
Learning Dynamic Siamese Network for Visual Object Tracking

Qing Guo1,3, Wei Feng1,3∗, Ce Zhou1,3, Rui Huang1,3,5, Liang Wan2,3, Song Wang1,3,4

1 School of Computer Science and Technology, Tianjin University, Tianjin, China
2 School of Computer Software, Tianjin University, Tianjin, China

3 Key Research Center for Surface Monitoring and Analysis of Cultural Relics, SACH, China
4 University of South Carolina, Columbia, SC 29208, USA

5 School of Computer Science and Technology, Civil Aviation University of China

{tsingqguo,wfeng,zhouce,ruihuang,lwan}@tju.edu.cn, songwang@cec.sc.edu

Abstract

How to effectively learn temporal variation of target

appearance, to exclude the interference of cluttered back-

ground, while maintaining real-time response, is an essen-

tial problem of visual object tracking. Recently, Siamese

networks have shown great potentials of matching based

trackers in achieving balanced accuracy and beyond real-

time speed. However, they still have a big gap to classifi-

cation & updating based trackers in tolerating the temporal

changes of objects and imaging conditions. In this paper,

we propose dynamic Siamese network, via a fast transfor-

mation learning model that enables effective online learn-

ing of target appearance variation and background suppres-

sion from previous frames. We then present elementwise

multi-layer fusion to adaptively integrate the network out-

puts using multi-level deep features. Unlike state-of-the-

art trackers, our approach allows the usage of any feasible

generally- or particularly-trained features, such as SiamFC

and VGG. More importantly, the proposed dynamic Siamese

network can be jointly trained as a whole directly on the la-

beled video sequences, thus can take full advantage of the

rich spatial temporal information of moving objects. As a

result, our approach achieves state-of-the-art performance

on OTB-2013 and VOT-2015 benchmarks, while exhibits

superiorly balanced accuracy and real-time response over

state-of-the-art competitors.

1. Introduction

Visual tracking aims to track an arbitrary temporally-

changing object, with the target being only specified at

the first frame. Since potential changes of the object and

its context are basically unknown and constantly happen,

∗Corresponding author. Tel: (+86)-22-27406538. This work is sup-

ported by NSFC 61671325, 61572354, 61672376.

Figure 1. Two tracking examples of state-of-the-art matching

based trackers (GOTURN [15] and SiamFC [2]), deep clas-

sification & updating based trackers (MDNet [22] and Deep-

SRDCF [6]), and the proposed approach (DSiam). The intersec-

tion over union (IoU) between ground truth and tracking result of

each tracker on each frame is shown. Previous two matching based

methods easily miss the object when similar objects coexist (the

1st case) or target changes significantly (the 2nd case). The table

shows the average tracking speed, measured on NVIDIA TITAN

X platform, and accuracy, AUC score, on OTB-2013 dataset [30],

of all compared trackers. R-MDNet indicates the retrained MDNet

on ILSVRC dataset [23]. See text for more details.

this problem, being highly useful for many computer vision

tasks, such as surveillance, video analysis and augmented

11763

reality, could be very challenging. Generally, the essential

problem is how to build a tracker that can tolerate target ap-

pearance variation, exclude background interference, while

maintaining real-time tracking response.

There are two major dominant visual tracking strate-

gies [19]. The first one adopts the classical classification &

updating pipeline, which maintains an online updated clas-

sifier [29, 13] or object appearance model [34] to optimally

select the most probable candidate sample as the tracked

object at a coming frame [18, 30]. Recently, such classifi-

cation & updating tracking scheme has been developed via

online fine-tuned deep networks, thus has achieved much

better (or the best) tracking accuracy [18] either by trans-

ferring some pre-trained networks [14, 25, 11] for specific

tracking tasks [28, 21, 17] or by directly learning a partic-

ular tracking network [22]. However, due to the expen-

siveness of satisfactorily fine-tuning a deep network, such

methods are usually very slow, thus are infeasible for real-

world online tracking tasks. See Fig. 1 for example. The

state-of-the-art deep classification & updating trackers, e.g.

MDNet [22], DeepSRDCF [6] and STCT [28], can only run

at 1-2fps, although they do achieve the best accuracy.1

The second mature strategy is matching based tracking,

which matches the candidate samples with the target tem-

plate and needs not online updating. The most notable ad-

vantage of such trackers is their real-time speed [2, 15]. Re-

cently, matching based tracking can also use deep models

to boost the matching generalization power [26, 2, 15, 4].

They are supposed to learn a general matching function to

tolerate object online changes, while preserving real-time

response ability. A recent successful model is Siamese net-

work, SiamFC [2], which achieves promising tracking accu-

racy and beyond real-time speed. However, matching based

tracking inherently lacks the important online adaptability,

thus cannot capture the temporal variations of objects, back-

grounds or imaging conditions well. This makes them still

have a big accuracy gap compared to the classification &

updating based trackers. As shown in Fig. 1, when simi-

lar objects coexist in the target neighborhood or the object

changes significantly, matching based trackers are prone to

fail, because such factors may easily disturb the pre-learned

matching model, even for the state-of-the-art SiamFC [2]. A

naive solution to adapt target appearance variation is to re-

place the target template with the tracking results obtained

from previous frames [15]. But, tracking results cannot be

always correct. Inevitable tracking errors could easily make

this naive adaptation strategy deviate from the target object.

In this paper, we show that reliable online adaptation

can be realized for matching based tracking. Specifically,

1MDNet was trained on sequences directly selected from the testing

benchmark that may cause unfair advantages over other trackers trained

on different dataset from the testing one. To avoid such bias, we retrain

MDNet on ILSVRC-2015 video dataset [23]. As shown in Fig. 1, the

retrained version, denoted by R-MDNet, does not get the highest accuracy.

Figure 2. Basic pipeline of our DSiam network (orange line) and

that of SiamFC [2] (black dashed line). fl(·) represents a CNN to

extract the deep feature at lth layer. We add the target appearance

variation (Vl

t−1) and background suppression (Wl

t−1) transfor-

mations for two branches respectively. Two transformations are

rapidly learned from frame t− 1. When the target at frame t (red

box) is entirely different from the template O1, SiamFC gets a

meaningless response map, within which no target can be detected.

In contrast, our approach still can capture the target at frame t.

we propose dynamic Siamese network, i.e. DSiam, with

a fast general transformation learning model that enables

effective online learning of target appearance variation

and background suppression from previous frames. Since

the transformation learning can be rapidly solved in FFT-

domain closed form, besides the effective online adaptation

abilities, it is very fast and indeed serves as a single network

layer, thus can be jointly fine-tuned with the whole network.

Our second contribution is elementwise multi-layer fusion,

which adaptively integrates the multi-level deep features of

DSiam network. Third, beyond most matching based track-

ers whose matching models are trained on image pairs, we

develop a complete joint training scheme for the proposed

DSiam network, which can be trained as a whole directly

on labeled video sequences. Therefore, our model can thor-

oughly take into account the rich spatial temporal informa-

tion of moving objects within the training videos. Extensive

experiments on real-world benchmark datasets validate the

balanced and superior performance of our approach.

2. Related Work

Siamese network based tracking. Siamese network

based trackers [2, 26] select target from candidate patches

through a matching function offline learned on image pairs.

The matching function is usually formulated by two-branch

CNNs that share the parameters and indicate the similar-

ity between target template O1 ∈ ℜm×n×3 and candidate

patches cropped from a searching region Zt ∈ ℜmz×nz×3

in the tth frame. O1 is the target template given at the first

frame. SiamFC [2] has used a fully convolutional strategy

to realize this process. We briefly review SiamFC in Fig. 2

with black dashed lines and formulate it as

S
l
t = corr(f l(O1), f

l(Zt)), (1)

21764

where Sl
t is a response map denoting the similarity between

O1 and candidate patches in Zt; f l(·) represents the lth

layer deep feature of some properly trained CNN model,

e.g. AlexNet and VGG; corr(·) is the correlation operation

that can be replaced by other metric function, e.g. Euclidean

distance used in SINT [26]. Although SiamFC can run be-

yond real-time, its tracking accuracy still has a big gap to

state-of-the-art classification & updating trackers, due to the

lack of online adaptation ability. Despite SINT achieves

higher tracking accuracy, it utilizes optical flow and is much

slower (about 2fps) than SiamFC. Recently, GOTURN [15]

proposes to regress the target bounding box from previous

frame with the Siamese network and can run at 100fps. It,

however, has much lower tracking accuracy on benchmarks

compared to state-of-the-art classification & updating based

trackers [13, 6]. Alternatively, we propose to learn a dy-

namic Siamese network by introducing two online updat-

able transformations into the two branches respectively and

then extend it to multiple layers with offline learned elemen-

twise weight maps. Fig. 2 briefly illustrates our pipeline us-

ing single layer deep feature. Besides, via joint training on

video sequences, our model achieves state-of-the-art track-

ing performance with real-time speed.

Deep correlation based tracking. Correlation filter-

ing is able to realize fast tracking through circular convolu-

tion, which can be quickly solved in frequency domain, e.g.

MOSSE [3], KCF [16], STC [32], DSST [5], Staple [1].

Recently, HCF [21] further extends such updating strategy

to pre-trained multi-level deep features and achieves near

real-time speed (about 10fps). Although we also use cir-

cular convolution to realize fast transformation and param-

eters learning, our model is different from previous corre-

lation filtering trackers. First, we use circular convolution

to regress a deep feature to another one and aim to capture

target variation or suppress the background interference. In

contrast, most correlation filtering trackers use circular con-

volution to regress features to a fixed Gaussian heat map

and get the target location directly. Second, HCF [21] has

proved the response maps from multi-layer deep features

can be fused to get better performance. However, it uses

artificial and fixed parameters to fuse those responses in a

hierarchical way. Instead, we propose to offline learn the

elementwise fusion weight maps. Third, rather than using

pre-trained CNNs for other tasks as the deep features ex-

tractor, we propose to jointly train our model (both network

weights and model parameters) directly on video sequences,

which is much more effective for tracking problem.

3. Dynamic Siamese Network

3.1. Overview

We consider visual tracking as a joint problem of fast

template matching and online transformation learning, ac-

cording to the information of previous frames. Thus, be-

yond the original static Siamese matching model Eq. (1),

we extend it into a dynamic Siamese matching process,

S
l
t = corr(Vl

t−1 ∗ f
l(O1),W

l
t−1 ∗ f

l(Zt)), (2)

where, as defined previously, Sl
t is a response map indi-

cating the possible location of target at the tth frame; ∗
denotes circular convolution that can be fast solved in fre-

quency domain and does not change the size of input [12].

In contrast to Eq. (1), we introduce two transformations,

V
l
t−1 and W

l
t−1, to update the deep features of target tem-

plate O1 and searching region Zt, respectively. Vl
t−1 aims

to encourage f l(O1) being similar to f l(Ot−1) and is on-

line learned from (t − 1)th frame by considering tempo-

rally smooth variation of the target. Thus, we denote V
l
t−1

as the target appearance variation transformation. W
l
t−1

aims to highlight the deep feature of target neighborhood re-

gions and alleviate the interference of irrelevant background

features. Hence, we denote W
l
t−1 as the background sup-

pression transformation. Fig. 2 illustrates the pipeline of

Eq. (2). Since we add two online updatable components into

the two branches of static Siamese network respectively, we

call our model dynamic Siamese network, i.e. DSiam.

3.2. Fast transformation learning

Regularized linear regression. We use regularized lin-

ear regression (RLR) [24] to calculate V
l
t−1 and W

l
t−1.

Generally speaking, given two tensors X and Y, we aim

to find an optimal linear transformation matrix R to make

X being similar to Y. Hence, we have

R = argmin
T

‖T ∗X−Y‖2 + λ‖T‖2. (3)

Thanks to the desirable property of circular convolution

‘∗’ [24], R can be solved rapidly in frequency domain,

R = F
−1

(F ⋆(X)⊙ F (Y)

F ⋆(X)⊙ F (X) + λ

)

, (4)

where F is discrete Fourier transformation (DFT); F−1

denotes the inverse DFT; ⋆ indicates complex-conjugate.

Target appearance variation V. After tracking at the

(t− 1)th frame, we get the target Ot−1. Rather than simply

replacing target template O1 by Ot−1, we learn the appear-

ance variation from O1 to Ot−1, as shown in Fig. 3. Note,

we assume that the target variation is temporally smooth.

So, we can apply such variation to force f l(O1) being sim-

ilar to f l(Ot), as done in Eq. (2). Specifically, we get the

target appearance variation transformation V
l
t−1 by

V
l
t−1 = argmin

V

‖V ∗ Fl
1 − F

l
t−1‖

2 + λv‖V‖2, (5)

where F
l
1 = f l(O1), F

l
t−1 = f l(Ot−1); λv controls the

regularization degree and can be learnt from labeled video

31765

Figure 3. Two inputs of online learning target appearance variation

transformation V
l

t−1, and background suppression transformation

W
l

t−1, respectively. See text for more details.

sequences by joint training (as elaborated in section 3.5).

From Eq. (4), we can efficiently obtain V
l
t−1 by

V
l
t−1 = F

−1
(F ⋆(Fl

1)⊙ F (Fl
t−1)

F ⋆(Fl
1
)⊙ F (Fl

1
) + λv

)

. (6)

Background suppression W. At frame t, we just want

to select a candidate that has highest similarity with the

transformed target template. Hence, alleviating the inter-

ference of candidates from background will help to further

improve tracking accuracy. To this end, we propose to learn

a transformation W
l
t−1 that can suppress the deep features

of background regions. Specifically, after tracking at the

(t − 1)th frame, we have the target location and can crop

image It−1 to region Gt−1 centering at the target location

and with the same size of searching region Zt−1. As illus-

trated by Fig. 3, we then multiply Gt−1 with a Gaussian

weight map and get Ḡt−1 to properly highlight the fore-

ground regions. We need to learn W
l
t−1 that encourages

the deep feature of Gt−1 being similar to that of Ḡt−1, i.e.

W
l
t−1 = argmin

W

‖W∗Fl
Gt−1

−F
l
Ḡt−1

‖2+λw‖W‖2, (7)

where F
l
Gt−1

= f l(Gt−1), F
l
Ḡt−1

= f l(Ḡt−1). Similarly,

through Eq. (4), we have

W
l
t−1 = F

−1
(

F ⋆(Fl
Gt−1

)⊙ F (Fl
Ḡt−1

)

F ⋆(Fl
Gt−1

)⊙ F (Fl
Gt−1

) + λw

)

, (8)

By online learning the target variation and background

suppression transformations V and W, our DSiam model

enables static Siamese network [2] with valuable online

adaptation ability, which results in much better tracking ac-

curacy and acceptable real-time speed. Besides, beyond

previous trackers using manually set parameters, our model

parameters, λv and λw, can all be learned by joint training.

3.3. Elementwise multi­layer fusion

Naturally, the DSiam model, Eq. (2), can be further

extended to use multi-layer deep features. In contrast to

Figure 4. Real examples of offline learned weight maps Υ
l1 and

Υ
l2 , for the correlation response maps S

l1
t and S

l2
t , from layer l1

and l2 (l1 = 5, l2 = 4) of AlexNet. Note, the response map of

deeper layer l1 has higher weights in periphery and lower weights

at central part within the searching region. That is, when the tar-

get is near the center of the searching region, deeper layer features

help to remove the background interference and shallower layer

features are good at getting precise localization of the target; while

if the target lies in periphery of the searching region, only deeper

layer features are effective to determine the target location. Hence,

such offline trained elementwise fusion truly reflects the comple-

mentary role of response maps from different layers, thus is help-

ful to obtain better target localization ability (see section 4.3).

HCF [21], we adopt a more general elementwise fusion

strategy. Specifically, we can use Eq. (2) to produce |L| re-

sponse maps {Sl
t|l ∈ L} with multi-level features of some

deep feature network. For the output Sl
t ∈ ℜms×ns of each

layer l, we set an elementwise weight map Υ
l ∈ ℜms×ns

and force
∑

l∈L
Υ

l = 1ms×ns
. The offline learning of Υl

is elaborated in section 3.5. Then, we can get our final re-

sponse map

St =
∑

l∈L

Υ
l ⊙ S

l
t, (9)

where ⊙ denotes the elementwise multiplication. With

Eq. (9), we have two advantages over HCF [21]: 1) elemen-

twise fusion is much more effective that allows spatially-

variant integration; 2) the weight maps can be offline

learned, instead of artificially setting. See Fig. 4 for an ex-

ample of two real offline learned fusion weight maps.

3.4. Network architecture

Combining Eqs. (2), (6) and (8), we get the dynamic

Siamese network (DSiam) using single-layer deep feature,

whose network architecture is shown by Fig. 5. The DSiam

network can be further extended to a multi-layer version

DSiamM using elementwise fusion in Eq. (9). Specifically,

f l(·) denotes the deep feature of the lth layer of some proper

CNN model, like VGG and AlexNet. We then introduce two

new layers, circular convolution (‘CirConv’) and regular-

ized linear regression (‘RLR’), to formulate the fast trans-

formation and learning of V
l
t−1 and W

l
t−1, Eq. (6) and

(8), into a unified network representation. To make the

DSiam and DSiamM architecture directly trainable on la-

beled video sequences rather than image pairs, we further

use a ‘Crop’ layer to get Zt, Ot−1, Gt−1 and Ḡt−1 ac-

cording to the response map S
l
t−1. This makes the training

loss can be effectively back-propagated from the last frame

41766

Figure 5. Network architecture of our dynamic Siamese network

using single-layer deep feature fl(·). ‘RLR’ layer represents pro-

cess of learning V and W defined in Eq. (6) and (8). ‘CirConv’

layer denotes the circular convolution ‘*’ in Eq. (2) that leads to

Õ = V ∗ fl(O1) and F̃z = W ∗ fl(Z). ‘Eltwise’ layer aims

to multiply its input with a weight map and is used in section 3.3.

‘Crop’ is to get regions in image I according to the position of

maximum value in response map S. The black block denotes a

delay operation, thus we omit time index t and t− 1 in this figure.

to the first one. Besides, an ‘Elewise’ layer is used to per-

form elementwise multiplication between G and a Gaus-

sian weight map to generate Ḡ (see Fig. 3 for an example).

With this architecture, we can not only train the parameters

of deep feature network f l, but also can learn the element-

wise weight maps and regularization parameters λv and λw

of ‘RLR’. As a result, the DSiam and DSiamM architecture

truly allows to train a better online updatable tracker instead

of just finding a good matching function [26, 2].

3.5. Joint training

To capture the rich spatial temporal information of mov-

ing objects and to learn all parameters offline, our DSiam

network can be jointly trained on labeled video sequences

rather than image pairs.2 To this end, within the forward

process, given a video sequence with N frames, {It|t =
1, ..., N}, we track the target indicated at the first frame via

the network architecture defined in Fig. 5. Specifically, we

can get N response maps {St|t = 1, ..., N} that represent

the tracking results at each frame. Meanwhile, we have N

ground truth maps {Jt|t = 1, ..., N} with the same size of

St, indicating the true target location and using label 1 to

denote the target and −1 to denote background. Hence, we

can define the logistic loss function at each frame as

Lt =
1

|St|
log(1 + exp(−St ⊙ Jt)), (10)

2Classically, a small number of important model parameters can be

roughly tuned by generic optimization, such as differential evolution [10].

In this paper, we propose to represent all model parameters, λv and λw , as

network weights, and to learn them by gradient backpropagation.

where |St| is the size of St. The total loss for the whole

video is L =
∑N

t=1
Lt. By backpropagation through

time (BPTT), we can propagate the loss to all parame-

ters of our DSiam network, including elementwise weight

maps, two RLR layers and the regularization parameters

λv and λw. Unlike previous trackers, DSiam network con-

tains two new layers, ‘RLR’ and ‘CirConv’. To make our

network trainable with BPTT and Stochastic Gradient De-

scent (SGD), we must get the gradient of Lt w.r.t. all param-

eters for these two new layers. As shown in Fig. 5, given

∇
Õ
Lt, we should calculate ∇FLt, ∇F1

Lt and ∇λv
Lt

through the left ‘CirConv’ and ‘RLR’ layers to ensure the

loss gradient can be effectively propagated to f l. Hence, we

first propagate ∇
Õ
Lt to ∇VLt and have

∇VLt = F
−1(F̂1 ⊙ ∇̂

Õ
Lt). (11)

where ‘ˆ’ denotes the Fourier transformation. From ∇VLt,

we can then calculate ∇FLt and ∇λv
Lt by

∇FLt = F
−1(U⊙ F̂

⋆
1 ⊙ ∇̂VLt), (12)

∇λv
Lt = F

−1(−U
2 ⊙ F̂

⋆
1 ⊙ F̂)T∇VLt, (13)

U = (F̂⋆
1 ⊙ F̂1 + λv)

−1. (14)

∇F1
Lt can be also derived from ∇VLt and ∇

Õ
Lt

∇F1
Lt = E(−2U2 ⊙ (F̂⋆

1)
2 ⊙ F̂)TEH∇VLt

+ F
−1(V̂ ⊙ ∇̂

Õ
Lt),

(15)

where E is the discrete Fourier transformation matrix. The

above process can also be used to calculate ∇FZ
Lt, ∇FG

Lt,

∇FḠ
Lt and ∇λw

Lt from ∇
F̃Z

Lt. For elementwise multi-

layer fusion Eq. (9), we can get ∇ΥlLt = S
l
t ⊙ ∇St

Lt to

learn Υ
l. See the supplementary for detailed derivations.

3.6. Implementation details and the algorithm

Compared to training on image pairs, joint training on

video sequences are much more complex and challenging.

Hence, we use small network as f l and choose short videos

as training data. In practice, we adopt AlexNet trained by

SiamFC [2] as the initialization of f l that contains 5 con-

volution layers. For multi-layer fusion, we extract the deep

features of ‘conv4’ and ‘conv5’ to generate response maps

and get the final response map through Eq. (9). We also

show in the experiments that our method also helps the pre-

trained VGG19 to get much better tracking performance.

Dataset. To avoid training and testing on the same data

source, we use ILSVC-2015 to train our DSiam network

and test on other benchmarks. Since ILSVC-2015 has many

targets occupying the whole frame that are not common

in real-world tracking tasks, we first select 1130 ILSVC-

2015 video sequences according to the area occupying ratio

of target, from which we randomly generate 2000 training

clips, each of which contains 10 successive frames.

51767

Figure 6. Success and precision plots of OPE (one pass evalua-

tion) on OTB-2013. The numbers in the legend indicate the area-

under-curve (AUC) score for success plots and the representative

precisions at 20 pixels for precision plots, respectively.

Initialization. We first manually select reasonable val-

ues for λv and λw. We then update all of them via offline

joint training. For elementwise fusion weight maps, we ini-

tialize the weight map of ‘conv5’ to be the matrix of ones

and that of ‘conv4’ to be the matrix of zeros. We set the

learning rate from 10−7 to 10−9, weight decay 0.0005 and

momentum 0.9. Our joint training is terminated at 50 itera-

tions, which usually results in good performance.

Tracking algorithm. With the learnt dynamic Siamese

network, we summary our tracking algorithm as follows:

given the target location at I1, i.e. a bounding box b1 ∈ ℜ4,

we crop the corresponding region to serve as the target tem-

plate O1 that is slightly larger than b1 and centered at b1.

We then extract the deep features of O1 from ‘conv5’ and

‘conv4’ layers and get F4
1 and F

5
1. Before tracking, we turn

off the transformations of Vl
0 and W

l
0 by setting them to

be empty. When tracking at the tth frame, we crop search

regions on three scales, i.e. {Zt,s|s ∈ 1, 2, 3} centering at

bt−1. Then, we get 3 response maps of {Zt,s|s ∈ 1, 2, 3}
via Eqs. (2) and (9). We search the maximum value among

the fused response map and get its respective location and

scale, which leads to bt. When the maximum value of fused

response map is larger than 0, the tracking at current frame

is successful. Then, we crop It according to bt and get

Ot, Gt, and get Ḡt by multiplying Gt with a Gaussian

weight map. We extract the deep features of the 3 regions

and calculate V
4,5
t and W

4,5
t via Eqs. (6) and (8). We im-

plement the proposed method in Matlab with MatConvNet

toolbox [27]. Without sophisticated optimization strategies,

our DSiam tracker can run at beyond real-time speed (aver-

age 45fps) on an NVIDIA TITAN X GPU.3

4. Experimental Results

4.1. Setup

Datasets and metrics. We evaluate our approach on

two popular challenging datasets, online tracking bench-

mark (OTB-2013) [30] and visual object tracking 2015

benchmark (VOT-2015) [18]. OTB-2013 contains 51 real-

3The binary executable of DSiam will be publicly released online.

Figure 7. Specific attributes comparison of seven real-time trackers

on OTB-2013 in term of success plots AUC. Our method outper-

forms SiamFC, Staple, MEEM, DSST and GOTURN on all 11 at-

tributes. HCF performs better than us on attributes BC, MB, DEF

and LR; while DSiamM outperforms HCF on other 7 attributes and

is at least twice faster. On average, our tracker DSiamM achieves

the highest accuracy among all compared real-time competitors.

world sequences, with 11 interference attributes,4 and two

metrics, i.e. bounding box overlap ratio and center location

error. By setting a success threshold for each metric, we

can get the precision and success plots, which quantitatively

measure the performance of different trackers on OTB-

2013 [30]. VOT-2015 has 60 sequences and re-initializes

testing trackers when it misses the target. The expected av-

erage overlap considering both bounding box overlap ra-

tio (accuracy) and the re-initialization times (robustness)

serves as the major evaluation metric on VOT-2015 [18].

Baselines. In our experiments, we choose two groups

of trackers to make a thorough comparison. The first

group consists of six most recent real-time trackers that

can run at beyond 10fps, including DSST [5], MEEM [31],

HCF [21], Staple [1], GOTURN [15] and SiamFC [2]

(i.e. SiamFC 3s [2]). The second group is formed by lat-

est trackers that produce state-of-the-art accuracy but un-

necessarily with real-time tracking speed, including Deep-

SRDCF [7, 6], MDNet [22], SINT and SINT+ [26]. Be-

sides, MDNet uses sequences from the benchmarks to train

their model, which may not be totally fair for other com-

petitors. Thus, we retrain MDNet on ILSVRC-2015 using

the same parameters and strategy of the original version.

We denote the retrained MDNet as R-MDNet. We evalu-

ate three particular variants of our approach, DSiam, DSi-

amM and DSiamM Vgg19. DSiam and DSiamM use the

feature network introduced in section 3.6 as f l. Specifi-

cally, DSiam only uses layer ‘conv5’; DSiamM fuses the

responses of layers ‘conv5’ and ‘conv4’ with offline learned

elementwise fusion weight maps; DSiamM Vgg19 uses the

pre-trained VGG19 network [25] as f l and adopts the deep

features from ‘conv5-4’ and ‘conv4-4’ layers.

4The 11 attributes are: illumination variation (IV), out-of-plane rota-

tion (OPR), scale variation (SV), occlusion (OCC), deformation (DEF),

motion blur (MB), fast motion (FM), in-plane rotation (IPR), out-of

view (OV), background cluttered (BC) and low resolution (LR).

61768

Table 1. Comparative results on VOT-2015 dataset. Note, the

speed below is the normalized speed generated on VOT-2015.

Trackers Accuracy Overlap Speed

DSiamM 0.5566 0.2927 4.3498

DSiam 0.5414 0.2804 6.4834

MDNet 0.5610 0.3580 0.8728

R-MDNet 0.5397 0.2334 0.4724

DeepSRDCF 0.5352 0.3040 0.3811

Staple 0.5341 0.2659 10.5529

SiamFC 0.5335 0.2889 7.3950

GOTURN 0.5121 0.2035 13.3838

DSST 0.5078 0.1678 6.7108

MEEM 0.4827 0.2179 4.9031

4.2. Comparison results

OTB-2013 dataset. As shown in Fig. 6, DSiamM

achieves the second best performance in both success and

precision plots. Although MDNet has the highest accu-

racy, it runs at only 1fps and is much slower than DSiamM

and DSiam. Besides, both DSiamM and DSiam are bet-

ter than its retrained version, i.e. R-MDNet, with 6% and

4% relative improvement, respectively. DSiamM (DSiam)

also outperforms the other two online updated deep track-

ers, DeepSRDCF and HCF, on AUC of success plots, with

relative improvements of 2.3% (0.2%) and 8.4% (6.1%),

respectively. DSiamM performs better than recent Siamese

network based trackers, SINT+, SINT and SiamFC, even

though SINT+ uses optical flow as an extra motion infor-

mation. Although DSiamM and DSiam are slower than

SiamFC, they get 7.9% and 5.6% relative improvement over

SiamFC, respectively, and both have real-time speed too.

Other real-time trackers, GOTURN, Staple, MEEM and

DSST, are more likely to track the target with lower ac-

curacy and robustness or may even lose the targets within

longer sequences. Specifically, DSiamM (DSiam, DSi-

amM Vgg19) has achieved relative improvement of 46.8%
(43.6%, 36.9%), 9.3% (7%, 2%), 14.7% (12.2%, 7%) and

18.4% (15.9%, 10.5%) over GOTURN, Staple, MEEM and

DSST, respectively. These results clearly verify the superior

tracking effectiveness and efficiency of our approach.

Fig. 7 further compares our approach with six state-of-

the-art real-time trackers, SiamFC, Staple, GOTURN, HCF,

MEEM and DSST, on 11 particular attributes of OTB-2013

benchmark. Our tracker, DSiamM, outperforms SiamFC,

Staple, MEEM, DSST and GOTURN on all 11 attributes.

This indicates our tracker is able to perform robust tracking

with high speed under variant conditions. Although DSi-

amM is worse than HCF on the attributes of Background

Cluttered (BC), Motion Blur (MB), Deformation (DEF) and

Low Resolution (LR), DSiamM is much better than HCF on

the whole dataset and is at least twice faster. Besides, the

promising performance DSiamM Vgg19 also validates the

generality of our model to utilize arbitrary deep features.

Figure 8. Expected average overlap (EAO) ranking on VOT-2015

dataset. For clarity, we only show 15 trackers in this figure.

Figure 9. Left subfigure shows the comparison of three vari-

ants of DSiamM. DSiamM-VT, DSiamM-BS and DSiamM-Multi

denote the trackers whose target appearance variation transfor-

mation, background suppression transformation and elementwise

multi-layer fusion component are removed from DSiamM, respec-

tively. Right subfigure compares DSiamM with another two vari-

ants, DSiamM withFrame(t-1) simply updating the target template

O1 to Ot−1 and DSiamM fixedFusionWeight using fixed fusion

weights to fuse multi-layer tracking response maps.

VOT-2015 dataset. We show the comparative results

on VOT-2015 dataset in Fig. 8 and Table 1. In Table 1,

we compare our trackers with eight state-of-the-art com-

petitors. Although DSiamM has lower overlap score than

MDNet and DeepSRDCF, it runs much faster than them

in term of normalized speed. Additionally, DSiamM does

much better than R-MDNet that corrects the unfairly biased

training advantage of MDNet. Although GOTURN, Sta-

ple and SiamFC are faster, our DSiamM tracker gets much

higher accuracy than them and can also run at real-time.

These results demonstrate that DSiamM is able to achieve

more balanced tracking performance in terms of reliable ac-

curacy and real-time speed. Fig. 8 shows the EAO ranking

of all compared trackers in VOT-2015 challenge. The pro-

posed DSiamM and DSiam are the top 3 and 4 in term of

average overlap with 45fps and 25fps tracking speed, re-

spectively. Besides, we can also see that DSiamM obtains

apparently better average overlap than DSiam, since with

elementwise multi-layer fusion, DSiamM can gather much

more useful information about the moving target.

4.3. Discussion

Contributions of specific algorithmic components.

The proposed DSiamM tracker has three important com-

ponents, target appearance variation transformation (‘VT’),

background suppression transformation (‘BS’) and elemen-

71769

Figure 10. Tracking results of 8 typical video sequences, using our tracker and 6 real-time trackers. The 4th row shows two failure cases.

twise multi-layer fusion (‘Multi’). We evaluate their con-

crete contributions in DSiamM by removing each one and

checking the performance of degraded trackers on OTB-

2013. As shown in the left subfigure of Fig. 9, the tracking

accuracy decreases if we remove any component from DSi-

amM. Hence, all three components of DSiamM make pos-

itive contributions. Specifically, the first component ‘VT’

contributes the most. The third component ‘Multi’ also

plays an important role by using multi-layers deep features.

Online adaptation strategy. Instead of the proposed

target appearance variation transformation learning, a naive

strategy is to simply update the target template O1 by Ot−1.

As shown in the right subfigure of Fig. 9, such simple strat-

egy cannot lead to the best performance, since it is easier

to be affected by inevitable tracking errors that may cor-

rupt the deep features of Ot−1. On the contrary, we always

use the ground truth target template O1 and learn the tem-

poral variation transformation by regularized linear regres-

sion, which can partially correct the influence of tracking

error. Besides, we do not store the learned variation trans-

formation that eliminates the risk of cumulative error.

Elementwise fusion vs. fixed fusion weight. An al-

ternative fusion solution is to artificially select some proper

combination weights for multi-layer response maps through

generic optimization [10] or exhaustive testing. Then, all

positions in a response map have the same weight. We com-

pare our elementwise multi-layer fusion with this simpler

fusion strategy. As shown in the right subfigure of Fig. 9, el-

ementwise fusion indeed gets better tracking performance.

Failure case analysis. We show two typical failure cases

of DSiamM that loses the target in the 4th row of Fig 10.

DSiamM fails in these two cases mainly because the envi-

ronmental illumination changes significantly and our online

target variation or background suppression transformations

learning could not handle such large sudden changes satis-

factorily. Considering more effective features, e.g. HOG

for plain images or SPHORB [35] for spherical ones, may

help to alleviate this problem to some extent.

5. Conclusion

This paper has proposed dynamic Siamese network

(DSiam) for visual object tracking, aiming to provide re-

liable online adaptation ability, while maintaining real-time

tracking speed. Compared to existing competitors, our ap-

proach has three major advantages. First, stemming from

state-of-the-art Siamese networks [2], our DSiam model

is equipped with reliable online adaptation capabilities to

the temporal variations of both foreground and background,

without harming real-time response ability, thus leads to

superiorly balanced tracking performance on real-world

datasets. Second, our DSiam model can work on multi-level

deep features, the outputs of which can be adaptively inte-

grated through a particular elementwise fusion layer. Third,

unlike most matching based trackers whose core matching

models are basically trained on image pairs, our DSiam net-

work can be jointly trained as a whole model, directly on la-

beled video sequences, thus can more satisfactorily capture

the rich spatial temporal information of moving objects. Be-

sides, thanks to the proposed joint training, all parameters

of our model can be offline learned by backpropagation.

In the future, we plan to explore the possibility of online

regressing more detailed parameters of a moving object,

e.g. its scale, major orientation, aspect ratio, even tight sil-

houette, using the proposed dynamic Siamese network, and

to further accelerate the process by superpixel representa-

tion [20, 33]. We are also interested in studying online video

object segmentation via dynamic Siamese network by prop-

erly integrating with classical random field models [8, 9].

81770

References

[1] L. Bertinetto, J. Valmadre, S. Golodetz, O. Miksik, and

P. H. S. Torr. Staple: Complementary learners for real-time

tracking. In CVPR, 2016.

[2] L. Bertinetto, J. Valmadre, J. F. Henriques, A. Vedaldi, and

P. H. S. Torr. Fully-convolutional siamese networks for ob-

ject tracking. In arXiv preprint arXiv:1606.09549, 2016.

[3] D. S. Bolme, J. R. Beveridge, B. A. Draper, and Y. M. Lui.

Visual object tracking using adaptive correlation filters. In

CVPR, 2010.

[4] K. Chen and W. Tao. Once for all: A two-flow convolutional

neural network for visual tracking. In arxiv:1604.07507,

2016.

[5] M. Danelljan, G. Häger, F. S. Khan, and M. Felsberg. Ac-

curate scale estimation for robust visual tracking. In BMVC,

2014.

[6] M. Danelljan, G. Häger, F. S. Khan, and M. Felsberg. Con-

volutional features for correlation filter based visual tracking.

In ICCVW, 2015.

[7] M. Danelljan, G. Häger, F. S. Khan, and M. Felsberg. Learn-

ing spatially regularized correlation filters for visual track-

ing. In ICCV, 2015.

[8] W. Feng, J. Jia, and Z.-Q. Liu. Self-validated labeling

of Markov random fields for image segmentation. IEEE

TPAMI, 32(10):1871–1887, 2010.

[9] W. Feng and Z.-Q. Liu. Region-level image authentication

using Bayesian structural content abstraction. IEEE TIP,

17(12):2413–2424, 2008.

[10] W. Feng, X. Yin, Y. Zhang, and L. Xie. NestDE: Generic pa-

rameters tuning for automatic story segmentation. Soft Com-

puting, 19(1):61–70, 2015.

[11] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich fea-

ture hierarchies for accurate object detection and semantic

segmentation. In CVPR, 2014.

[12] R. M. Gray. Toeplitz and circulant matrices: A review.

Foundations and Trends in Communications and Informa-

tion Theory, 2(3):155–239, 2006.

[13] Q. Guo, W. Feng, C. Zhou, C.-M. Pun, and B. Wu. Structure-

regularized compressive tracking with online data-driven

sampling. IEEE TIP, 2017.

[14] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. In CVPR, 2016.

[15] D. Held, S. Thrun, and S. Savarese. Learning to track at

100 fps with deep regression networks. In ECCV, 2016.

[16] J. F. Henriques, R. Caseiro, P. Martins, and J. Batista. High-

speed tracking with kernelized correlation filters. IEEE

TPAMI, 37(3):583–596, 2015.

[17] S. Hong, T. You, S. Kwak, and B. Han. Online tracking

by learning discriminative saliency map with convolutional

neural network. In ICML, 2015.

[18] M. Kristan, J. Matas, A. Leonardis, M. Felsberg, L. Cehovin,

G. Fernandez, T. Vojir, G. Hager, G. Nebehay, R. Pflugfelder,

A. Gupta, A. Bibi, A. Lukezic, A. Garcia-Martin, A. Saffari,

A. Petrosino, and A. S. Montero. The visual object tracking

VOT2015 challenge results. In ICCVW, 2015.

[19] M. Kristan, J. Matas, A. Leonardis, T. Vojir, R. Pflugfelder,

G. Fernandez, G. Nebehay, F. Porikli, and L. Cehovin. A

novel performance evaluation methodology for single-target

trackers. IEEE TPAMI, 38(11):2137–2155, 2016.

[20] L. Li, W. Feng, L. Wan, and J. Zhang. Maximum cohesive

grid of superpixels for fast object localization. In CVPR,

2013.

[21] C. Ma, J. B. Huang, X. Yang, and M. H. Yang. Hierarchical

convolutional features for visual tracking. In ICCV, 2015.

[22] H. Nam and B. Han. Learning multi-domain convolutional

neural networks for visual tracking. In CVPR, 2016.

[23] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,

S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,

A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual

Recognition Challenge. IJCV, 115(3):211–252, 2015.

[24] B. Schölkopf and A. J. Smola. Learning with kernels: Sup-

port vector machines, regularization, optimization, and be-

yond. MIT Press, 2001.

[25] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. In ICLR, 2015.

[26] R. Tao, E. Gavves, and A. W. M. Smeulders. Siamese in-

stance search for tracking. In CVPR, 2016.

[27] A. Vedaldi and K. Lenc. MatConvNet: Convolutional neural

networks for Matlab. In ACM MM, 2015.

[28] L. Wang, W. Ouyang, X. Wang, and H. Lu. STCT: Sequen-

tially training convolutional networks for visual tracking. In

CVPR, 2016.

[29] N. Wang, J. Shi, D. Y. Yeung, and J. Jia. Understanding and

diagnosing visual tracking systems. In ICCV, 2015.

[30] Y. Wu, J. Lim, and M.-H. Yang. Online object tracking: a

benchmark. In CVPR, 2013.

[31] J. Zhang, S. Ma, and S. Sclaroff. MEEM: Robust tracking

via multiple experts using entropy minimization. In ECCV,

2014.

[32] K. Zhang, L. Zhang, M.-H. Yang, and D. Zhang. Fast track-

ing via spatio-temporal context learning. In ECCV, 2014.

[33] S. Zhang, W. Feng, J. Zhang, and C.-M. Pun. Bag of squares:

A reliable model of measuring superpixel similarity. In

ICME, 2014.

[34] T. Zhang, S. Liu, N. Ahuja, M.-H. Yang, and B. Ghanem.

Robust visual tracking via consistent low-rank sparse learn-

ing. IJCV, 111(2):171–190, 2015.

[35] Q. Zhao, W. Feng, L. Wan, and J.-W. Zhang. SPHORB:

A fast and robust binary feature on the sphere. IJCV,

113(2):143–159, 2015.

91771

