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Abstract

Analysis sparse representation (ASR) and synthesis s-

parse representation (SSR) are two representative ap-

proaches for sparsity-based image modeling. An image is

described mainly by the non-zero coefficients in SSR, while

is mainly characterized by the indices of zeros in ASR. To

exploit the complementary representation mechanisms of

ASR and SSR, we integrate the two models and propose a

joint convolutional analysis and synthesis (JCAS) sparse

representation model. The convolutional implementation

is adopted to more effectively exploit the image global in-

formation. In JCAS, a single image is decomposed into t-

wo layers, one is approximated by ASR to represent image

large-scale structures, and the other by SSR to represent

image fine-scale textures. The synthesis dictionary is adap-

tively learned in JCAS to describe the texture patterns for

different single image layer separation tasks. We evaluate

the proposed JCAS model on a variety of applications, in-

cluding rain streak removal, high dynamic range image tone

mapping, etc. The results show that our JCAS method out-

performs state-of-the-arts in these applications in terms of

both quantitative measure and visual perception quality.

1. Introduction

In many computer vision and photography applications

such as rain streak removal [24], high dynamic range (HDR)

image tone mapping [10], reflection removal [23], cartoon-

texture decomposition [3], etc., image layer separation is a

key step to produce satisfactory results. Given an input im-

age y, image layer separation aims to decompose the image

as the summation of two components:

Y = U + V. (1)

Since the number of unknowns U and V are larger than the

input Y, singe image layer separation is a challenging ill-
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posed problem. Based on the requirements on the property

of separating results, different priors have been suggested to

regularize the decomposition results. As a powerful model

for image prior modeling, the sparsity prior has been widely

adopted in different kinds of layer separation applications

[39, 23, 25].

One category of methods utilize analysis sparse repre-

sentation (ASR) models to characterize the piece-wise s-

mooth layer, and impose the sparsity prior on the filter re-

sponses (analysis representation coefficients) over the latent

estimation. The Total-Variation (TV) approach [31] and its

extensions [39], which are proposed to regularize the gra-

dients of latent estimation, have been successfully used in

extracting the piece-wise smooth component from the input

image. However, since a sparse analysis coefficient implies

that the signal (an image patch in image contexts) should

be orthogonal to most of the filters, such a prior modeling

mechanism impedes ASR to take benefit from increased re-

dundancy of the analysis dictionary. Despite its success on

approximating the major structure of an image, ASR often

shows limited capacity in modeling textures or fine-scale

details with complex patterns.

Another category of sparse representation models, i.e.

synthesis sparse representation (SSR) model, has also been

utilized to deal with image layer separation applications.

Compared with the ASR model, the SSR approach inves-

tigates signals from a synthesis point of view: x = DαS .

The sparse representation coefficients αS select a few atom-

s from the dictionary D to reconstruct the signal vector x.

Such a mechanism enables SSR taking advantage of an

over-complete dictionary to provide flexible prior. Given

an appropriate dictionary (learned from training data), sig-

nals with specific patterns can be reconstructed with highly

sparse coefficients. Recently, several SSR-based methods

have been suggested by learning different dictionaries for

separating an input image into two layers.

Fig. 1 provides a visual example to illustrate how AS-

R and SSR represent a target image. An ASR dictionary

learning [28] and an SSR dictionary learning [15] methods

are used to train dictionaries on the target image, respective-
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(a) (b) (c)
Figure 1. (a) Input image. (b) Nonzeros in the ASR map. (c)

Nonzeros in the SSR map. Dark blue pixels indicates coefficients

with less nonzeros and red ones indicates coefficients with more

than five nonzeros.

ly, and we show the number of non-zeros in their respective

coefficient maps. One can see that the ASR coefficients can

be very sparse in relatively smooth areas, but it will gener-

ate many non-zeros in texture areas. While having sparse

non-zeros in texture areas, SSR needs more non-zero coef-

ficients to approximate smooth areas.

In order to take the advantages of both ASR and SSR, we

propose a joint convolutional analysis and synthesis (JCAS)

sparse representation model for image layer decomposition.

More specifically, we propose to use ASR and SSR to ap-

proximate the two components of an image, respectively.

Since the two models are superior in approximating differ-

ent components of an image, it is expected to get a piece-

wise constant layer with image major structures and a tex-

ture layer with fine-scale details. A similar idea has been

suggested by Starck et al. [34], who utilized a total varia-

tion term and a synthesis-based sparse reconstruction term

for cartoon-texture decomposition. Comparatively, the pro-

posed JCAS model adopts a convolutional implementation

for the SSR part. The convolutional implementation avoids

the patch-dividing issue in conventional SSR methods and

enables the proposed method to learn only several atoms

from the input image itself to model the complex (but high-

ly repetitive) textures.

The contribution of this paper is mainly two-fold. First,

we analyze the complementary property of the ASR and

SSR models, and integrate ASR and SSR to decompose a

single image into two layers with clear physical meanings.

The JCAS model is expected to inspire the designing of new

sparsity-based methods for the many applications involving

image layer separation. Second, without external training

data, the proposed JCAS model achieves competitive results

on different tasks such as rain streak removal, high dynamic

range image tone mapping and contrast enhancement. The

results produced by JCAS not only have higher quantitative

indexes, but also are with better visual qualities.

2. Related Works

2.1. ASR and SSR for Image Modeling

Given a signal x ∈ R
K×1, the ASR method adopts an

analysis dictionary P ∈ R
M×K to generate its analysis co-

efficients αA = Px. Such a projective coding strategy al-

lows us to impose the ASR prior on images in a convolution

manner. Taking Gaussian image denoising as an example,

given the input noisy image Y, its clean estimation X can be

obtained by solving:

X̂ = argmin
X

‖X − Y‖2F + λ
∑

i
Ri(fA,i ⊗ X), (2)

where ‖ ∗ ‖F and ⊗ represent the Frobenius-norm and the

convolution operator, respectively. The penalty function

Ri(fA,i ⊗ X) enforces prior knowledge on the latent image

by regularizing its analysis coefficients to the filters fA,i.

One of the most notable analysis-based methods is the

TV approach [31], which regularizes the ℓ1-norm of the gra-

dients of the latent estimation x. The success of TV mod-

el prompted the in-depth studies on ASR models from d-

ifferent aspects, including fast optimization algorithms [5],

proper penalty functions [21], and rational analysis dictio-

naries [33]. Methods [28, 17, 7, 30] have also been pro-

posed to learn analysis dictionaries from training data for

better image local structure representation.

The SSR method characterizes signals from a synthesis

point of view. Most of previous SSR based methods work

on image patches:

α̂S = argmin
αS

‖y−DαS‖
2
F +γR(αS), s.t. x = Dα̂S , (3)

where y and x are vectorizations of patches extracted from

input and target images, respectively. x is synthesized as

Dα̂S , and the regularization term R(αS) promotes the s-

parsity of synthesis coefficients. The success of KSVD [1]

triggers the study of SSR on different image restoration

and representation tasks [40, 26, 25]. In-depth studies on

dictionaries as well as penalty functions [26, 4] have been

conducted to pursue better performance. Recently, beyond

conventional patch-based implementation of SSR, the con-

volutional sparse coding method [42] has been proposed to

decompose an image with synthesis filters and coefficient

maps.

Although both the ASR and SSR models exploit the im-

age sparsity prior, they use different yet complementary rep-

resentation mechanisms, making them superior in different

applications. ASR has achieved a great success in image

denoising and blind deblurring applications, while SSR has

advantages in providing flexible priors for recovering de-

tails in super-resolution applications. Note that SSR has al-

so achieved state-of-the-art results for image denoising, but

it needs to cooperate with other priors such as the non-local

self-similarity prior [26].
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2.2. Single Image Layer Decomposition

Rain streak removal aims to decompose a rainy image

into a rain-free background layer and a rain streak layer. As-

suming that rain streaks only appear in the high-frequency

part of an image, researchers [19, 35] have proposed to de-

compose the image into low-frequency and high-frequency

layers, and separate rain streaks from background details

in the high-frequency layer. However, these methods often

over-smooth image details and generate blurry background

estimation. Recent works have been proposed to direct-

ly extract the rain streak layer from the input image, e.g.,

by using the discriminative sparse coding method [25] and

the Gaussian mixture model (GMM) [24]. However, these

methods adopt the same type of models to characterize the

background part and the rain streak part, and require exter-

nal data to train different dictionaries or GMM models for

the two layers.
HDR tone mapping targets to generate a low dynamic

range (LDR) image from an HDR image without loss of

significant details. Retinex decomposition model [22] is

widely used to separate the HDR image into a base layer

and a detail layer. The dynamic range is reduced by com-

pressing the base layer, while detail layer can be enhanced

for better visibility. The base/detail layer separation plays

a crucial role in the success of tone mapping. One catego-

ry of methods adopts edge-preserving smoothing method,

such as bilateral filter [9] and guided filter [18], to generate

a piece-wise smooth base layer from the observation image

directly. Another class of methods [10, 14] impose priors

on the base layer, and the separation results are achieved by

solving an optimization problem.
Others applications Like in tone mapping, in other ap-

plications such as cartoon-texture decomposition [27, 39, 3]

and contrast or detail enhancement [13], the input image is

also separated into a piece-wise smooth (cartoon) compo-

nent and a detail (texture) component [3]. Many methods

adopt different priors for the two layers [27]. The priors on

cartoon layer can be set as to the analysis-based TV model

and its extensions [3]. However, researchers still lack con-

sensus on the selection of regularization functional form on

texture layer. Algorithms have been proposed to model tex-

ture layer in the original image space [6] or in certain trans-

formation spaces [2], while there are still some recent works

[39] not assigning priors for the texture layer.

3. The Proposed Model

3.1. Joint Convolutional Analysis-Synthesis Model

Single image layer separation is an ill-posed problem,

and thus priors of the desired solution are required to pro-

vide supplementary information. In the proposed JCAS

model, an SSR prior term and an ASR prior term are uti-

lized to regularize the two layers, respectively.

The image separation is achieved by solving the follow-

ing objective function:

min
u,z

‖Y−U−

N
∑

j

fS,j⊗Zj‖
2
F+λ

M
∑

i

‖fA,i⊗U‖1+γ

N
∑

j

‖Zj‖1,

(4)
where ‖ ∗ ‖1 is the ℓ1 norm, and λ and γ are regulariza-

tion parameters imposed on the analysis and synthesis prior

terms, respectively. Here we model the SSR component V

as V =
∑N

j fS,j ⊗ Zj , where fS,j is the j-th atom of con-

volutional synthesis dictionary, Zj is its corresponding co-

efficient map, and “⊗” denotes the convolution operation.

Note that we use the convolutional sparse coding for SSR

to avoid partitioning the image into patches.

The analysis prior ‖fA,i ⊗ U‖1 is introduced to charac-

terize the ASR component U by regularizing the sparseness

of its filter responses over analysis filters. As discussed in

the previous sections, ASR is capable of better modeling the

major structures of an image. Thus, the U layer is expected

to represent the background, cartoon and illuminance layer-

s in the rain streak removal, texture-cartoon decomposition

and HDR tone mapping applications, respectively. For layer

V =
∑N

j fS,j ⊗ Zj , we regularize its synthesis coefficients

Z over the convolutional synthesis dictionary fS,j . Com-

pared with ASR, SSR is a more effective model to recon-

struct complex but repetitive textures. Thus, approximating

the rain streak components, image textures or fine details

with the synthesis layer V will lead to a lower energy of the

objective function.

3.2. Choice of Dictionaries

In (4), an analysis dictionary {fA,i}i=1,...,M and a syn-

thesis dictionary {fS,j}j=1,...,N are adopted to assign priors

for the two image layers, respectively. The two dictionaries

should be properly specified to make JCAS a powerful im-

age separation model.

The dictionary plays an important role in deducing an ap-

propriate sparse representation of the input signal [29]. The

early studies on sparse representation often utilize mathe-

matical tools to design and fix a class of functions as the

dictionary for data representation in a hand-craft manner.

During the last decade, in order to achieve a finer adaption

to specific instances of the data, dictionary learning meth-

ods have been investigated from a data-driven point of view

[29]. Compared with hand-crafted dictionaries, the dictio-

nary learned from data is capable of delivering better result-

s due to its adaptability to represent the targeted scenari-

o. However, for those applications (such as texture-cartoon

decomposition) where training data are hard to collect to

train the desired dictionary, hand-crafted dictionary is still

preferred due to its simplicity and efficiency. In this paper,

we utilize different strategies to set the two dictionaries for

ASR and SSR, based on their different characteristics.
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ASR utilizes the analysis dictionary to model the com-

plementary subspace of signals. Each dictionary atom will

be compared with the signal (by the inner product). Al-

though this limits the employment of a highly redundant

dictionary to provide more flexible prior, it makes ASR be

a robust model in capturing image major structures. Even

with an extremely simple analysis dictionary (e.g., the gra-

dient operators), ASR can still achieve very competitive re-

sults in some applications [31]. Thus, in our method, we

adopt the simple gradient operators (1st order and 2nd or-

der) as our analysis dictionary for fast decomposition.

Different from the ASR model, the SSR method select-

s dictionary atoms to reconstruct the given signal. Having

an appropriate dictionary, SSR is able to reconstruct the in-

put signal with very sparse coefficients. However, a hand-

crafted dictionary is hard to reconstruct the complex image

structures using only a few atoms, and a proper dictionary

learning method is required to learn synthesis dictionaries

from training data [1]. In this paper, we learn a convolution-

al synthesis dictionary from the input image itself. Such a

strategy not only avoids the requirement of external training

data with candidate texture types, but also makes JCAS be

able to represent the texture layer with only several atoms.

The detailed synthesis dictionary learning method will be

introduced in the following section.

3.3. Optimization

As introduced in the previous section, our method learns

the synthesis dictionary during the decomposition process.

Thus, for the objective function in (4), the synthesis dic-

tionary {fS,j}j=1,...,N is a variable to be optimized. We

rewrite the convolution in a matrix multiplication form, and

add some constraints to ensure the boundness of the synthe-

sis filters. The new objective function for our JCAS model

has the following form:

min
u,fS ,z

‖y−u−
∑

j

FS,jzj‖
2
2+λ

∑

i

‖FA,iu‖1+γ
∑

j

‖zj‖1,

s.t. ‖fS,j‖
2
F ≤ 1,

(5)
where y, u and zj are the vectorization of image Y, back-

ground layer U and feature map Zj , respectively. FA,i and

FS,j are the corresponding block circulant with circulant

block (BCCB) matrices of filters fA,i and fS,j , respectively.

We update the three variables alternatively, and details of

each sub-problem are described as follows.

Updating u To solve the subproblem with respect to u, we

fix {fS,j}j=1...N and {zj}j=1...N and solve the following

optimization problem:

min
u

‖y−u−
∑

j
FS,jzj‖

2
2+ λ

∑

i
‖FA,iu‖1. (6)

Denote the fixed variables y−
∑

j FS,jzj by x, and introduce

a group of auxiliary variables {si = FA,iu}i=1,...,M , we

Algorithm 1 JCAS algorithm for image decomposition

Input: Input image Y, analysis filters {fA,i}i=1,...,M , reg-

ularization parameters λ, γ

1: for k=1:K do

2: Update uk by (7)

3: if k == 1, initialize {fS,j}j=1,...,N as the PCA basis

of the patches in (y − u1)
4: Update zkj by (8)

5: Update synthesis filters {fS,j}j=1,...,N by (10)

6: end for

Output: Decomposition results U and V

can readily solve (6) by the ADMM algorithm:































uk+1 = (µk

2

∑

i FT
A,iFA,i+I)−1

(x+ µk

2

∑

i FT
A,isi+

1

µk

∑

i FA,iLi);

sk+1

i = S λ
µk

(FA,iu
k+1 + 1

µk
Li);

Lk+1

i = Lk
i + µk(FA,iu

k+1 − si);

if µk < µmax, µk+1 = µk ∗ ρ;

(7)

where Li is the Lagrange variable for si, µmax and ρ are

the parameters in the algorithm. S λ
µk

(∗) denotes the soft-

thresholding operator with parameter λ
µk

, which is the solu-

tion for the ℓ1-norm approximation problem. Thanks to the

property of BCCB matrix, the closed-form solution in the

u-step in (7) can be efficiently solved in the FFT domain.

Updating z Fixing u and the synthesis dictionary fS , we

solve the following sub-problem to obtain z:

min
z

‖y − u −
∑

j
FS,jzj‖

2
2 + γ

∑

j
‖zj‖1. (8)

The optimization problem in (8) is a standard convolutional

sparse coding problem. We utilize the algorithm in [38] to

solve it, which adopts the ADMM scheme and exploits the

FFT to improve computation efficiency.

Updating fS With the fixed u and coefficients z, we need

to update the synthesis dictionary. Let vec(fS,j ⊗ Zj) =
FS,jzj = ZfS , where fS is the vectorization of all the fil-

ters {fS,j}j=1,...,N , Z = [Z1, . . . ,Zj , . . . ,ZN ], and Zj is

generated by collecting the patches in Zj . The objective

function can be re-written as the following equivalent form:

min
fS

‖y − u −ZfS‖
2
2, s.t. ‖fS,j‖

2
F ≤ 1. (9)

We utilize a proximal gradient descent method to solve (9):
{

f
t+0.5
S = f

t
S − τZT (y − u −Zf

t
S);

f
t+1

S = Prox‖·‖≤1(f
t+0.5
S ).

(10)

In (10), τ is the step length of the gradient descent step, and

Prox‖·‖≤1(∗) is the ℓ2-ball proximal operator, which makes

each filter satisfy the constraint ‖fS,j‖
2
F ≤ 1.
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Figure 2. Intermediate results of JCAS for texture-cartoon decom-

position. The synthesis dictionary gradually captures the patterns

of textures and separates textures from the input image.

The whole procedures of our method are summarized in

Algorithm 1. Since all of the three sub-problems involved

in our algorithm are convex, each step will not increase the

energy of the objective function (5). For our lower bound-

ed objective function (5), the optimization process is guar-

anteed to converge in terms of energy. We experimentally

found that the energy of loss function reduces rapidly. For

all the experiments in this paper, we set the maximum num-

ber of iterations as 15.

3.4. Discussions

The proposed JCAS model is non-convex. Given the in-

put image and the analysis dictionary, we need to estimate

not only the image layers but also the synthesis dictionary.

For such a non-convex optimization problem, the initializa-

tion and the optimization order of the variables play an im-

portant role. In Algorithm 1, we initialize {z0S,j}j=1,...,N

as an all-zero matrix and solve the u sub-problem first.

The estimation u1 provides us a coarse evaluation of the

background layer, and the residual image y − u1 contain-

s background details as well as repetitive textures. Then,

we extract patches in the residual image y − u1 and uti-

lize the PCA dictionary to initialize the synthesis dictio-

nary {f1S,j}j=1,...,N . Having the synthesis dictionary, we

are able to get an estimation of the texture layer
∑N

j F1
S,jz1j

by solving the convolutional sparse coding problem. Due

to the sparsity regularization and the constraint on the num-

ber of synthesis dictionary atoms, the synthesis approxima-

tion
∑N

j FS,jz1j of the residual image tends to concentrate

on the texture pattern while ignoring the details from back-

ground. As a result, the details removed in the previous

iteration are still in the residual image y − u −
∑N

j FS,jz1j .

Such a fact helps us gradually extract the texture layer with-

out over-smoothing the background layer.

Fig. 2 provides some intermediate results of JCAS for

texture-cartoon decomposition. In the first iteration, the

weak analysis-prior (with the simple gradient operators as

the analysis dictionary) provides a coarse estimation of the

background. To avoid over-smoothing, a small regular-

ization parameter λ is adopted, and there are still a large

amount of textures in u1. Furthermore, with the PCA ini-

tialized dictionary, the synthesis component v1 is not able to

provide a good approximation to the texture. In the follow-

ing iterations, the synthesis dictionary gradually captures

the texture patterns, and
∑N

j FS,jzj extracts the texture lay-

er from the residual y − u. Since the compact synthesis

component focuses only on textures, the image structures

in the first iteration of background estimation are still in the

residual image. The following iterations will not lose struc-

tures but gradually remove textures. As a result, the pro-

posed method is able to remove the repetitive textures (e.g.,

the brickwork joint) while preserve the illuminance of back-

ground layer (e.g., bricks with different colors) unchanged.

4. Experimental Results

In this section, we evaluate the proposed JCAS model

on several image decomposition applications, including rain

streak removal, tone mapping and others.

4.1. Experiments on Rain Streak Removal

Due to the complex appearance of rain streaks and out-

door background in images, rain streak removal is a chal-

lenging image layer separation problem. In the last several

years, many models [20, 24, 25, 8, 19] have been proposed

to deal with this problem. We compare the proposed method

with several rain streak removal algorithms, including fre-

quency domain decomposition method [19], low-rank ap-

pearance model (LRA) [8], discriminative sparse coding

(DSC) method [25] and layer-prior method (LP) [24]. The

code of the LRA algorithm [8] is written by ourselves, while

the codes of other competing methods are from the original

authors. To validate the effectiveness of joint sparse repre-

sentation, we also provide the results using a single ASR

prior as the baseline.

As introduced in previous sections, to better describe the

textures, we learn a synthesis dictionary from the input im-

age during the decomposition process. Specifically, 4 con-

volutional dictionary atoms of size 7×7 are learned to re-

construct the rain streak layer. Some priors of rain images,

including the directional prior and the non-negativeness pri-

or of rain streaks, are further utilized to improve the perfor-

mance. With the vertical orientation prior [20], we adopt
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(a) Input Image (b) Groundtruth (c) ASR (d) Kang’s method [19]

(e) LRA [8] (f) DSC [25] (g) LP [24] (h) JCAS

Figure 3. Rain streak removal results by the competing methods.

Table 1. Rain streak removal results (SSIM) of the competing

methods on 14 images.

ASR Kang’s [19] LRA [8] DSC [25] LP [24] JCAS

1 0.5317 0.5371 0.5683 0.5163 0.5639 0.5769

2 0.6534 0.7294 0.7496 0.5926 0.7677 0.7594

3 0.8099 0.6797 0.7903 0.7895 0.8610 0.8841

4 0.8791 0.7489 0.8437 0.8541 0.9135 0.9359

5 0.7879 0.8077 0.7600 0.7190 0.9154 0.8827

6 0.9425 0.7199 0.8210 0.9413 0.9173 0.9533

7 0.9067 0.5669 0.8624 0.8867 0.8728 0.9079

8 0.9298 0.7124 0.8847 0.9206 0.9435 0.9370

9 0.9410 0.7948 0.9079 0.9274 0.9420 0.9606

10 0.8178 0.7399 0.7955 0.7814 0.8804 0.9088

11 0.8946 0.7027 0.8566 0.8867 0.8979 0.9394

12 0.8254 0.6988 0.7928 0.7701 0.8642 0.8953

13 0.8453 0.5782 0.8248 0.8250 0.8394 0.8959

14 0.8209 0.7303 0.7836 0.7736 0.9076 0.9168

Ave. 0.8275 0.6962 0.8029 0.7559 0.8656 0.8826

the horizontal gradient filters [−1, 1] and [−1, 0, 1] as the

analysis dictionary for rain removal application. We incor-

porate the non-negativeness prior by adding positive con-

straints on both the synthesis coefficients and dictionary in

(5). This prior will not introduce further computation bur-

den. By simply changing the proximal steps in the z and fS
subproblems to their non-negative version, we can get the

non-negative estimation.

We perform rain streak removal experiments on 14 syn-

thetic rainy images. The first two images are collected from

[19] and the other 12 images are provided by [24]. For each

algorithm, the parameters are set the same on all the 14 im-

ages. We set the parameters λ and γ in our JCAS model

as 0.005 and 0.02. The same parameter λ = 0.005 is uti-

lized for the baseline ASR method. For the other competing

methods, we carefully tuned their parameters for their best

performance on the dataset.

We follow the experimental setting in [24] and compare

different results in term of structure similarity (SSIM) in-

dexes [37]. The SSIM results are listed in Table 1, where

the best results are highlighted in bold. The proposed J-

(a) Input Image (b) Kang’s method [19]

(c) LRA [8] (d) DSC [25]

(e) LP [24] (f) JCAS

Figure 4. Visual comparison of the competing rain streak removal

algorithms on a real rainy image.

CAS algorithm achieves the best results on 11 out of the 14

testing images, and the second best on the others. Further-

more, the higher SSIM index of JCAS over ASR validates

the effectiveness of joint ASR and SSR approximation. By

extracting repetitive textures from the input image, the syn-

thesis model helps the analysis model to better characterize

the latent background.

Fig. 3 shows the rain removal results on a synthetic im-

age. It can be observed that the Kang’s method [19] pro-

duces an over-smoothed estimation which loses many de-
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Result by [11] Result by [9] Result by [10]

Result by [32] Result by [14] JCAS

Figure 5. Tone mapping results by the competing methods.

Table 2. Quantitative results (TMQI value [41] ) of the compared

methods on HDR tone mapping experiments.

[11] [9] [10] [32] [14] JCAS

1 0.7207 0.9477 0.8629 0.8636 0.9288 0.9484

2 0.7714 0.8829 0.7788 0.8050 0.8564 0.8908

3 0.7330 0.9358 0.8897 0.9095 0.9021 0.9541

4 0.7570 0.9480 0.9053 0.8979 0.9343 0.9658

5 0.4792 0.6994 0.8253 0.9490 0.9204 0.8441

6 0.6251 0.8708 0.7973 0.9097 0.8849 0.8950

7 0.8247 0.9855 0.7378 0.9261 0.8880 0.8709

8 0.7542 0.9010 0.8146 0.8254 0.8666 0.9197

9 0.6877 0.9478 0.9558 0.9581 0.8970 0.9731

10 0.8031 0.9717 0.7869 0.9151 0.9314 0.9239

11 0.6480 0.8910 0.8773 0.9567 0.9404 0.9873

12 0.6519 0.8763 0.8521 0.9231 0.9561 0.9621

13 0.3873 0.7127 0.7715 0.9368 0.9219 0.9231

14 0.7555 0.9583 0.9037 0.9203 0.8849 0.8760

15 0.7542 0.9010 0.8200 0.8231 0.8667 0.9177

Ave. 0.6902 0.8953 0.8386 0.9013 0.9053 0.9235

tails in the background. Other competing methods preserve

most of the details in the background but remains some

streak residuals. In contrast, the proposed JCAS yields a

cleaner background estimation with less rain streak residu-

als. In Fig. 4, we show the results on a real rainy image.

The highlight windows clearly show the advantages of the

proposed algorithm. It removes more rain streaks and keeps

details better in the background layer. More visual compar-

isons are provided in the supplementary file.

4.2. Experiments on HDR Tone Mapping

Tone mapping aims to reproduce a low dynamic range

(LDR) image from its HDR counterpart for display in LDR

devices. The details and colors of the HDR image should be

preserved in the LDR image. To apply our JCAS algorithm

to the HDR tone mapping problem, we first transform the

HDR image into the logarithmic domain, and then adopt

our JCAS model to decompose its illuminance component

into a base layer U and a detail layer V. The base layer

is compressed with a scale factor 0.4, and then added back

to the detail layer. A color restoration [11] step is used to

reproduce chrominance information.

We compare our method with state-of-the-art tone map-

ping methods on 15 HDR images provided in [41]. The

competing methods include filtering based methods [11,

9, 10] and recently proposed optimization-based methods

[32, 14]. The source codes of competing methods are ob-

tained from the original authors. The parameters for each

algorithm are set the same on all the 15 images. For our J-

CAS model, we adopt the first-order and second-order gra-

dients as the analysis dictionary, and train 8 filters as the

synthesis dictionary. The regularization parameter λ and γ

are fixed as 1E-3 and 1E-4, respectively. The tone-mapped

image quality index (TMQI) [41] is used to compare differ-

ent methods quantitatively. From Table 2, one can see that

JCAS achieves the highest TMQI values for 9 out of the 15

images, and its average TMQI value is much higher than

other competing methods.

Fig. 5 shows some visual examples of the tone mapping

results. Methods [11], [9], [10] and [32] lose significant

details in the dark or highlight areas. The result of [14] pre-

serves most of the details in the HDR image; however, some

halo artifacts appear in the strong edge area (highlighted in

the blue window) and the color in the leaves area is not nat-

ural. Compared with other methods, our method is able to

generate high quality tone mapping results with more detail-

s and less artifacts. More visual comparisons are provided
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Input RTV [39] FCTF [3] RGF [16] SDF [16] JCAS

Figure 6. The texture removal results by the competing methods on the Map image.

Input NEPA [36] PMSIR [12] WVRI [13] JCAS

Figure 7. The contrast enhancement results by the competing methods.

in the supplementary file.

4.3. Experiments on Other Applications

The JCAS model can also be used for other applications.

Here we test it on a multiplicative decomposition problem,

i.e., contrast enhancement, and an additive decomposition

problem, i.e., texture-cartoon decomposition. The setting

of synthesis and analysis dictionaries for the two applica-

tions are exactly the same as that in the HDR tone mapping

application. Since there are no widely accepted quantitative

measures for these two applications, we only provide visual

examples for qualitative evaluation.

For texture-cartoon decomposition, we compare JCAS

with relative total variation (RTV) [39], fast cartoon+texture

filtering (FCTF) [3] and the recently proposed rolling guid-

ance filter [43] and static and dynamic guidance filtering (S-

DF) [16] method. The codes of these methods are provided

by their authors. We have tried our best to tune their param-

eters on the testing images for their possibly best perfor-

mance. Fig. 6 shows an example of texture removal results

by different methods. It is easy to see that RTV [39], RGF

[43] and SDF [16] fail to remove the white grids in dark

area and produce blurry background in low-contrast areas.

FCTF [3] and JCAS successfully remove the high-contrast

textures. However, the illuminance in the pink island area

is deviated more in the result of FCTF [3].

Fig. 7 compares the proposed JCAS model with state-of-

the-art contrast enhancement algorithms, including NEPA

[36], PMSIR [12] and WVRI [13]. The codes are from the

original authors and we utilize the default parameters. We

can see that JCAS generates higher quality enhancement re-

sult with more details and more faithful colors. More visual

comparisons can be found in the supplementary file.

5. Conclusion

In this study we integrated the ASR and SSR models into

a joint convolutional sparse representation (JCAS) frame-

work to deal with the single image layer separation prob-

lem. The analysis-component was used to approximate im-

age large-scale structures, while the synthesis-component

was used to represent image fine-scale textures. The com-

plementary property of ASR and SSR makes the proposed

JCAS be able to effectively extract the image texture lay-

er without over-smoothing the background layer, and it can

be used to flexibly model different types of image struc-

tures. Our experimental results on rain streak removal,

texture-cartoon decomposition and HDR tone mapping val-

idated the generality and effectiveness of the proposed mod-

el. The proposed JCAS model is expected to inspire more

future investigations on the behaviors of analysis-based and

synthesis-based prior modeling methods and to be extended

to a wider range of application tasks.
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