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Abstract

Language models based on recurrent neural networks

have dominated recent image caption generation tasks. In

this paper, we introduce a language CNN model which is

suitable for statistical language modeling tasks and shows

competitive performance in image captioning. In contrast

to previous models which predict next word based on one

previous word and hidden state, our language CNN is fed

with all the previous words and can model the long-range

dependencies in history words, which are critical for im-

age captioning. The effectiveness of our approach is vali-

dated on two datasets: Flickr30K and MS COCO. Our ex-

tensive experimental results show that our method outper-

forms the vanilla recurrent neural network based language

models and is competitive with the state-of-the-art methods.

1. Introduction

Image caption generation is a fundamental problem that

involves Computer Vision, Natural Language Processing

(NLP), and Machine Learning. It can be analogous to

“translating” an image to proper sentences. While this task

seems to be easy for human beings, it is quite challenging

for machines because it requires the model to understand

the image content and express their relationships in a natural

language. Also, the image captioning model should be ca-

pable of capturing implicit semantic information of an im-

age and generating humanlike sentences. As a result, gen-

erating accurate captions for an image is not an easy task.

The recent surge of research interest in image cap-

tion generation task is due to the advances in Neural Ma-

chine Translation (NMT) [44] and large datasets [39, 29].

Most image captioning models follow the encoder-decoder

pipeline [4, 24, 35, 19, 41]. The encoder-decoder frame-

work is recently introduced for sequence-to-sequence learn-

ing based on Recurrent Neural Networks (RNNs) or Long-

Short Term Memory (LSTM) networks. Both RNNs and

LSTM networks can be sequence learners. However, due

to the vanishing gradient problem, RNNs can only remem-

ber the previous status for a few time steps. LSTM network

is a special type of RNN architecture designed to solve the

vanishing gradient problem in RNNs [46, 15, 6]. It intro-

duces a new component called memory cell. Each memory

cell is composed of three gates and a neuron with the self-

recurrent connection. These gates allow the memory cells

to keep and access information over a long period of time

and make LSTM network capable of learning long-term de-

pendencies.

Although models like LSTM networks have memory

cells which aim to memorize history information for long-

term, they are still limited to several time steps because

long-term information is gradually diluted at every time

step [49]. Besides, vanilla RNNs-based image captioning

models recursively accumulate history information without

explicitly modeling the hierarchical structure of word se-

quences, which clearly have a bottom-up structure [28].

To better model the hierarchical structure and long-term

dependencies in word sequences, in this paper, we adopt a

language CNN which applies temporal convolution to ex-

tract features from sequences. Such a method is inspired by

works in NLP which have shown CNN is very powerful for

text representation [18, 48]. Unlike the vanilla CNN archi-

tecture, we drop the pooling operation to keep the relevant

information for words representation and investigate the op-

timum convolutional filters by experiments. However, only

using language CNN fails to model the dynamic temporal

behavior. Hence, we still need to combine language CNN

with recurrent networks (e.g., RNN or LSTM). Our exten-

sive studies show that adding language CNN to a recurrent

network helps model sequences consistently and more ef-

fectively, and leads to improved results.

To summarize, our primary contribution lies in incor-

porating a language CNN, which is capable of capturing

long-range dependencies in sequences, with RNNs for im-

age captioning. Our model yields comparable performance

with the state-of-the-art approaches on Flickr30k [39] and
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MS COCO [29].

2. Related Works

The problem of generating natural language descriptions

for images has become a hot topic in computer vision com-

munity. Prior to using neural networks for generating de-

scriptions, the classical approach is to pose the problem

as a retrieval and ranking problem [12, 9, 37]. The main

weakness of those retrieval-based approaches is that they

cannot generate proper captions for a new combination of

objects. Inspired by the success of deep neural networks in

machine translation [44, 4, 17], researchers have proposed

to use the encoder-decoder framework for image caption

generation [21, 35, 19, 46, 6, 3, 26]. Instead of translating

sentences between two languages, the goal of image cap-

tioning is to “translate” a query image into a sentence that

describes the image. The earliest approach using neural net-

work for image captioning is proposed by Vinyals et al. [46]

which is an encoder-decoder system trained to maximize

the log-likelihood of the target image descriptions. Simi-

larly, Mao et al. [35] and Donahue et al. [6] use the mul-

timodal fusion layer to fuse the image features and word

representation at each time step. In both cases, i.e., the

models in [35] and [6], the captions are generated from

the full images, while the image captioning model proposed

by Karpathy et al. [19] generates descriptions based on re-

gions. This work is later followed by Johnson et al. [16]

whose method is designed to jointly localize regions and

describe each with captions.

Rather than representing an image as a single feature

vector from the top-layer of CNNs, some researchers have

explored the structure of networks to explicitly or implic-

itly model the correlation between images and descrip-

tions [51, 34, 30]. Xu et al. [51] incorporate the spatial

attention on convolutional features of an image into the

encoder-decoder framework through the “hard” and “soft”

attention mechanisms. Their work is followed by Yang et

al. [52] whose method introduces a review network to im-

prove the attention mechanism and Liu et al. [30] whose

approach is designed to improve the correctness of visual

attention. Moreover, a variational autoencoder for image

captioning is developed by Pu et al. [40]. They use a CNN

as the image encoder and use a deep generative deconvolu-

tional network as the decoder together with a Gated Recur-

rent Unit (GRU) [4] to generate image descriptions.

More recently, high-level attributes have been shown to

obtain clear improvements on the image captioning task

when injected into existing encoder-decoder based mod-

els [50, 53, 8]. Specifically, Jia et al. [15] use the semantic

information as the extra input to guide the model in gen-

erating captions. In addition, Fang et al. [7] learn a visual

attributes detector based on multi-instance learning (MIL)

first and then learn a statistical language model for caption

generation. Likewise, Wu et al. [50] train several visual at-

tribute classifiers and take the outputs of those classifiers as

inputs for the LSTM network to predict words.

In general, current recurrent neural network based ap-

proaches have shown their powerful capability on mod-

eling word sequences [46, 19]. However, the history-

summarizing hidden states of RNNs are updated at each

time, which render the long-term memory rather diffi-

cult [25, 36]. Besides, we argue that current recurrent net-

works like LSTM are not efficient on modeling the hierar-

chical structure in word sequences. All of these prompt us

to explore a new language model to extract better sentence

representation. Considering ConvNets can be stacked to ex-

tract hierarchical features over long-range contexts and have

received a lot of attention in many tasks [10], in this paper,

we design a language CNN to model words with long-term

dependencies through multilayer ConvNets and to model

the hierarchical representation through the bottom-up and

convolutional architecture.

3. Model Architecture

3.1. Overall Framework

We study the effect of language CNN by combining

it with Recurrent Networks. Figure 1 shows a recursive

framework. It consists of one deep CNN for image encod-

ing, one CNN for sentence modeling, and a recurrent net-

work for sequence prediction. In order to distinguish these

two CNN networks, we name the first CNN for image fea-

ture extraction as CNNI , and the second CNN for language

modeling as CNNL.

Given an image I, we take the widely-used CNN ar-

chitecture VGGNet (16-layer) [42] pre-trained on Ima-

geNet [22] to extract the image features V ∈ R
K . The

CNNL is designed to represent words and their hierarchi-

cal structure in word sequences. It takes a sequence of t

generated words (each word is encoded as a one-hot repre-

sentation) as inputs and generates a bottom-up representa-

tion of these words. The outputs of CNNI and CNNL will

be fed into a multimodal fusion layer, and use the recurrent

network frecurrent(·) to predict the next word. The following

equations show the main working flow of our model:

V = CNNI(I) (1)

y[t] = CNNL(S
[0], S[1], · · · , S[t−1]) (2)

m[t] = fmultimodal(y
[t],V) (3)

r[t] = frecurrent(r
[t−1], x[t−1],m[t]) (4)

S[t] ∼ argmax
S

Softmax(Wor
[t] + bo) (5)

where t ∈ [0, N−1] is the time step, y[t] is the output vector

of CNNL, r[t] is the activation output of recurrent network,

S[t] is the t-th word drawn from the dictionary S according
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Figure 1. An overview of our framework. The input of our model is a query image. Our model estimates the probability distribution

of the next word given previous words and image. It consists of four parts: a CNNI for image feature extraction, a deep CNNL for

language modeling, a multimodal layer (M) that connects the CNNI and CNNL, and a Recurrent Network (e.g., RNN, LSTM, etc.) for

word prediction. The weights are shared among all time frames.

to the maximum Softmax probability controlled by r[t], Wo

and bo are weights and biases used for calculating the dis-

tribution over words. Equation 2, 3, 4 and 5 are recursively

applied, the design of each function is discussed below.

3.2. CNNL Layer

Models based on RNNs have dominated recent sequence

modeling tasks [23, 31, 32, 44], and most of the recent im-

age captioning models are based on LSTM networks [6, 19,

34]. However, LSTM networks cannot explicitly model the

hierarchical representation of words. Even with multi-layer

LSTM networks, such hierarchical structure is still hard to

be captured due to the more complex model and higher risk

of over-fitting.

Inspired by the recent success of CNNs in computer vi-

sion [10, 14], we adopt a language CNN with a hierarchi-

cal structure to capture the long-range dependencies be-

tween the input words, called CNNL. The first layer of

CNNL is a word embedding layer. It embeds the one-hot

word encoding from the dictionary into word representa-

tion through a lookup table. Suppose we have t input words

S = {S[0], S[1], · · · , S[t−1]}, and S[i] is the one-of-V (one-

hot) encoding, with V as the size of the vocabulary. We first

map each word S[t] in the sentence into a K-dimensional

vector x[t] = WeS
[t], where We ∈ R

K×V is a word em-

bedding matrix (to be learned). Next, those embeddings are

concatenated to produce a matrix as follows:

x =
[

x[0], x[1], · · · , x[t−1]
]T

,x ∈ R
t×K (6)

The concatenated matrix x is fed to the convolutional layer.

Just like the normal CNN, CNNL has a fixed architecture

with predefined maximum number of input words (denoted

as LL). Unlike the toy example in Figure 2, in practice we

use a larger and deeper CNNL with LL = 16.

We use the temporal convolution [21] to model the sen-

tence. Given an input feature map y(ℓ−1) ∈ R
Mℓ−1×K of

Layer-ℓ − 1, the output feature map y(ℓ) ∈ R
Mℓ×K of the

temporal convolution layer-ℓ will be:

y
(ℓ)
i (x) = σ(w

(l)
L y

(ℓ−1)
i + b

(ℓ)
L ) (7)

here y
(ℓ)
i (x) gives the output of feature map for location i

in Layer-ℓ, w
(l)
L denotes the parameters on Layer-ℓ, σ(·) is

the activation function, e.g., Sigmoid, or ReLU. The input

feature map y
(l−1)
i is the segment of Layer-ℓ − 1 for the

convolution at location i, while y(0) is the concatenation of

t word embeddings from the sequence input S[0:t−1]. The

definition of y(0) is as follows:

y(0) def
=

{

[

x[t−LL], · · · , x[t−1]
]T

, if t ≥ LL
[

x[0], · · · , x[t−1], x̃[t], · · · , x̃[LL−1]
]T

otherwise

(8)

Specially, when t ≥ LL, the input sentence will be trun-

cated, we only use LL words before the current time step t.

When t < LL, the input sentence will be padded with x̃[:].
Note that if t = 0, x̃[:] are the image features V, otherwise

x̃[:] are the zero vectors that have the same dimension as x[:].
Previous CNNs, including those adopted for NLP

tasks [13, 18], take the classic convolution-pooling strategy,

which uses max-pooling to pick the highest response fea-

ture across time. This strategy works well for tasks like text

classification [18] and matching [13], but is undesirable for

modeling the composition functionality, because it ignores

the temporal information in sequence. In our network, we

discard the pooling operations. We consider words as the

smallest linguistic unit and apply a straightforward stack of

convolution layers on top of each other. In practice, we

find that deeper CNNL works better than shallow CNNL,

which is consistent with the tradition of CNNs in computer

vision [10], where using very deep CNNs is key to having

better feature representation.

The output features of the final convolution layer are fed

into a fully connected layer that projects the extracted words

features into a low-dimensional representation. Next, the

projected features will be fed to a highway connection [43]

which controls flows of information in the layer and im-
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proves the gradient flow. The final output of the highway

connection is a K-dimensional vector y[t].
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Figure 2. The architecture of language CNN for sentence model-

ing. Here “/” stands for a zero padding. The CNNL builds a hier-

archical representation of history words which contains the useful

information for next word prediction.

3.3. Multimodal Fusion Layer

Next, we add a multimodal fusion layer after CNNL,

which fuses words representation and image features. This

layer has two inputs: the bottom-up words representation

y[t] extracted from CNNL and the image representation V
extracted from CNNI . We map these two inputs to the same

multimodal feature space and combine them together to ob-

tain the activation of multimodal features:

m[t] = fmultimodal(y
[t],V) (9)

= σ
(

fy(y
[t];WY,bY) + gv(V;WV,bV)

)

(10)

where “+” denotes element-wise addition, fy(·) and gv(·)
are linear mapping functions, m[t] is the multimodal layer

output feature vector. σ(·) is the activation function, here

we use the scaled tanh function [27] which leads to a faster

training process than the basic tanh function.

3.4. Recurrent Networks

Our CNNL may miss the important temporal informa-

tion because it extracts the holistic features from the whole

sequence of words. To overcome this limitation, we com-

bine it with recurrent networks. In our model, the transition

equations of the recurrent network can be formulated as:

r[t] = frecurrent(r
[t−1], x[t−1],m[t]) (11)

S[t] ∼ argmax
S

Softmax(Wor
[t] + bo) (12)

where r[t] denotes the recurrent state, x[t−1] = WeS
[t−1] is

the previous word embedding, m[t] is the multimodal fusion

output, and frecurrent(·) is the transition function of recurrent

network. Softmax(r[t]) is the probability of word S[t] given

by the Softmax layer, and S[t] is the t-th decoded word.

In our study, we combine our language CNN with four

types of recurrent networks: Simple RNN, LSTM network,

GRU [4], and Recurrent Highway Network (RHN) [54].

Traditionally, the simple RNN updates the recurrent state

r[t] of Equation 11 as follows:

r[t] = tanh(Wrr
[t−1] +Wzz

[t] + b) (13)

where z[t] is the input. However, this type of simple RNN is

hard to deal with long-term dependencies [2]. As the van-

ishing gradient will make gradients in directions that short-

term dependencies are large, while the gradients in direc-

tions that correspond to long-term dependencies are small.

LSTM network extends the simple RNN with the gating

mechanism (input gate, forget gate, and output gate) to con-

trol information flow and a memory cell to store the history

information, thus it can better model the long-term depen-

dencies than simple RNN.

GRU is an architecture similar to the LSTM, but it has

a simplified structure. GRU does not has a separate mem-

ory cell and exposes its hidden state r[t] without any control.

Thus, it is computationally more efficient and outperforms

the LSTM network on many tasks due to its simple struc-

ture.

Besides, we also consider a fourth type of recurrent net-

work: RHN, which introduces the highway connection to

simple RNN. RHN has directly gated connections between

previous state r[t−1] and current input z[t] to modulate the

flow of information. The transition equations of RHN can

be formulated as follows:




t[t]

c[t]

h[t]



 =





σ

σ

tanh





(

M

(

r[t−1]

z[t]

))

(14)

r[t] = h[t] ⊙ t[t] + c[t] ⊙ r[t−1] (15)

where c[t] is the carry gate, t[t] is the transform gate, h[t]

denotes the modulated input, M : R
2K+d → R

3d is an

affine transformation. z[t] ∈ R
2K denotes the concatenation

of two vectors: m[t] and x[t−1]. According to Equation 3

and 2, z[t] can be expressed as follows:

z[t] = [fmultimodal(CNNL(x
[0,··· ,t−1]),V); x[t−1]] (16)

Like GRU, RHN does not have output gate to control the

exposure of the recurrent state r[t], but exposes the whole

state each time. The RHN, however, does not have reset

gate to drop information that is irrelevant in the future. As

our CNNL can extract the relevant information from the se-

quence of history words at each time step, to some extent,

the CNNL allows the model to add information that is use-

ful in making a prediction.

3.5. Training

During training, given the ground truth words S and cor-

responding image I, the loss function for a single training
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instance (S, I) is defined as a sum of the negative log like-

lihood of the words. The loss can be written as:

L(S, I) = −

N−1
∑

t=0

logP (S[t]|S[0], · · · , S[t−1], I) (17)

where N is the sequence length, and S[t] denotes a word in

the sentence S.

The training objective is to minimize the cost func-

tion, which is equivalent to maximizing the probability of

the ground truth context words given the image by using:

argmaxθ
∑N−1

t=0 logP (S[t]|S[0:t−1], I), where θ are the pa-

rameters of our model, and P (S[t]|S[0:t−1], I) corresponds

to the activation of Softmax layer.

3.6. Implementation Details

In the following experiments, we use the 16-layer VG-

GNet [42] model to compute CNN features and map the

last fully-connected layer’s output features to an embedding

space via a linear transformation.

As for preprocessing of captions, we transform all let-

ters in the captions to lowercase and remove all the non-

alphabetic characters. Words occur less than five times are

replaced with an unknown token <UNK>. We truncate all

the captions longer than 16 tokens and set the maximum

number of input words for CNNL to be 16.

3.6.1 Training Details

In the training process, each image I has five correspond-

ing annotations. We first extract the image features V
with CNNI . The image features V are used in each time

step. We map each word representation S[t] with: x[t] =
WeS

[t], t ∈ [0, N − 1]. After that, our network is trained

to predict the words after it has seen the image and pre-

ceding words. Please note that we denote by S[0] a special

<START> token and by S[N−1] a special <END> token

which designate the start and end of the sentence.

For Flickr30K [39] and MS COCO [29] we set the di-

mensionality of the image features and word embeddings

as 512. All the models are trained with Adam [20], which

is a stochastic gradient descent method that computes adap-

tive learning rate for each parameter. The learning rate is

initialized with 2e-4 for Flickr30K and 4e-4 for MS COCO,

and the restart technique mentioned in [33] is adopted to im-

prove the convergence of training. Dropout and early stop-

ping are used to avoid overfitting. All weights are randomly

initialized except for the CNN weights. More specifically,

we fine-tune the VGGNet when the validation loss stops de-

creasing. The termination of training is determined by eval-

uating the CIDEr [45] score on the validation split after each

training epoch.

3.6.2 Testing

During testing, the previous output S[t−1] is used as input

in lieu of S[t]. The sentence generation process is straight-

forward. Our model starts from the <START> token and

calculates the probability distribution of the next word :

P (S[t]|S[0:t−1], I). Here we use Beam Search technology

proposed in [15], which is a fast and efficient decoding

method for recurrent network models. We set a fixed beam

search size (k=2) for all models (with RNNs) in our tests.

4. Experiments

4.1. Datasets and Evaluation Metrics

We perform experiments on two popular datasets that

are used for image caption generation: MS COCO and

Flickr30k. These two datasets contain 123,000 and 31,000

images respectively, and each image has five reference cap-

tions. For MS COCO, we reserve 5,000 images for vali-

dation and 5,000 images for testing. For Flickr30k, we use

29,000 images for training, 1,000 images for validation, and

1,000 images for testing.

We choose four metrics for evaluating the quality of the

generated sentences: BLEU-n [38] is a precision-based

metric. It measures how many words are shared by the gen-

erated captions and ground truth captions. METEOR [5] is

based on the explicit word to word matches between gen-

erated captions and ground-truth captions. CIDEr [45] is a

metric developed specifically for evaluating image captions.

It measures consensus in image caption by performing a

Term Frequency-Inverse Document Frequency weighting

for each n-gram. SPICE [1] is a more recent metric which

has been shown to correlate better with the human judgment

of semantic quality than previous metrics.

4.2. Models

To gain insight into the effectiveness of CNNL, we com-

pare CNNL-based models with methods using the recurrent

network only. For a fair comparison, the output dimensions

of all gates are fixed to 512.

Recurrent Network-based Models. We implement Re-

current Network-based Models based on the framework

proposed by Vinyals et al. [46], it takes an image as in-

put and predicts words with one-layer Recurrent Network.

Here we use the publicly available implementation Neu-

raltalk2 1. We evaluate four baseline models: Simple RNN,

RHN, LSTM, and GRU.

CNNL-based Models. As can be seen in Figure 1. The

CNNL-based models employ a CNNL to obtain the bottom-

up representation from the sequence of words and cooperate

with the Recurrent Network to predict the next word. Image

features and words representation learned from CNNI and

1https://github.com/karpathy/neuraltalk2
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CNNL respectively are fused with the multimodal function.

We implement four CNNL-based models: CNNL+Simple

RNN, CNNL+RHN, CNNL+LSTM, and CNNL+GRU.

4.3. Quantitative Results

We first evaluate the importance of language CNN for

image captioning, then evaluate the effects of CNNL on two

datasets (Flickr30K and MS COCO), and also compare with

the state-of-the-art methods.

4.3.1 Analysis of CNNL

It is known that CNNL-based models have larger capac-

ity than RNNs. To verify that the improved performance

is from the developed CNNL rather than due to more lay-

ers/parameters, we set the hidden and output sizes of RNNs

to 512 and 9568 (vocabulary size), and list the parameters

of each model as well as their results in Table 1.

Approach Params B@4 C Approach Params B@4 C

Simple RNN 5.4M 27.0 87.0 LSTM 7.0M 29.2 92.6

CNNL 6.3M 18.4 56.8 LSTM2 9.1M 29.7 93.2

CNNL+RNN 11.7M 29.5 95.2 LSTM3 11.2M 29.3 92.9

Table 1. Results on MS COCO, where B@n is short for BLEU-

n, C is short for CIDEr. All values are reported as percentage

(Bold numbers are the best results). CNNL contains five temporal

convolutional layers, the kernel size of the first two convolutional

layers is 5, and the rest kernel size of convolutional layers is 3.

As seen in Table 1, the parameter size of the 3-layer

LSTM (LSTM3) is close to that of the CNNL+RNN.

Adding the 2nd LSTM layer (LSTM2) improves the per-

formance of LSTM, but it is still lower than CNNL+RNN.

Meanwhile, LSTM3 does not show improvements as the

model experiences overfitting. This issue is even worse

on Flickr30K which has relatively small number of training

data. Note that CNNL (without RNNs) achieves lower per-

formance than CNNL+RNN. We find that those predicted

captions of CNNL (without RNNs) only are short, but con-

tain primary attributes, e.g., CNNL model generates: “a

person on a wave”, while CNNL+RNN provides: “a young

man surfing a wave”. This finding shows that the temporal

recurrence of RNNs is still crucial for modeling the short-

term contextual information across words in the sentence.

We further compare language CNNs with different in-

put words and with max-pooling operations, where those

language CNNs are combined with RHN instead of RNN.

Table 2 shows that larger context windows achieve better

performance. This is likely because CNNL with larger

window size can better utilize contextual information and

learn better word embedding representation. In addi-

tion, the performance of CNNL∗

16 words
+RHN is inferior to

CNNL+RHN, which experimentally supports our opinion

that max-pooling operations lose information about the lo-

cal order of words.

Approach B@4 C Approach B@4 C

Avghistory+RHN 30.1 95.8 CNNL2 words
+RHN 29.2 93.8

CNNL∗

16 words
+RHN 28.9 91.9 CNNL4 words

+RHN 29.5 95.8

CNNL+RHN 30.6 98.9 CNNL8 words
+RHN 30.0 95.9

Table 2. Results of different history information encoding ap-

proaches on MS COCO. CNNLNwords
takes N previous words as

inputs, where we set N to 2, 4, and 8. Avghistory computes an av-

erage over history word embeddings. CNNL∗

16 words
replaces the 2nd

and 4
th convolutional layers in CNNL with the max-pooling layer.

4.3.2 Results Using CNNL on MS COCO

Table 3 shows the generation performance on MS COCO.

By combine CNNL, our methods clearly outperforms the

recurrent network counterpart in all metrics.

Approach B@1 B@2 B@3 B@4 M C S

Simple RNN 70.1 52.1 37.6 27.0 23.2 87.0 16.0

CNNL+RNN 72.2 55.0 40.7 29.5 24.5 95.2 17.6

RHN 70.5 52.7 37.8 27.0 24.0 90.6 17.2

CNNL+RHN 72.3 55.3 41.3 30.6 25.2 98.9 18.3

LSTM 70.8 53.6 39.5 29.2 24.5 92.6 17.1

CNNL+LSTM 72.1 54.6 40.9 30.4 25.1 99.1 18.0

GRU 71.6 54.1 39.7 28.9 24.3 93.3 17.2

CNNL+GRU 72.6 55.4 41.1 30.3 24.6 96.1 17.6

Table 3. Performance comparison on MS COCO, where M is short

for METEOR, and S is short for SPICE.

Approach B@1 B@2 B@3 B@4 M C S

Simple RNN 60.5 41.3 28.0 19.1 17.1 32.5 10.5

CNNL+RNN 71.3 53.8 39.6 28.7 22.6 65.4 15.6

RHN 62.1 43.1 29.4 20.0 17.7 38.4 11.4

CNNL+RHN 73.8 56.3 41.9 30.7 21.6 61.8 15.0

LSTM 60.9 41.8 28.3 19.3 17.6 35.0 11.1

CNNL+LSTM 64.5 45.8 32.2 22.4 19.0 45.0 12.5

GRU 61.4 42.5 29.1 20.0 18.1 39.5 11.4

CNNL+GRU 71.4 54.0 39.5 28.2 21.1 57.9 14.5

Table 4. Performance comparison on Flickr30k.

Among these models, CNNL+RHN achieves the best

performances in terms of B@(3,4), METEOR, and SPICE

metrics, CNNL+LSTM achieves the best performance in

CIDEr metric (99.1), and CNNL+GRU achieves the best

performance in B@(1,2) metrics. Although the absolute

gains across different B@n metrics are similar, the percent-

age of the relative performance improvement is increas-

ing from B@1 to B@4. It does show the advantage of

our method in terms of better capturing long-term depen-

dency. Note that the CNNL+RNN model achieves bet-

ter performance than simple RNN model and outperforms

LSTM model. As mentioned in Section 3.4, LSTM net-

works model the word dependencies with multi-gates and

the internal memory cell. However, our CNNL+RNN with-

out memory cell works better than LSTM model. We think

the reason is that our language CNN takes all history words

as input and explicitly model the long-term dependencies in

history words, this could be regarded as an external “mem-

ory cell”. Thus, the CNNL’s ability to model long-term de-
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Flickr30k MS COCO

Approach BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR CIDEr

BRNN [19] 57.3 36.9 24.0 15.7 — 62.5 45.0 32.1 23.0 19.5 66.0

Google NIC [46] — — — — — — — — 27.7 23.7 85.5

LRCN [6] 58.8 39.1 25.1 16.5 — 66.9 48.9 34.9 24.9 — —

MSR [7] — — — — — — — — 25.7 23.6 —

m-RNN [35] 60.0 41.0 28.0 19.0 — 67.0 49.0 35.0 25.0 — —

Hard-Attention [51] 66.9 43.9 29.6 19.9 18.5 70.7 49.2 34.4 24.3 23.9 —

Soft-Attention [51] 66.7 43.4 28.8 19.1 18.5 71.8 50.4 35.7 25.0 23.0 —

ATT-FCN [53] 64.7 46.0 32.4 23.0 18.9 70.9 53.7 40.2 30.4 24.3 —

ERD+GoogLeNet [52] — — — — — — — — 29.8 24.0 88.6

emb-gLSTM [15] 64.6 44.6 30.5 20.6 17.9 67.0 49.1 35.8 26.4 22.7 81.3

VAE [40] 72.0 53.0 38.0 25.0 — 72.0 52.0 37.0 28.0 24.0 90.0

State-of-the-art results using model assembling or extra information

Google NICv2 [47] — — — — — — — — 32.1 25.7 99.8

Attributes-CNN+RNN [50] 73.0 55.0 40.0 28.0 — 74.0 56.0 42.0 31.0 26.0 94.0

Our results

CNNL+RNN 71.3 53.8 39.6 28.7 22.6 72.2 55.0 40.7 29.5 24.5 95.2

CNNL+RHN 73.8 56.3 41.9 30.7 21.6 72.3 55.3 41.3 30.6 25.2 98.9

CNNL+LSTM 64.5 45.8 32.2 22.4 19.0 72.1 54.6 40.9 30.4 25.1 99.1

CNNL+GRU 71.4 54.0 39.5 28.2 21.1 72.6 55.4 41.1 30.3 24.6 96.1

Table 5. Performance in terms of BLEU-n, METEOR, and CIDEr compared with other state-of-the-art methods on the MS COCO and

Flickr30k datasets. For those competing methods, we extract their performance from their latest version of papers.

pendencies can be taken as enhancement of simple RNNs,

which can solve the difficulty of learning long-term depen-

dencies.

4.3.3 Results Using CNNL on Flickr30K

We also evaluate the effectiveness of language CNN on the

smaller dataset Flickr30K. The results in Table 4 clearly

indicate the advantage of exploiting the language CNN to

model the long-term dependencies in words for image cap-

tioning. Among all models, CNNL+RHN achieves the best

performances in B@(1,2,3,4) metrics, and CNNL+RNN

achieves the best performances in METEOR, CIDEr, and

SPICE metrics.

As for the low results (without CNNL) on Flickr30k, we

think that it is due to lack of enough training data to avoid

overfitting. In contrast, our CNNL can help learn better

word embedding and better representation of history words

for word prediction, and it is much easier to be trained com-

pared with LSTM due to its simplicity and efficiency. Note

that the performance of LSTM and CNNL+LSTM models

are lower than RHN/GRU and CNNL+RHN/GRU. This il-

lustrates that the LSTM networks are easily overfitting on

this smaller dataset.

4.3.4 Comparison with State-of-the-art Methods

To empirically verify the merit of our models, we compare

our methods with other state-of-the-art approaches.

Performance on MS COCO. The right-hand side of Ta-

ble 5 shows the results of different models on MS COCO

dataset. CNNL-based models perform better than most im-

age captioning models. The only two methods with better

performance (for some metrics) than ours are Attributes-

CNN+RNN [50] and Google NICv2 [47]. However, Wu et

al. [50] employ an attribute prediction layer, which requires

determining an extra attribute vocabulary. While we gener-

ate the image descriptions only based on the image features.

Google NICv2 [47] is based on Google NIC [46], the re-

sults of Google NICv2 are achieved by model ensembling.

All our models are based on VGG-16 for a fair compari-

son with [6, 7, 15, 35, 50, 51]. Indeed, better image CNN

(e.g. Resnet [11]) leads to higher performance2. Despite all

this, the CIDEr score of our CNNL+LSTM model can still

achieve 99.1, which is comparable to their best performance

even with a single VGG-16 model.

Performance on Flickr30K. The results on Flickr30K

are reported on the left-hand side of Table 5. In-

terestingly, CNNL+RHN performs the best on this

smaller dataset and even outperforms the Attributes-

CNN+RNN [50]. Obviously, there is a significant

performance gap between CNNL+RNN/RHN/GRU and

RNN/RHN/GRU/LSTM models. This demonstrates the ef-

fectiveness of our language CNN on the one hand, and also

shows that our CNNL+RNN/RHN/GRU models are more

robust and easier to train than LSTM networks when less

training data is available.

4.4. Qualitative Results

Figure 3 shows some examples generated by our mod-

els. It is easy to see that all of these caption generation

models can generate somewhat relevant sentences, while

2We uploaded the results based on Resnet-101+CNNL+LSTM (named

jxgu LCNN NTU) to the official MS COCO evaluation server (https:

//competitions.codalab.org/competitions/3221), and

achieved competitive ranking across different metrics.
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- there is a black tuxedo cat looking in the mirror

- two cats sitting on top of a wooden floor

- a cat looking at itself in the mirror next to a tripod

- a cat and a tripod sitting in front of a mirror

- a close up of a cat in a mirror

- a woman and child in ski gear next to a lodge

- a man and a child are smiling while standing on skiis

- a young man poses with a little kid in the snow

- an adult and a small child dressed for skiing

- a man and a little girl in skis stand in front of a mountain lodge

CNNL +RHN : a man standing next to a child on a snow covered slope

CNNL +RNN : a man and a woman standing on a snow covered slope

GRU : a man and a child standing on a snow covered slope

LSTM :  a man and a child are standing in the snow

RNN : a man and a woman are skiing on the snow

CNNL+RHN : a black and white cat looking at itself in a mirror

CNNL+RNN : a black and white cat sitting in front of a mirror

GRU : a black and white cat standing next to a mirror

LSTM : a black and white cat sitting in a bathroom sink

RNN : a cat sitting on the floor in a bathroom

- a dog looking at a cat through a glass window

- a cat is outside looking through in at a dog

- the dog wants to go outside with the cat

- a cat sitting outside of a door next to a dog

- a cat sitting at a sliding glass door

CNNL +RHN : a cat looking at a dog in a door

CNNL +RNN : a cat is looking at a dog in front of a window

GRU : a cat standing next to a door looking out a window

LSTM : a dog and a cat are standing in front of a window

RNN : a cat sitting on the side of the road

CNNL +RHN : a man talking on a cell phone while walking down a street

CNNL +RNN : a man is talking on a cell phone

GRU : a man is talking on a cell phone in the street

LSTM :  a man is talking on his cell phone

RNN : a man standing next to a woman talking on a cell phone

- a man talking on the phone in front of a blue car

- a man on a telephone holds his hand up to his other ear as he walks

- a man standing next to a car with a cellphone

- a man is talking on a cell phone next to a city street

- a man standing on the side of the street with a cell phone up to his

Figure 3. Qualitative results for images on MS COCO. Ground-truth annotations (under each dashed line) and the generated descriptions

are shown for each image.

- a child is looking a white bear in a water aquarium

- child stands viewing a polar bear as it dives under water to 

retrieve a bone

- a boy reaching towards an aquarium in which a polar bear 

chews on a bone

- a boy watches a polar bear chew on a bone

- a young boy touching the glass of a polar bear

CNNL+GRU : a polar bear in the water with a ball in its mouth

- a couple that is eating some food together

- the groom is feeding the bride a slice of cake

- a man feeding a piece of cake to his bride

- a husband feeds his wife a piece of cake

- a groom feeding wedding cake to his bride

CNNL+LSTM : a man and a woman holding a glass of wine

- a bear that is hanging in a tree

- a young bear holding onto a pine tree

- a bear cub in the branches of a pine tree

- a black bear cub climbing a pine tree

- the bear cub UNK high up into the tree

CNNL+RHN : a large bird perched on top of a tree

- a tan dog standing on a sidewalk next  to a UNK and grass

- the dog is standing outside all alone in  the backyard

- a dog standing on a brick walk way

- a brown dog is standing on the side of  a walk way

- a brown dog standing on a brick path

CNNL+RNN : a black and white dog standing on a sidewalk

Figure 4. Some failure descriptions for images on MS COCO. Ground-truth descriptions are under each dashed line.

the CNNL-based models can predict more high-level words

by jointly exploiting history words and image representa-

tions. Take the last image as an example, compared with

the sentences generated by RNN/LSTM/GRU model, “a

cat is looking at a dog in front of a window” generated by

CNNL+RNN is more precise to describe their relationship

in the image.

Besides, our CNNL-based models can generate more de-

scriptive sentences. For instance, with the detected object

“cat” in the first image, the generated sentence “a black and

white cat looking at itself in a mirror” by CNNL+RHN de-

picts the image content more comprehensively. The results

demonstrate that our model with language CNN can gener-

ate more humanlike sentences by modeling the hierarchical

structure and long-term information of words.

Figure 4 shows some failure samples of our CNNL-

based models. Although most of the generated captions

are complete sentences. However, the biggest problem is

that those predicted visual attributes are wrong. For ex-

ample, “bear” in the first image is detected as “bird”, and

“brown” in the second image is detected as “black and

white”. This will decrease the precision-based evaluation

score (e.g., B@n). We can improve our model by further

taking high-level attributes into account.

5. Conclusion

In this work, we present an image captioning model with

language CNN to explore both hierarchical and temporal in-

formation in sequence for image caption generation. Exper-

iments conducted on MS COCO and Flickr30K image cap-

tioning datasets validate our proposal and analysis. Perfor-

mance improvements are clearly observed when compared

with other image captioning methods. Future research di-

rections will go towards integrating extra attributes learning

into image captioning, and how to apply a single language

CNN for image caption generation is worth trying.
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