lowpass-filter the resulting

videos in time using a Gaussian kernel with zero mean and

variance of 48 pixels, which was chosen to largely elimi-

nate frequencies above the Nyquist-frequency, taking into

consideration the target frame-rate of 6 frames per second

(as discussed below).

We also perform temporal augmentation by choosing a

random offset between 0 and the downsampling factor (4)

during training. We use a fixed offset of 0 for validation and

testing. We have also experimented with other types of data

augmentation including flipping frames for invariant classes

and random rotation by a small angle, but we did not find

any significant performance gains for these.

4.2. Model specifications

Here we report results on the task of predicting action

templates using multiple different encoding methods. We

found dropout on the first fully-connected layer and batch-

normalization on the last layer to significantly improve

training. The encoding methods we used are:

2D-CNN + Avg: Using the VGG-16 net architecture

[29] to represent individual frames and averaging the ob-

tained features for each frame in the video to form the final

encoding. The weights of the network were trained from

scratch.

Pre-2D-CNN + Avg: Using an Imagenet-trained VGG-

16 architecture to represent individual frames and averaging

the obtained features for each frame in the video to form the

final encoding.

Pre-2D-CNN + LSTM: Using the above pre-trained

VGG network to represent individual frames and passing

the extracted features to an LSTM layer with a hidden state

size of 256. The last hidden state of the LSTM is then taken
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Method

Error rate (%)

10 classes 40 classes 174 classes

top-1 top-2 top-1 top-2 top-1 top-2 top-5

2D CNN + Avg 76.5 58.9 88.0 78.5 - - -

Pre-2D CNN + Avg 54.7 39.0 79.2 70.0 - - -

Pre-2D CNN + LSTM 52.3 34.1 77.8 68.0 - - -

3D CNN + Stack 58.1 38.7 70.3 57.3 - - -

Pre-3D CNN + Avg 47.5 29.2 66.2 52.7 88.5 81.5 70.0

2D+3D-CNN 44.9 27.1 63.8 50.7 - - -

Table 4: Error rates on different subsets of the data.

as the video encoding.

3D-CNN + Stack: Using a 3D-CNN model trained from

scratch with specifications following [33], but with a size of

1024 units for the fully-connected layers and a clip size of

9 frames. We extract these features from non-overlapping

clips of size 9 frames (after padding all videos to a max-

imal length of 36 frames), and stack the obtained features

to obtain a 4096 dimensional representation (4 columns),

masking the column features, such that invalid frames (due

to padding) do not affect training.

Pre-3D-CNN + Avg: Using a 3D-CNN model initialized

on the sports-1m dataset [33] and finetuned on our dataset.

In this case, we use the framerate 8 fps for training and ex-

tract columns of size 16 frames with 8 frames overlap be-

tween columns, such that the total number of columns is 5.

We average the features across the clips.

2D+3D-CNN: A combination of the best performing

2D-CNN and 3D-CNN trained models, obtained by con-

catenating the two resulting video-encodings.

4.3. Results

We compared these networks mainly on two subsets of

the dataset with classes hand-picked to simplify the task

and benchmark the complexity of the dataset (we refer to

the supplementary materials for more details on selection of

classes): 10 selected classes: We first pre-select 41 “easy”

classes. We then generate 10 classes to train the networks

(shown in Table 3), where each class is formed by grouping

together one or more of the original 41 classes with simi-

lar semantics. The mapping from 41 to 10 classes is shown

in the appendix. The total number of videos in this case is

28198. 40 selected classes: Keeping the above 10 groups,

we select 30 additional common classes. The total number

of samples in this case is 53267. Some example predictions

from the 10-class model are shown in the appendix.

We show the error rates for these subsets using the base-

lines described above in Table 4. It shows that the difficulty

of the task grows significantly as the number of classes are

increased (despite the corresponding growth of the training-

set). Similar to datasets like Imagenet, ambiguities in the la-

bels make the naive classification performance look decep-

tively weak. However, even the top-2 performance shows

that there the dataset poses a significant challenge for these

architectures.

We also experimented on all 174 classes using a 3D

CNN model pre-trained on the 40 selected classes, and ob-

tained error rates of top-1: 88.5%, top-5: 70.3%.

Overall, our results demonstrate that the presence of sub-

tle distinctions (using grouping, contrastive examples, etc.)

makes this an extraordinarily difficult problem for standard

architectures. We also performed an informal human evalu-

ation on the complete dataset (174 classes) with 10 individ-

uals who classified ∼ 700 test samples in total, achieving

an accuracy of ∼ 60%. This shows that despite its difficulty

and the presence of ambiguities, there is a huge potential for

further research and modeling to improve the accuracy.

5. Discussion

Advances in common sense reasoning can come mainly

from two sources: through learning from interactions

with the world, and through learning from observing the

world. The first, interactions, rely crucially on advances in

robotics. Unlike human interactions, however, robotic in-

teractions lack sophisticated tactile sensing (which allows

human to learn about the world even without any vision).

It therefore is likely that even a robotics-based approach to

learning common sense will rely on highly capable visual

perception and on visuomotor policies that can deal with

video input.

This work falls into the second category: learning about

the world through vision. In contrast to unsupervised ap-

proaches, based on video-prediction, we propose approach-

ing the problem through supervised learning on fine-grained

labeling tasks. The database introduced in this paper is an

ongoing collection effort. We will continue to grow and ex-

tend it over time as a function of the ability of networks to

learn from the data.

5849



References

[1] P. Agrawal, A. V. Nair, P. Abbeel, J. Malik, and S. Levine.

Learning to poke by poking: Experiential learning of intu-

itive physics. In Advances in NIPS, 2016. 3

[2] Y. Bengio, J. Louradour, R. Collobert, and J. Weston. Cur-

riculum learning. In ICML, 2009. 5

[3] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei.

ImageNet: A Large-Scale Hierarchical Image Database. In

CVPR, 2009. 1, 4

[4] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang,

E. Tzeng, and T. Darrell. Decaf: A deep convolutional acti-

vation feature for generic visual recognition. In ICML, 2014.

1

[5] B. G. Fabian Caba Heilbron, Victor Escorcia and J. C.

Niebles. Activitynet: A large-scale video benchmark for hu-

man activity understanding. In CVPR, 2015. 2

[6] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun. Vision meets

robotics: The kitti dataset. The International Journal of

Robotics Research, 32(11):1231–1237, 2013. 3

[7] R. Hartley and A. Zisserman. Multiple view geometry in

computer vision. Cambridge university press, 2003. 1

[8] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. In CVPR, 2016. 1

[9] H. Heuer, C. Monz, and A. W. Smeulders. Generating

captions without looking beyond objects. arXiv preprint

arXiv:1610.03708, 2016. 2

[10] D. Hofstadter, D. R. Hofstadter, and E. Sander. Surfaces and

Essences. Basic Books, 2013. 2

[11] Y.-G. Jiang, Z. Wu, J. Wang, X. Xue, and S.-F. Chang. Ex-

ploiting feature and class relationships in video categoriza-

tion with regularized deep neural networks. IEEE Transac-

tions on Pattern Analysis and Machine Intelligence, 2017. 2

[12] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar,

and L. Fei-Fei. Large-scale video classification with convo-

lutional neural networks. In CVPR, 2014. 2

[13] R. Krishna, K. Hata, F. Ren, L. Fei-Fei, and J. C.

Niebles. Dense-captioning events in videos. arXiv preprint

arXiv:1705.00754, 2017. 2, 3

[14] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

Advances in NIPS, 2012. 1

[15] G. Lakoff and M. Johnson. Metaphors we live by. University

of Chicago Press, 1981. 2

[16] A. Lerer, S. Gross, and R. Fergus. Learning physical intu-

ition of block towers by example. In ICML, 2016. 3

[17] M. Marszalek, I. Laptev, and C. Schmid. Actions in context.

In CVPR, 2009. 2

[18] V. Michalski, R. Memisevic, and K. Konda. Modeling deep

temporal dependencies with recurrent grammar cells. In Ad-

vances in NIPS, 2014. 3

[19] A. Nguyen, A. Dosovitskiy, J. Yosinski, T. Brox, and

J. Clune. Synthesizing the preferred inputs for neurons in

neural networks via deep generator networks. In Advances

in NIPS, 2016. 1

[20] L. Pinto, D. Gandhi, Y. Han, Y.-L. Park, and A. Gupta. The

curious robot: Learning visual representations via physical

interactions. In ECCV, 2016. 3

[21] M. Ranzato, A. Szlam, J. Bruna, M. Mathieu, R. Collobert,

and S. Chopra. Video (language) modeling: a baseline

for generative models of natural videos. arXiv preprint

arXiv:1412.6604, 2014. 3

[22] M. Regneri, M. Rohrbach, D. Wetzel, S. Thater, B. Schiele,

and M. Pinkal. Grounding action descriptions in videos.

Transactions of the Association for Computational Linguis-

tics, 2013. 3

[23] M. D. Rodriguez, J. Ahmed, and M. Shah. Action mach

a spatio-temporal maximum average correlation height filter

for action recognition. In CVPR, 2008. 2

[24] A. Rohrbach, M. Rohrbach, N. Tandon, and B. Schiele. A

dataset for movie description. In CVPR, 2015. 2

[25] M. Rohrbach, S. Amin, M. Andriluka, and B. Schiele. A

database for fine grained activity detection of cooking activ-

ities. In CVPR, 2012. 3

[26] C. Schuldt, I. Laptev, and B. Caputo. Recognizing human

actions: a local svm approach. In ICPR, 2004. 2

[27] A. Sharif Razavian, H. Azizpour, J. Sullivan, and S. Carls-

son. Cnn features off-the-shelf: an astounding baseline for

recognition. In CVPR Workshops, 2014. 1

[28] G. A. Sigurdsson, G. Varol, X. Wang, A. Farhadi, I. Laptev,

and A. Gupta. Hollywood in homes: Crowdsourcing data

collection for activity understanding. In ECCV, 2016. 2, 3, 4

[29] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. arXiv preprint

arXiv:1409.1556, 2014. 7

[30] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,

D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.

Going deeper with convolutions. In CVPR, 2015. 1

[31] A. Torabi, C. Pal, H. Larochelle, and A. Courville. Using

descriptive video services to create a large data source for

video annotation research. arXiv preprint arXiv:1503.01070,

2015. 2

[32] A. Torralba and A. A. Efros. Unbiased look at dataset bias.

In CVPR, 2011. 6

[33] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri.

Learning spatiotemporal features with 3d convolutional net-

works. In ICCV, 2015. 8

[34] Wikipedia. Affordance — wikipedia, the free encyclopedia,

2016. [Online; accessed 9-September-2016]. 1

[35] J. Wu, J. J. Lim, H. Zhang, J. B. Tenenbaum, and W. T.

Freeman. Physics 101: Learning physical object properties

from unlabeled videos. In British Machine Vision Confer-

ence, 2016. 2, 3

[36] Z. Wu, Y. Fu, Y.-G. Jiang, and L. Sigal. Harnessing object

and scene semantics for large-scale video understanding. In

CVPR, 2016. 2

[37] J. Xu, T. Mei, T. Yao, and Y. Rui. Msr-vtt: A large video de-

scription dataset for bridging video and language. In CVPR,

2016. 2

[38] L. Yao, N. Ballas, K. Cho, J. R. Smith, and Y. Bengio.

Oracle performance for visual captioning. arXiv preprint

arXiv:1511.04590, 2015. 2

[39] M. Yatskar, L. Zettlemoyer, and A. Farhadi. Situation recog-

nition: Visual semantic role labeling for image understand-

ing. In CVPR, 2016. 5

5850


