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Abstract

An important goal of computer vision is to build systems

that learn visual representations over time that can be ap-

plied to many tasks. In this paper, we investigate a vision-

language embedding as a core representation and show that

it leads to better cross-task transfer than standard multi-

task learning. In particular, the task of visual recognition

is aligned to the task of visual question answering by forc-

ing each to use the same word-region embeddings. We show

this leads to greater inductive transfer from recognition to

VQA than standard multitask learning. Visual recognition

also improves, especially for categories that have relatively

few recognition training labels but appear often in the VQA

setting. Thus, our paper takes a small step towards creat-

ing more general vision systems by showing the benefit of

interpretable, flexible, and trainable core representations.

1. Introduction

Consider designing a vision system that solves many

tasks. Ideally, any such system should be able to reuse

representations for different applications. As the system

is trained to solve more problems, its core representations

should become more complete and accurate, facilitating the

learning of additional tasks. Vision research often focuses

on designing good representations for a given task, but what

are good core representations to facilitate learning the next?

The application of knowledge learned while solving one

task to solve another task is known as transfer learning or

inductive transfer. Inductive transfer has been demonstrated

in recent vision-language tasks in [34, 37, 26, 16, 49, 24],

where the hidden or output layers of deep networks learned

from pre-training (e.g. on ImageNet [14]) or multitask

learning serve as the foundation for learning new tasks.

However, the relations of features to each new task needs

to be re-learned using the new task’s data. The goal of our

work is to transfer knowledge between related tasks without

the need to re-learn this mapping. Further, as we are work-

ing with vision-language tasks, we aim to transfer knowl-

edge of both vision and language across tasks.
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Figure 1: Sharing image-region and word representations

across multiple vision-language domains: The SVLR module

projects images and words into a shared representation space. The

resulting visual and textual embeddings are then used for tasks like

Visual Recognition and VQA. The models for individual tasks are

formulated in terms of inner products of region and word represen-

tations enforcing an alignment between them in the shared space.

In this work we propose a Shared Vision-Language Rep-

resentation (SVLR) module that improves inductive transfer

between related vision-language tasks (see Fig. 1). We ap-

ply our approach to visual recognition (VR) and attention-

based visual question answering (VQA). We formulate VR

in terms of a joint embedding of textual and visual repre-

sentations computed by the SVLR module. Each region is

mapped closest to its correct (textual) class label. For ex-

ample, the embedding of “dog” should be closer to an em-

bedded region showing a dog than any other object label.

We formulate VQA as predicting an answer from a relevant

region, where relevance and answer scores are computed

from embedded word-region similarities. For example, a

region will be considered relevant to “Is the elephant wear-

ing a pink blanket?” if the embedded “pink” and either

“elephant” or “blanket” are close to the embedded region.

Similarly, the answer score considers embedded similari-

ties, but in a more comprehensive manner. We emphasize

that the same word-region embedding is learned for both

VR and VQA. Our experiments show that formulating both

tasks in terms of the SVLR module leads to better cross-task

transfer than if features are shared through multitask learn-

14213



ing but without exploiting the alignment between words and

regions.

In summary, our main contribution is to show that the

proposed SVLR module leads to better inductive transfer

than unaligned feature sharing through multitask learning.

As an added benefit, attention in our VQA model is highly

interpretable: we can show what words cause the system

to score a particular region as relevant. We take a small

step towards lifelong-learning vision systems by showing

the benefit of an interpretable, flexible, and trainable core

representation.

2. Related Work

Never-ending learning: NEL [43, 9, 53, 50, 11] aims to

continuously learn from multiple tasks such that learning

to solve newer problems becomes easier. Representation

learning [7], multitask learning [10], and curriculum learn-

ing [45] are different aspects of this larger paradigm. Induc-

tive transfer through shared representations is a necessary

first step for NEL. Most works focus on building transfer-

able representations within a single modality such as lan-

guage or vision only. We extend this framework to learn a

joint vision-language representation which enables a much

larger class of new vision-language tasks to easily build on

and contribute to the shared representation.

VR using Vision-language embeddings: Traditionally, vi-

sual recognition has been posed as multiclass classification

over discrete labels [21, 51, 32]. Using these recogniz-

ers for tasks like VQA and image captioning is challeng-

ing because of the open-vocabulary nature of these prob-

lems. However, availability of continuous word embed-

dings (e.g. word2vec [40]) has allowed reformulation of

visual recognition as a nearest neighbor search in a learned

image-language embedding space [55]. Such embeddings

have been successfully applied to a variety of tasks that re-

quire recognition such as image captioning [35, 23], phrase

localization [46, 31], referring expressions [29, 39], and

VQA [5, 47, 60].

Our recognition model is related to previous open-

vocabulary recognition/localization models [55, 48, 18],

which learn to map visual CNN features to continuous

word vector representations. However, we specifically fo-

cus on the multitask setting where VR forms a part of a

higher-level vision-language task such as VQA. Since the

SVLR module is reused in both tasks with inner products

in the embedding space forming the basis for both mod-

els, during joint training VQA provides a weak supervi-

sion for recognition as well. Fang et al. [15] also learn

object and attribute classifiers from weak supervision in

the form of image-caption pairs using a multiple instance

learning (MIL) framework, but do not use a vision-language

embedding. Liu et al. [36] similarly use VR annotation

from Flickr30K entities [46] to co-supervise attention in a

caption-generation model on the same dataset. Our work

goes further by allowing the supervision to come from sepa-

rate datasets, thereby increasing the amount of training data

available for the shared parameters. Additionally, we look

at how each task has benefited from jointly training with the

other.

VQA: Visual Question Answering (VQA) involves re-

sponding to a natural language query about an image. Our

VQA model is closely related to attention-based VQA mod-

els [16, 24, 37, 58, 49, 59, 4, 3, 33, 54] which attempt to

compute a distribution (region relevance or attention) over

the regions/pixels in an image using inner product of image-

region and the full query embedding [58, 49, 24, 37]. Re-

gion relevance is used as a weight to pool relevant visual

information which is usually combined with the language

representation to create a multimodal representation. Vari-

ous methods of pooling such as elementwise-addition, mul-

tiplication, and outer-products have been explored [59, 16].

Attention models are themselves an active area of re-

search with applications in visual recognition [44, 27], ob-

ject localization, caption generation [28], question answer-

ing [56, 52, 33], machine comprehension [22] and transla-

tion [6, 57], and neural turing machines [20].

Our model explicitly formulates attention in VQA as im-

age localization of nouns and adjectives mentioned in a can-

didate QA pair. Ilievski et al. [24] use a related approach

for attention. They use word2vec to map individual words

in the question to the class labels of a pre-trained object de-

tector which then generates the attention map by identifying

regions for those labels. Tommasi et al. [54] similarly use a

pre-trainined CCA [18] vision-language embedding model

to localize noun phrases, then extracts scene, attribute, and

object features to answer VQA questions. Our model dif-

fers from these methods in two ways: (i) vision-language

embeddings for VR allow for end-to-end trainability, and

(ii) jointly training on VR provides additional supervision

of attention through a different (non-VQA) dataset.

Andreas et al. [4, 3] rely heavily on the syntactic parse

to dynamically arrange a set of parametrized neural mod-

ules. Each module performs a specific function such as lo-

calizing a specific word or verifying relative locations. In

contrast, our approach uses a static model but relies on lan-

guage parse to make it interpretable and modular.

3. Method

We propose an SVLR module to facilitate greater in-

ductive transfer across vision-language tasks. As shown in

Fig. 2, the word and region representations required for ob-

ject recognition, attribute recognition, and VQA are com-

puted through the SVLR module. By specifically formulat-

ing each task in terms of inner products of word and region

representations and training on all tasks jointly, we ensure

each task provides a consistent, non-conflicting training sig-
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Figure 2: Joint Training on Visual Recognition(VR) and Visual Question Answering(VQA) with the proposed SVLR Module: The

figure depicts sharing of image and word representations through the SVLR module during joint training on object recognition, attribute

recognition, and VQA. The recognition tasks use object and attribute labelled regions from Visual Genome while VQA uses images

annotated with questions and answers from the VQA dataset. The benefit of joint training is that while the VQA dataset does not provide

region groundings of nouns and adjectives in the QA (e.g. “fluffy”,“dog”), this complementary supervision is provided by the Genome

recognition dataset. Models for each task involve image and word embeddings produced by SVLR module or their inner products (See

Fig 3 for VQA model architecture).

nal for aligning words and region representations. Dur-

ing training, the joint-task model is fed batches containing

training examples from each task’s dataset.

3.1. Shared Vision Language Representation

The SVLR module converts words and image-regions

into feature representations that are aligned to each other

and shared across tasks.

Word Representations: The representation g(w) for a

word w is constructed by applying two fully connected

layers (with 300 output units each) to pretrained word2vec

representation [41] of w with ReLU after the first layer.

Region Representations: A region R is represented using

two 300 dimensional feature vectors fo(R) and fa(R) that

separately encode the objects and attributes contained. We

used two representations instead of one to encourage disen-

tangling of these two factors of variation. For example, we

do not expect “red” to be similar to “apple”, but we expect

fo(R) and fa(R) to be similar to g(“red”) and g(“apple”)
if R depicts a red apple. The features are constructed by ex-

tracting the average pooled features from Resnet [21] pre-

trained on ImageNet and then passing through separate ob-

ject and attribute networks. Both networks consist of two

fully connected layers (with 2048 and 300 output units) with

batch normalization [25] and ReLU activations.

3.2. Visual Recognition using SVLR

3.2.1 Inference

The visual recognition task is to classify image regions

into one or more object and attribute categories. The

classification score for region R and object category w is

fT
o (R)g(w). The classification score for an attribute cate-

gory v is fT
a (R)g(v). Attributes may include adjectives and

adverbs (e.g., “standing”). Though our recognition dataset

has a limited set of object categories O and attribute cate-

gories T , our model can produce classification scores for

any object or attribute label given its word2vec representa-

tion. In experiments, the O and T consist of 1000 most fre-

quent object and attribute categories in the Visual Genome

dataset [31].

3.2.2 Training

Our VR model is trained using the Visual Genome dataset

which provides image regions annotated with object and

attribute labels. VR uses only the parameters for the

embedding functions fo, fa and g that are part of the SVLR

module. The parameters of fo receive gradients from the

object loss while those of fa receive gradients from the

attribute loss. The parameters of word embedding model g
receive gradients from both losses.
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Object loss: We use a multi-label loss as object classes may

not be mutually exclusive (e.g., “man” is a “person”). For a

region Rj , we denote the set of annotated object categories

and their hypernyms extracted from WordNet [42] by Hj .

The object loss forces the true labels and their hypernyms

to score higher than all other object labels by a margin ηobj .

For a batch of M samples {(Rj ,Hj)}Mj=1 the object loss is:

Lobj =
1

M

M
∑

j=1

1

|Hj|

∑

l∈Hj

1

|O|

∑

k∈O\Hj

max{0, ηobj + fT
o (Rj)g(k)− fT

o (Rj)g(l)} (1)

Attribute Loss: The attribute loss is a multi-label classifi-

cation loss with two differences from object classification.

Attribute labels are even less likely to be mutually exclu-

sive than object labels. As such, we predict each attribute

with independent cross entropy losses. We also weigh the

samples based on fraction of positive labels in the batch to

balance the positive and negative labels in the dataset. For a

batch with M samples {(Rj , Tj)}
M
j=1 where Tj is the set of

attributes annotated for region Rj , the attribute loss is:

Latr =
1

M

M
∑

j=1

∑

t∈T

✶ [t ∈ Tj ] (1− Γ(t)) log
[

σ(fT
a (Rj)g(t))

]

+

✶ [t /∈ Tj ] Γ(t) log
[

1− σ(fT
a (Rj)g(t))

]

(2)

where σ is a sigmoid activation function and Γ(t) is the frac-

tion of positive samples for attribute t in the batch.

3.3. Visual Question Answering using SVLR

Our VQA model is illustrated in Fig. 3. The input to

our VQA model is an image, a question, and a candi-

date answer. Regions are extracted from the image using

Edge Boxes [61]. The same SVLR module used by VR

(Sec. 3.2) is explicitly applied to VQA for attention and an-

swer scoring. Our system assigns attention scores to each

region according to how well it matches words in the ques-

tion/answer, then scores each answer based on the question,

answer, and attention-weighted scores for all objects (O)

and attributes (T ).

Attention Scoring: Unlike other attention models [59, 37]

that are free to learn any correlation between regions and

question/answers, our attention model encodes an explicit

notion of vision-language grounding. Let R be the set of

region proposals extracted from the image, and N and J
denote the set of nouns and adjectives in the (Q,A) pair.

Each region R ∈ R(I) is assigned an attention score a(R)
as follows:

a′(R) = max
n∈N

fT
o (R)g(n) + max

j∈J
fT
a (R)g(j) (3)

a(R) =
exp(a′(R))

∑

R′∈R(I) exp(a
′(R′))

(4)

Thus, a region’s attention score is the sum of maximum

adjective and noun scores for words mentioned in the ques-

tion or answer (which need not be in sets O and T ).

Image Representation: To score an answer, the content of

region R is encoded using the VR scores for all objects and

attributes in O and T , as presence of unmentioned objects

or attributes may help answer the question. The image rep-

resentation is an attention-weighted average of these scores

across all regions:

f(I) =
∑

R∈R(I)

a(R)

[

so(R)
sa(R)

]

(5)

where I is the image, so(R) are the scores for 1000 objects

in O for each image region R, sa(R) are the scores for 1000

attributes in T , and a(R) is the attention score.

Question/Answer Representation: To construct repre-

sentations q(Q) and a(A) for the question and answer,

we follow Shih et al. [49], dividing question words into

4 bins, averaging word representations in each bin, and

concatenating the bin representations resulting in a 1200

(= 300 × 4) dimensional vector q(Q). The answer rep-

resentation a(A) ∈ R
300 is obtained by averaging the word

representations of all answer words. The word representa-

tions used here are produced by the SVLR module.

Answer Scoring: We combine the image and Q/A repre-

sentations to jointly score the (Q, I,A) triplet.

To ensure equal contribution of language and visual fea-

tures, we apply batch normalization [25] on linear transfor-

mations of these features before adding them together to get

a bimodal representation β(Q, I,A) ∈ R
2500:

β(Q, I,A) = B1(W1f(I)) + B2

(

W2

[

q(Q)
a(A)

])

(6)

Here, B1,B2 denote batch normalization and W1 ∈
R

2500×2000 and W2 ∈ R
2500×1500 define the linear trans-

formations. The bimodal representation is:

S(Q, I,A) = W3 ReLU(β(Q, I,A)) (7)

with W3 ∈ R
1×2500.

Training: We use the VQA dataset [5] for training param-

eters of our VQA model: W1,W2,W3, and scales and off-

sets of batch normalization layers. In addition, the VQA

loss backpropagates into fo, fa, and g which are part of the

SVLR module. Each sample in the dataset consists of a

question Q about an image I with list of answer options

including a positive answer A+ and N negative answers

{A−(i)|i = 1, · · · , N}.

The VQA loss encourages the correct answer A+ to be

scored higher than all incorrect answer options {A−(i)|i =
1, · · · , N} by a margin ηans. Given batch samples

{(Qj , Ij , Aj)}
P
j=1, the loss is written as
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Figure 3: Inference in our VQA model: The image is first broken down into Edge Box region proposals[61]. Each region R is represented

by visual category scores s(R) = [so(R), sa(R)] obtained using the visual recognition model. Using the SVLR module, the regions are

also assigned an attention score using the inner products of region features with representations of nouns and adjectives in the question

and answer. The region features are then pooled using the relevance scores as weights to construct the attended image representation.

Finally, the image and question/answer representations are combined and passed through a neural network to produce a score for the input

question-image-answer triplet.

Lans =
1

NP

P
∑

j=1

N
∑

i=1

max{0,

ηans + S(Qj , Ij , A
−
j (i))− S(Qj , Ij , A

+
j )} (8)

3.4. Zero­Shot VQA

The representations produced by SVLR module should

be directly usable in related vision-language tasks with-

out any additional learning. To demonstrate this zero-

shot cross-task transfer, we train the SVLR module us-

ing Genome VR data only and apply to VQA. Since bi-

modal pooling and scoring layers cannot be learned without

VQA data, we use a proxy scoring function constructed us-

ing region-word scores only. For each region, we compute

pq(R) as the sum of its scores for the maximally aligned

question nouns and question adjectives (Eq. 3 with only

question words). A score pa(R) is similarly computed us-

ing answer nouns and adjectives. The final score for the

answer is defined by

S(Q, I,A) =
∑

R∈R

a(R)min(pq(R), pa(R)) (9)

where a is the attention score computed using Eq. 4. There-

fore, the highest score is given to QA pairs where question

as well as answer nouns and adjectives can be localized in

the image. Note that the since the model is not trained on

even a single question from VQA, the zero-shot VQA task

also shows that our model does use the image to answer

questions instead of solely relying on the language prior

which is a common concern with most VQA models [2, 19].

4. Implementation and Training Details

We use 100 region proposals resized to 224× 224 for all

experiments. Resnet-50 was used for image feature extrac-

tion in all experiments except those in Tab. 3 which used

Resnet-152. The nouns and adjectives are extracted from

the (Q,A) and lemmatized using the part-of-speech tagger

and WordNet lemmatizer in NLTK [8]. We use the Stan-

ford Dependency Parser [13] to parse the question into bins

as detailed in [49]. All models are implemented and trained

using TensorFlow [1]. We train the model jointly for the

recognition and VQA tasks by minimizing the following

loss function using Adam [30]:

L = αansLans + αobjLobj + αatrLatr (10)

We observe that values of αobj and αatr relative to αans

can be used to trade-off performance between visual recog-

nition and VQA tasks. For experiments that analyze the

effect of transfer from VR to VQA (Sec. 5.2), we set

αans = 1, αobj = 0.1, and αatr = 0.1. For VQA only and

Genome only baselines, we set the corresponding α to 1

and others to 0. For experiments dealing with transfer in the

other direction (Sec. 5.3), we set αans = 0.1, αobj = 1, and

αatr = 1. The margins used for object and answer losses

are ηans = ηobj = 1. The object and attribute losses are

computed for the same set of Visual Genome regions with

a batch size of M = 200. The answer loss is computed for

a batch size of P = 50 questions sampled from VQA. We

use an exponentially decaying learning rate schedule with

an initial learning rate of 10−3 and decay rate of 0.5 every
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Figure 4: Interpretable inference in VQA: Our model produces interpretable intermediate computation for region relevance and ob-

ject/attribute predictions for the most relevant regions. Our region relevance explicitly grounds nouns and adjectives from the Q/A input

in the image. We also show object and attribute predictions for the most relevant region identified for a few correctly answered questions.

The relevance masks are generated from relevance scores projected back to their source pixels locations.

24000 iterations. Weight decay is used on all trainable vari-

ables with a coefficient of 10−5. All the variables are Xavier

initialized [17].

5. Experiments

Our experiments investigate the extent to which using

SVLR as a core representation improves transfer in mul-

titask learning. We first analyze how including the VR

task improves VQA (Sec. 5.2, Tab. 1). We find that using

SVLR doubles the improvement compared to standard mul-

titask learning, and demonstrate performance well above

chance in a zero-shot setup (trained only on VR, applied

to VQA). We then analyze improvement to VR due to train-

ing with (weakly supervised) VQA (Sec. 5.3, Fig. 5). We

find moderate overall improvements (1.2%), with the largest

improvements for classes that have few VR training exam-

ples. We also quantitatively evaluate how well our atten-

tion maps correlate with that of humans using data provided

by [12] in Table 2. We include results of our VQA system

trained with ResNet-152 architecture on val, test-dev, test-

std, along with state-of-the-art (Tab. 3).

5.1. Datasets

Our model is trained on two separate datasets: one for

VQA supervision, one for visual recognition (attributes and

object classification). We use the image-question-answer

annotation triplets from Antol et al. [5] and bounding box

annotations for object and attribute categories from Visual

Genome [31]. The train-val-test splits for the datasets are as

follows.

VQA: We split the train set into train-subset and train-

held-out and use the latter for model selection. The train-

subset consists of 236,277 (Q, I,A) samples whereas train-

held-out contains 12,072 samples. The val and test set con-

tain 121,512 and 244,302 samples respectively. There are

exactly 3 questions per image. We use VQA val for evalu-

ating on specific question types.

Visual Genome: We use only images from Visual Genome

not in VQA (overlaps identified using md5 hashes). The se-

lected images were divided into train-val-test using an 85-

5-10 split, yielding 1,565,280, 90,212 and 181,141 anno-

tated regions in each. We use val for selecting the model for

evaluating recognition performance.

5.2. Inductive Transfer from VR to VQA

In Table 1, we analyze the role of SVLR module for in-

ductive transfer in both joint training and zero-shot settings.

Joint Training: During joint training, the VR models and

VQA model are simultaneously trained using object and

attribute annotations from Genome, and Q/A annotations

from the VQA dataset. The common approach to joint train-

ing is to use a common network for extracting image fea-

tures (e.g. class logits from ResNet), which feeds into the

task-specific networks as input. We refer to this approach

in Table 1 as Joint Multitask. This baseline is implemented

by replacing g(y) (see Fig. 2), with a fixed set of vectors

hy for each of the predetermined 1000 object and 1000 at-

tribute categories in the VR models. The embedding g(y) is

still in the VQA model, but is no longer shared across tasks.

Our proposed Joint SVLR outperforms VQA-only by 2.4%,

doubling the 1.2% improvement achieved by Joint Multi-

task. Our formulation of VR and VQA tasks in terms of

shared word-region representations more effectively trans-
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VQA Only 53.5 70.5 53.6 56.8 89.8 81.8 41.9 45.9 49.0 58.3 33.8 38.4 53.9 45.8 80.2 56.0 54.5 39.2 82.1 62.9

Joint Multitask 59.4 71.8 54.6 58.3 91.0 81.9 43.8 46.4 50.8 59.2 32.3 39.4 53.9 47.0 80.4 57.1 56.7 39.8 82.2 64.1

Joint SVLR 62.1 74.1 57.9 60.0 91.1 82.8 41.6 52.9 52.0 61.1 33.6 39.0 51.3 48.6 81.4 58.5 58.8 38.8 83.0 65.3

Zero-Shot VQA 18.8 21.0 27.4 31.4 22.0 17.1 13.9 11.6 20.6 22.9 12.7 0.7 7.2 26.1 13.5 19.2 22.4 1.2 13.3 16.4

Table 1: Inductive transfer from VR to VQA through SVLR in joint training and zero-shot settings: We evaluate the performance of

our model with SVLR module trained jointly with VR and VQA supervision (provided by Genome and VQA datasets respectively) on the

VQA task. We compare this jointly-trained model to a model trained on only VQA data. We also compare to a traditional multitask learning

setup that is jointly trained on VQA and VR (i.e. uses same amount of data as Joint SVLR) and shares visual features but does not use the

object and attribute word embeddings for recognition. While multitask learning outperforms VQA-only model, using the SVLR module

doubles the improvement. Our model is most suited for the question types in bold that require visual recognition without specialized skills

like counting or reading. Formulation of VR and attention in VQA in terms of inner products between word and region representations

enables Zero-Shot VQA. In this setting we train on Genome VR data and apply to VQA val (Sec 5.2).

fers recognition knowledge from VR than shared features.

The gain is often larger on questions that involve recogni-

tion (in bold in Table 1). For example, what color questions

improve by 8.6% due to SVLR.

Surprisingly, pre-training the visual classifiers on

Genome prior to joint training performs worse than the

model trained jointly from scratch: 63.7% versus 65.3%.

Zero-Shot VQA: We evaluate Zero-shot VQA to fur-

ther highlight transfer from VR to VQA. We train on only

Genome VR annotations but test on VQA val. The model

has not seen any Q/A training data, but achieves an overall

accuracy of 16.4% where random guessing yields 5.6% (18

choices). Our zero-shot system does not exploit language

priors, which alone can score as high as 54.0% [49]. This

shows that some knowledge can be directly applied to re-

lated tasks using SVLR without additional training.

5.3. Inductive Transfer from VQA to VR

We compare the performance of our SVLR based model

trained jointly on VQA and VR data with a model trained

only on Genome data to analyze transfer from VQA to VR.

Genome test is used for evaluation. We observe an increase

in the overall object recognition accuracy from 43.3% to

44.5%, whereas average attribute accuracy remained un-

changed at 36.9%. In Fig. 5, we show that nouns that are

rare in Genome (left columns) but have 20 or more exam-

ples in VQA (upper rows) benefit the most from weak su-

pervision provided by VQA. On average, we measure im-

provement from 21% to 32% for the 8 classes that have

fewer than 125 examples in Genome train but occur more

than 160 times in VQA questions. We conducted the same

analysis on Genome attributes, but did not observe any no-

table pattern, possibly due to the inherent difficult in eval-

uating the multi-label attribute classification problem (the

absence of attributes is not annotated in Genome).
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Figure 5: Transfer from VQA to Object Recognition: Each

cell’s color reflects the mean change in accuracy for classes within

the corresponding frequency ranges of both datasets’ training split.

Most gains are in nouns rare in Genome but common in VQA (top

left), suggesting that the weak supervision provided by training

VQA attention augments recognition performance via the SVLR.

The numbers in each cell show the Genome-only mean accuracy

+/- the change due to SVLR multitask training, followed by the

number of classes in the cell in parentheses.

5.4. Interpretable Inference for VQA

As shown in Fig. 4, our VQA model produces inter-

pretable intermediate outputs such as region relevance and

visual category predictions, similar to [54]. The answer

choice is explained by the object and attribute predictions

associated with the most relevant regions. Because rele-

vance is posed as the explicit localization of words in the

question and answer, we can qualitatively evaluate the rel-

evance prediction by verifying that the predicted regions

match said words. This also provides greater insight into

the failure modes as shown in Fig. 6. We also quantita-

tively evaluate our attention using collected human atten-

tions from Das et al. [12] in Table 2.
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Figure 6: Failure modes: Our model cannot count or read, though it will still identify the relevant regions. It is blind to relations and thus

fails to recognize that birds, while present, are not drinking water. The model may give a low score to the correct answer despite accurate

visual recognition. For instance, the model observes asphalt but predicts concrete, likely due to language bias. A clear example of an error

due to language bias is in the top-left image as it believes the lady is holding a baby rather than a dog, even though visual recognition

confirms evidence for dog. Finally, our model fails to answer questions that require complex reasoning comparing multiple regions.

HiCo[37] SAN2[59] WTL[49] SVLR Center Human

Corr. 0.27 0.26 0.38 0.48 0.53 0.62

Table 2: Human Attention Comparison: We compare our at-

tention maps with human attentions collected by Das et al. [12].

Comparison was done by resizing attention maps to 14×14 and

computing the rank correlation as in [12]. We include a strong

baseline using a synthetic center-focused heatmap (also used by

[12]), highlighting the center-bias in the data. Scores for HiCo and

SAN2 were recomputed using released data from [12], and differ

slightly from originally reported. Our model leads to significantly

higher correlation with human annotations than existing models.

5.5. Learned Word Representations

In Table 4, we compare the word representations of the

SVLR model to that of Word2Vec [41] by showing several

nearest neighbors from both embeddings. We observe a

shift from non-visual neighborhoods and meanings (mon-

itor, control) to visual ones (monitor, keyboard). Neighbors

were computed using cosine distance after mean centering.

6. Conclusion

Humans learn new skills by building upon existing

knowledge and experiences. We attempt to apply this be-

havior to AI models by demonstrating cross-task learning

for the class of vision-language problems using VQA and

VR. To enhance inductive transfer, we propose sharing core

vision and language representations across all tasks in a way

that exploits the word-region alignment. We plan to extend

our method to larger sets of vision-language tasks.

WTL[49] FDA[24] MLP[38, 26] MCB[16] HiCo[37] Ours

val 58.9 - 63.6 - - 66.2

test-dev 62.4 64.0 65.9 69.9 65.8 64.8
test-std 63.5 64.2 - - 66.1 64.8

Trained on train+val - train train+val train+val train

Table 3: External Comparisons on VQA: We include external

comparisons, but note that internal comparisons are more con-

trolled and informative. The MLP results use the implementation

from [38]. For test accuracy, it is unclear whether FDA uses val

to train. The original MLP implementation [26] using Resnet-101

yields 64.9 and 65.2 on test-dev and test-std respectively. MCB

reports only test-dev accuracy for the directly comparable model

(final without ensemble). Note that the overall performance of our

model is slightly worse than MLP and MCB because only about

10% of the VQA dataset benefits from visual attention. Our model

achieves 62.1% on color questions using attention, outperforming

WTL’s 54% and MLP’s 51.9%.

Word Word2Vec SVLR

column newspaper, magazine, book, letter pillar, post, pole, tower, chimney
counter curb, stem, foil, stop, dispenser shelf, stove, countertop, burner

horn piano, guitar, brass, pedal tail, harness, tag, paw
meat chicken, lamb, food, uncooked rice, scrambled, piled, slice

monitor watch, control, checked, alert keyboard, computer, portable

Table 4: Word Representations from SVLR vs Word2Vec: We

compare nearest neighbors (cosine distance) for a set of words us-

ing word2vec embeddings as well as SVLR.
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