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Abstract

Recent progress in style transfer on images has focused

on improving the quality of stylized images and speed of

methods. However, real-time methods are highly unstable

resulting in visible flickering when applied to videos. In this

work we characterize the instability of these methods by ex-

amining the solution set of the style transfer objective. We

show that the trace of the Gram matrix representing style

is inversely related to the stability of the method. Then,

we present a recurrent convolutional network for real-time

video style transfer which incorporates a temporal consis-

tency loss and overcomes the instability of prior methods.

Our networks can be applied at any resolution, do not re-

quire optical flow at test time, and produce high quality,

temporally consistent stylized videos in real-time.

1. Introduction

Artistic style transfer of images aims to synthesize novel

images combining the content of one image with the style

of another. This longstanding problem [2, 9, 17, 18] has re-

cently been revisited with deep neural networks [12]. Sub-

sequent work has improved speed [22, 34], quality [35, 13,

36], and modeled multiple styles with a single model [8].

Recent methods for style transfer on images fall into two

categories. Optimization-based approaches [12, 13] solve

an optimization problem for each synthesized image; they

give high-quality results but can take minutes to synthesize

each image. Feedforward methods [22, 34, 8] train neu-

ral networks to approximate solutions to these optimization

problems; after training they can be applied in real-time.

However, all these methods are highly unstable resulting

in visible flickering when applied to videos; see Figure 1.

Ruder et al. [30] extends the optimization-based approach

from images to videos. Their method produces high-quality

stylized videos, but is too slow for real-time application.

In this paper, our goal is to perform feedforward style

transfer of videos while matching the high-quality results

produced by the optimization-based methods. Recent meth-

ods for style transfer use Gram matrix of features to repre-

sent image style: stylized images are synthesized by match-

Figure 1. State-of-the-art real-time style transfer networks (e.g.,

[22]) are highly unstable. Consecutive video frames that are visu-

ally indistinguishable to humans (top) can result in perceptibly dif-

ferent stylized images (middle). In this work, we characterize such

instability and propose a recurrent convolutional network that pro-

duces temporally consistent stylized video in real-time (bottom).

ing the Gram matrix of the style image. We find that the

trace of the style image’s Gram matrix is closely related to

the pixel instability shown in Figure 1. Specifically, the so-

lution set of the Gram matrix matching objective is a sphere

with radius determined by the trace of the style image’s

Gram matrix. Due to the nonconvexity of this objective,

minor changes in the content image can pull the synthesized

image to different solutions of this Gram matrix matching

objective function. If all the solutions are close together

(small trace), then different solutions will still result in sim-

ilar stylized images (no instability). However, if the solu-

tions are far apart (large trace), then different solutions will

result in very different stylized images (high instability).

Based on this insight, we propose a method which

greatly improves the stability of feedforward style transfer

methods, synthesizing high-quality stylized video. Specif-

ically, we use a recurrent convolutional network for video

stylization, trained with a temporal consistency loss which

encourages the network to find similar solutions to the Gram
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matrix matching objective at each time step.

Our contributions in this paper are twofold:

(i) First, we characterize the instability of recent style

transfer methods by examining the solution set of the

style transfer objective, showing an inverse relation be-

tween the trace of a style’s Gram matrix and its sta-

bility. Our characterization applies to all neural style

transfer methods based on Gram matrix matching.

(ii) Second, we propose a recurrent convolutional network

for real-time video style transfer which overcomes the

instability of prior methods. Inspired by [30], we in-

corporate a loss based on optical flow encouraging the

network to produce temporally consistent results. Our

method combines the speed of feedforward image styl-

ization [22, 34, 8] with the quality and temporal stabil-

ity of optimization-based video style transfer [30], giv-

ing a 1000× speed improvement for stable video style

transfer without sacrificing quality.

2. Related Work

Texture Synthesis. Texture synthesis is closely related

to style transfer; the goal is to infer a generating process

from an input texture to enable further production of sam-

ples of the same texture. Earlier attempts in computer vi-

sion to address the problem of texture synthesis can be di-

vided into two distinct approaches: parametric and non-

parametric. Parametric approaches compute global statis-

tics in feature space and sample images from the texture en-

semble directly [29, 42, 16, 6]. Non-parametric approaches

estimate the local conditional probability density function

and synthesize pixels incrementally. Methods based on this

approach generate new textures either by re-sampling pixels

[10, 38] or whole patches [25, 9] of the original texture.

Parametric methods are based on Julesz [23] characteri-

zation of textures where two images are said to have same

texture if they have similar statistical measurements over a

feature space. Gatys et al. [11] build on the seminal work

by Portilla and Simoncelli [29] by using feature space pro-

vided by high performing neural networks and using Gram

matrix as the summary statistic. In [35] the authors tackle

the problem of perceptual quality in feed forward based

texture synthesis by proposing instance normalization and

a new learning formulation that encourages generators to

sample unbiasedly from the Julesz texture ensemble. Chen

and Schmidt [5] build on the work done in texture trans-

fer by proposing a novel“style swap” based approach where

they create the activations of the output image by swapping

patches of the content image with the closest matching style

activation patches. The swapped activation is then passed

through a inverse network to generate styled image. Their

optimization formulation is more stable than [22, 34] mak-

ing it particularly suitable for video applications. Though

their approach has generalization power [12] and is stable,

it can’t be used for real time video application due to run-

time being of the order of seconds.

Style Transfer. Gatys et al. [12] showed that high qual-

ity images can be generated by using feature representa-

tions from high-performing convolutional neural networks.

Their optimization based approach produces perceptually

pleasing results but is computationally expensive. Johnson

et al. [22] and Ulyanov et al. [34] proposed feed-forward

networks which were a thousand times faster than [12] and

could produce stylized images in real-time. However, each

style requires training of a separate feed-forward network

and the perceptual quality of the images is inferior com-

pared to the optimization based approach. Dumoulin et

al. [8] proposed a conditional instance normalization layer

to address this issue, allowing one network to learn multi-

ple styles. This results in a simple and efficient model which

can learn arbitrarily different styles with considerably fewer

parameters without compromising on speed or perceptual

quality as compared to [22, 34].

Optical Flow. Accurate estimation of optical flow is

a well studied problem in computer vision with variety of

real-world applications. Classical approach for optical flow

estimation is by variational methods based on the work by

Horn and Schunck [19]. Convolutional neural networks

(CNNs) have been shown to perform as good as state of

the art optical flow detection algorithms. FlowNet [20, 7]

matches the performance of variational methods and intro-

duces novel CNN architectures for optical flow estimation.

A full review of optical flow estimation is beyond the scope

of this paper and interested readers can refer to [1, 33, 3]

Style Transfer on Videos. Artistic stylization of images

is traditionally studied under the label of non-photorealistic

rendering. Litwinowicz [27] was one of the first to com-

bine the idea of transferring brush strokes from impression-

ist painting to images and using optical flow to track pixel

motion across video frames to produce temporally coherent

output video sequences. Hays and Essa [14] build on this

to add further optical and spatial constraints to overcome

flickering and scintillation of brush strokes in [27]. Hertz-

mann [17] improves on the perceptual quality of images by

presenting techniques for painting an image with multiple

brush sizes, and for painting with long, curved brush strokes

and later extend this work to videos in [18].

Recently Ruder et al. [30] extended the optimization

based approach in [12] by introducing optical flow based

constraints which enforce temporal consistency in adjacent

frames. They also proposed a multi-pass algorithm to en-

sure long term consistency in videos. Their algorithm pro-

duces extremely good results in terms of temporal consis-

tency and per frame perceptual quality but takes a few min-

utes to process one frame.
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3. Stability in Style Transfer

3.1. Style Transfer on Images

We use the style transfer formulation from [12], which

we briefly review. Style transfer is an image synthesis task

where we receive as input a content image c and a style

image s. The output image p minimizes the objective

L(s, c, p) = λc Lc(p, c) + λs Ls(p, s), (1)

where Lc and Ls are the content reconstruction loss and

style reconstruction loss respectively; λc and λs are scalar

hyperparameters governing their importance.

Content and style reconstruction losses are defined in

terms of a convolutional neural network φ; we use the VGG-

19 [32] network pretrained on ImageNet. Let φj(x) be the

jth layer network activations of shape Cj × Hj × Wj for

image x. Given a set of content layers C and style layers S ,

the content and style reconstruction losses are defined as:

Lc(p, c) =
∑

j∈C

1

CjHjWj

‖φj(p)− φj(c)‖
2
2, (2)

Ls(p, s) =
∑

j∈S

1

CjHjWj

‖G(φj(p))−G(φj(s))‖
2
F , (3)

where G(φj(x)) is a Cj × Cj Gram matrix for layer j ac-

tivations given by G(φj(x)) = ΦjxΦ
T
jx, where Φjx is a

Cj ×HjWj matrix whose columns are the Cj-dimensional

features of φj(x).
Rather than forcing individual pixels of output image to

match content and style images, the content and style recon-

struction losses encourage the generated image to match the

high-level features of the content image and the feature cor-

relations of the style image.

3.2. Gram Matrix and Style Stability

As shown in Figure 1, imperceptible changes in the con-

tent image c can result in drastically different stylized im-

ages p. However, we observe that this instability is not uni-

form across all styles. Some style, such as Composition XIV

(see Figure 1) are highly unstable, while others such as The

Great Wave (see Figure 9) show less qualitative instability.

To understand how instability depends on the style im-

age, we consider only style loss for a single layer. Then

the style transfer network minimizes the objective (drop-

ping the subscript j for notational convenience):

min
G(φ(p))

1

CHW
‖G(φ(p))−G(φ(s))‖2F ,

min
Φp

‖ΦpΦ
T
p − ΦsΦ

T
s ‖

2
F .

(4)

As motivation, consider the simple case C = H = W = 1;

then Equation 4 reduces to (Φ2
p −Φs)

2, which is a noncon-

vex function with minima at Φp = ±Φs, shown in Figure 2

Figure 2. Visualization of the minimization objective in Equation

4 for 1-D and 2-D cases. For 1-D the two solutions differ by 2S.

Similarly, for 2-D case the solutions lie on a circle of radius S.

This generalizes to the N -D case where the solutions lie on a N -D

sphere centered at the origin with radius tr(G(φ(p)))
1

2 .

(left). Similarly, when C = H = 1,W = 2, shown in

Figure 2 (right), the minima lie on a circle of radius Φs. In

both the cases, the minima lie at a distance Φs away from

the origin. This observation holds in general:

Theorem 1. Let γ be a sphere centered at the origin

with radius tr(ΦsΦ
T
s )

1

2 . Then, Φp minimizes the objective

J(Φp) = ‖ΦpΦ
T
p − ΦsΦ

T
s ‖

2
F iff Φp ∈ γ.

Proof. Suppose that Φp = Φs; then ΦpΦ
T
p = ΦsΦ

T
s and

J(Φp) = 0 so Φp minimizes the objective. Now let Φp be

any minimizer of J ; then J(Φp) = 0, so ΦpΦ
T
p = ΦsΦ

T
s

and thus tr ΦpΦ
T
p = trΦsΦ

T
s and so Φp ∈ γ.

Now let Φp ∈ γ. Since J(Φs) = 0 we know Φs ∈ γ;

thus there exists an orthogonal rotation matrix U such that

Φp = ΦsU . Then we have ΦpΦ
T
p = ΦsUUTΦT

s = ΦsΦ
T
s ,

so J(Φp) = 0 and thus Φp minimizes J .

This result suggests that styles for which the Gram ma-

trix trace tr ΦsΦ
T is large should exhibit more severe insta-

bility, since solutions to the style reconstruction loss will lie

further apart in feature space as tr ΦsΦ
T
s increases.

We empirically verify the relationship between tr ΦsΦ
T
s

and the stability of style transfer by collecting a small

dataset of videos with a static camera and no motion; the

only differences between frames are due to imperceptible

lighting changes or sensor noise.

We then trained feedforward style transfer models on the

COCO dataset [26] for twelve styles using the method of

[22], and used each of these models to stylize each frame

from our stable video dataset. Due to the static nature of

the input videos, any difference in the stylized frames are

due to the inherent instability of the style transfer models;

we estimate the instability of each style as the average mean

squared error between adjacent stylized frames. In Figure 3

we plot instability vs the trace of the Gram matrix for each

style at the relu1 1 and relu2 1 layers of the VGG-16

loss network; these results show a clear correlation between

the trace and instability of the styles.
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Figure 3. We train feedforward style transfer models for twelve

styles, and define the instability of a style as the mean squared

error between stylized adjacent frames over a dataset of videos

with a static camera and no motion. We also compute the trace

of the Gram matrix at two layers of the VGG-16 loss network for

each style; styles with larger trace tend to be more unstable.

4. Method: Towards Stable Style Transfer

As shown above, feedforward networks for real-time

style transfer can produce unstable stylized videos when the

trace of the style’s Gram matrix is large. We now present a

feedforward style transfer method that overcomes this prob-

lem, matching the speed of [22] and the stability of [30].

4.1. Overall Architecture

Our method takes as input a sequence of content images

c1, . . . , cT and a single style image s, and produces as out-

put a sequence of stylized images p1, . . . , pT . Each output

image pt should share content with ct, share style with s,

and be similar in appearance to pt−1. At each time step, the

output image pt is synthesized by applying a learned style

transfer network fW to the previous stylized image pt−1

and the current content image ct: pt = fW (pt−1, ct).
Similar to [22, 34] we train one network fW per style

image s. The network is trained to minimize the sum of

three loss terms at each time step:

L(W, c1:T , s) (5)

=

T∑

t=1

(λcLc(pt, ct) + λsLs(pt, s) + λtLt(pt−1, pt)),

where Lc and Ls are the content and style reconstruc-

tion losses from Section 3; Lt is temporal consistency loss

which prevents the network output from drastically varying

between time steps. The scalars λc, λs, and λt are hyper-

parameters weighting the importance of these terms. The

network fW is trained to minimize the combined loss in

Equation 5 on a training dataset of video sequences {c1:T }
via stochastic gradient descent.

4.2. Style Transfer Network

If our network is to produce temporally consistent out-

puts, then it cannot process frames independently; it must

have the capacity to examine its own previous outputs to en-

sure consistency. Our networks therefore take as input both

the current content image ct and the stylized result from the

Warp	

t+1	 t+2	

Warp	

t	

Flow 
Loss 

Content  
Loss 

Style 
Loss 

Flow 
Loss 

Content  
Loss 

Style 
Loss 

Content  
Loss 

Style 
Loss 

Figure 4. System overview. Our style transfer network takes as

input the previous stylized image pt−1 and the current video frame

ct, and produces a stylized version of the frame. The output at each

timestep is fed as input at the next time step, so our system is a re-

current convolutional network. At each time step we enforce style

and content losses to ensure similarity with the input frame and

style image; between each consecutive frame we enforce a tempo-

ral consistency loss which encourages temporally stable results.

previous frame pt = fW (pt−1, ct). As shown in Figure 4,

the output from the network at each time step is fed as in-

put to the network at the next time step. The network fW
is therefore a recurrent convolutional network, and must be

trained via backpropagation through time [31, 40].

The two inputs to fW are concatenated along the channel

dimension, after which the architecture of fW follows [8]:

it is a deep convolutional network with two layers of spa-

tial downsampling followed by several residual blocks [15]

and two layers of nearest-neighbor upsampling and convo-

lution. All convolutional layers are followed by instance

normalization [35] and ReLU nonlinearities.

4.3. Temporal Consistency Loss

By design our style transfer network can examine its own

previous outputs, but this architectural change alone is not

enough to ensure temporally consistent results. Therefore,

similar to Ruder et al. [30] we augment the style and con-

tent losses with a temporal consistency loss Lt encouraging

temporally stable results by penalizing the network when its

outputs at adjacent time steps significantly vary.

The simplest temporal consistency loss would pe-

nalize per-pixel differences between output images:

Lt(pt−1, pt) = ‖pt−1−pt‖
2. However, for producing high-

quality stylized video sequences we do not want stylized

video frames to be exactly the same between time steps; in-

stead we want brush strokes, lines, and colors in each styl-

ized frame to transfer to subsequent frames in a manner con-

sistent with the motion in the input video.

To achieve this our temporal consistency loss utilizes

optical flow to ensure that changes in output frames are

consistent with changes in input frames. Concretely, let

w = (u, v) be the (forward) optical flow field between in-

put frames ct−1 and ct. Perfect optical flow gives a pix-
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Figure 5. The temporal consistency loss Lt(pt−1, pt) warps pt us-

ing optical flow, giving a warped frame p̃t. The previous frame

pt−1 and warped frame p̃t are multiplied by an occlusion mask;

Lt(pt−1, pt) is then the Euclidean distance between pt−1 and p̃t.

elwise correspondence between ct and ct−1; we want the

corresponding pixels of pt and pt−1 to match. Therefore

the temporal consistency loss penalizes the difference

pt−1(x, y)− pt(x+ u(x, y), y + v(x, y)) (6)

for all pixel coordinates (x, y). This difference can be ef-

ficiently implemented by warping the output frame pt us-

ing the optical flow to give a warped frame p̃t, then com-

puting the per-pixel differences between p̃t and pt−1. The

use of bilinear interpolation makes this warping differen-

tiable [21].

Due to foreground object motion, some pixels in ct−1

may become occluded in ct; likewise some pixels which are

occluded in ct−1 may become disoccluded in ct. As a result,

enforcing the temporal consistency loss between all pixels

of p̃t and pt−1 would result in artifacts at motion bound-

aries. We therefore use a ground-truth occlusion mask m to

avoid enforcing the temporal consistency loss for occluded

and disoccluded, giving our final temporal consistency loss:

Lt(pt−1, pt) =
1

HW
‖mt ⊙ pt−1 −mt ⊙ p̃t‖

2
F , (7)

where m(h,w) ∈ [0, 1] is 0 in regions of occlusion and mo-

tion boundaries, ⊙ is elementwise multiplication, and H,W

are the height and width of the input frame. This loss func-

tion is summarized in Figure 5.

Computing this loss requires optical flow and occlusion

masks; however since this loss is only applied during train-

ing, our method does not require computing optical flow or

occlusion masks at test time.

4.4. Implementation Details

Following [22, 8] we first train an image style transfer

network on the COCO dataset [26] using only the content

and style losses Lc and Ls. We then finetune the model

using all three losses on the Sintel Dataset [4, 41]; Sintel

consists of rendered images and thus provides pixel-perfect

Style Real-Time

Baseline

[22]

Optim

Baseline

[30]

Ours

The Wave 24.3 / 0.47 25.5 / 0.48 24.8 / 0.54

Metzinger 23.6 / 0.31 24.4 / 0.37 24.2 / 0.42

Composition XIV 23.8 / 0.31 24.0 / 0.38 24.2 / 0.42

Mosaic 23.7 / 0.31 24.4 / 0.37 24.0 / 0.39

Rain Princess 23.8 / 0.41 25.2 / 0.45 24.4 / 0.49

Table 1. We evaluate the stability of each method by finding

corresponding 100 × 100 background patches between adjacent

video frames from the DAVIS dataset, then computing PSNR /

SSIM between these patches in the stylized versions of the frames.

We report mean PSNR / SSIM between stylized corresponding

patches across all frames from all videos of the DAVIS dataset.

Our method is generally more stable than the Real-Time baseline,

and has comparable stability to the Optim baseline.

optical flow and occlusion masks. Finetuning rather than

training from scratch allows for a more controlled compar-

ison with previous methods for feedforward image styliza-

tion. During training we resize all video frames to 512×218
and use random horizontal and vertical flips for data aug-

mentation; we train for 10 epochs with BPTT for 4 time

steps using Adam [24] with learning rate 1× 10−3.

5. Experiments

Our experiments show that our method results in stylized

video sequences with comparable image quality and stabil-

ity as optimization-based methods [30], while retaining the

speed advantage of feedforward methods [22, 34].

5.1. Baselines

We compare our method with two state-of-the-art ap-

proaches for image and video stylization.

Real-Time Baseline [22, 8]. We train feedforward net-

works for image stylization and apply the resulting network

to each video frame independently. This method allows for

high-quality image stylization in real-time, but leads to se-

vere temporal instability when applied to videos.

Optim Baseline [30]. This method explicitly minimizes

an objective function to synthesize stylized frames, leading

to very stable, high-quality results, but requiring minutes of

processing per video frame. We use the single-pass algo-

rithm from [30]; their multipass algorithm improves long-

term temporal consistency at the cost increased runtime. We

use the open-source code released by the authors of [30].

5.2. Datasets

Sintel. The Sintel Dataset [4, 41] consists of 35 video se-

quences from an animated movie, divided into a training set

of 23 videos and a test set of 12 videos; each sequence has

between 20 and 50 frames. We use Sintel for training since

it provides pixel-perfect optical flow and occlusion masks;

we show qualitative results on the Sintel test set.
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Figure 6. We measure the stability of our method with respect to

controlled image distortions by taking an image patch, distorting

it, then computing SSIM between the original and distorted patch

(Content); we then stylize both the original and distorted patches

using our method and the Real-Time baseline, and compute SSIM

between the stylized original and stylized distorted patches. Vary-

ing the magnitude of the distortion measures the stability of the

method with respect to that distortion. We consider shifting the

patch by 0 to 19 pixels in the input frame (top) and applying blur

and sharpening kernels to the patch with varying strength (bot-

tom); repeating the experiment for two styles (Metzinger, left and

Wave, right). All results are averaged over random 256 × 256
background patches from 100 random frames from DAVIS videos.

Our method is much more robust to these controlled distortions.

DAVIS. The DAVIS dataset [28] comprises 50 real-

world video sequences with an average of 69 frames per

sequence. These videos include effects such as occlu-

sion, motion-blur, appearance change, and camera motion,

making it a challenging benchmark for video stylization.

Each video frame is annotated with a ground-truth fore-

ground/background segmentation mask. We use this dataset

for qualitatively and quantitatively evaluating all methods.

5.3. Quantitative Evaluation

Controlled Distortions. If a style transfer method is sta-

ble, then small changes to its input should result in mod-

est changes to its output. Before moving to unconstrained

videos, we can first measure the stability of our method in a

more controlled setting using artificial image distortions.

Given an image patch c, we apply a distortion d to give a

distorted patch d(c). We measure SSIM between c and d(c),
then apply a trained style transfer network fW to both c

and d(c), and measure SSIM between fW (c) and fW (d(c));
we then repeat the process, varying the magnitude of the

distortion d. If the network fW is robust to the distortion,

then as the magnitude of d increases the image similarity

between fW (c) and fW (d(c)) should decay at the same rate

as the similarity between c and d(c).
In Figure 6 we show the results of this experiment for

two types of distortion: translation and blurring / sharpen-

ing, comparing our method against the Real-Time baseline

Image-Size Real-Time

Baseline

[22]

Optim

Baseline

[30]

Ours Speedup

vs

[30]

256× 256 0.024 22.14 0.024 922x

512× 512 0.044 59.64 0.044 1355x

1024× 1024 0.141 199.6 0.141 1415x

Table 2. Speed (in seconds) for our method vs the two baseline

methods for processing a single video frame for varying resolu-

tions. For the Optim baseline we use the default of 1000 iterations.

Our method generates stylized video matching the speed of real-

time baseline method and the temporal consistency of the Optim

baseline. All methods are benchmarked on a Titan X Pascal GPU.

on two styles. In all cases, as distortion magnitude increases

our method shows a decay in image similarity comparable

to that between c and d(c); in contrast the image similarity

for the baseline decays sharply. This shows that compared

to the baseline, our method is significantly more robust to

controlled distortions.

Video Stability. We aim to show that our method can

stylize real-world videos, matching the stability of the op-

tim baseline. The instability of the real-time baseline typ-

ically manifests most strongly in background image re-

gions with relatively little motion. To quantitatively mea-

sure this phenomenon, we use the foreground/background

masks from the DAVIS dataset.

For each video sequence in the DAVIS dataset, we find

corresponding 100 × 100 pixel patches in adjacent frames

that do not intersect the foreground object as follows: We

first choose a random background patch at time t, then find

the patch at time t+ 1 which is within 20 pixels of the first

patch and maximizes the PSNR between the two patches.

We then compute PSNR and SSIM [37] between the styl-

ized versions of these corresponding patches, and report the

average PSNR and SSIM across all methods, videos1, and

across 5 styles; results are shown in Table 1.

This experiment quantifies the instability of the real-

time baseline, and shows that our method produces stylized

videos with stability comparable to the Optim baseline.

Speed. Table 2 compares the runtime of our method with

the baselines for several image sizes; for the Optim baseline

we exclude the time for computing optical flow.

At test-time our method produces temporally consistent

stylized video frames without explicitly computing optical

flow. It matches the speed of the real-time baseline; both

are roughly three orders of magnitude faster than the Optim

baseline. Our method can process images of size 512× 512
at 20 FPS, making it feasible to run in real-time.

1Running the Optim baseline for all videos and styles would take

approximately 25 days on a GPU, which is computationally infeasible.

Therefore, for this method we select three random videos for each style.
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t1

t2

t3

Content Optim Baseline Ours

Figure 7. Video sequence where our method performs better than

the Optim baseline. We consider three consecutive video frames.

The man gets occluded in t2 and on dis-occlusion in t3 the style

of the man is different from t1 for Optim baseline. In case of our

method the styles remains the same.

5.4. Qualitative Evaluation

Short-Term Consistency. Figure 9 shows patches from

adjacent frames of stylized videos from the DAVIS dataset

for different styles. The real-time baseline method is un-

able to produce the same stylization for background regions

across consecutive video frames; these sudden changes

between adjacent frames manifest as a severe “flicker-

ing” effect in video. In contrast, the Optim baseline and

our method both result in consistent stylization of patches

across adjacent frames, eliminating this flickering.

Figure 9 also showcases the dependence between Gram

matrix trace and style instability. Both Portrait de Met-

zinger and Rain Princess style images have very high Gram

matrix traces, causing the instability in the real-time base-

line. The trace of the Gram matrix for The Great Wave is

much smaller, and correspondingly the real-time baseline

shows less instability on this style.

Long-Term Stability. One challenging problem in

video stylization is long-term stability: When an object

is occluded and then reappears, it should have the same

style. Although we do not explicitly enforce long-term con-

sistency in our loss, we find that our method nevertheless

sometimes shows better long-term consistency than the Op-

tim baseline; see Figure 7. In this example the man is visible

at t1, is occluded by the girl at t2, and reappears at t3. In

our method the man has similar appearance at t1 and t3, but

the baseline “smears” the red color of the girl onto the man

in t3. The authors of [30] also propose a multi-pass version

of their algorithm which explicitly addresses this issue but

it requires at least 10 passes over the video.

Dependency on Optical Flow. The Optim baseline re-

quires forward and backward optical flow at test time to

generate occlusion masks; failures in optical flow estima-

tion can result in poor stylization.

C
o

n
te

n
t Style

Composition

XIV,

Piet Mondrian

O
p

ti
m

B
a

se
li

n
e

O
u

rs

t1 t2 Estimated Flow

Figure 8. Optim baseline is susceptible to errors in optical flow es-

timation. The estimated optical flow does not capture the motion

of the bottom portion of the stick (Bottom-left: Dark blue repre-

sents more motion). Hence, at time t2 the stylized image produced

by Optim baseline shows the stick to be “broken” at the top. Our

method does not require explicit optical flow at test time and does

suffer from this failure mode (red lines added for emphasis).

Figure 8 shows a crop of two frames from the Market 1

video from the Sintel test set. Figure 8 (bottom-right) shows

the optical field as estimated by state-of-the-art optical flow

algorithm [39]. The estimated optical flow incorrectly esti-

mates that only the top portion of the stick is moving. This

error propagates to the stylized image: unlike the original

pair of images where the whole stick moves, only the top

portion of the stick to moves forward in the output produced

by the Optim baseline. Our method does not require ground

truth optical flow during test time and consequently does

not suffer from this failure mode.

User Study. We performed a user study on Amazon

Mechanical Turk to compare the subjective quality of our

method and the two baselines. In each trial a worker is

shown a video from the DAVIS dataset [28], a style image,

and stylized output videos from two methods. In each trial

the worker answers three questions: “Which video flick-

ers more?”, “Which video better matches the style?”, and

“Overall, which video do you prefer?”. For each question,

the worker can either choose a video or select “About the

same”. Results are shown in Table 3.

Taken as a whole, this user study shows that our method

results in videos with significantly less qualitative flicker-

ing than the Real-Time baseline, with temporal stability al-

most on par with the slower Optim baseline. Our method

is perceived to match the style image about as well as other

3Again, running the Optim baseline for all 50 videos is infeasible.
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[30]

[22]

Ours

PSNR / SSIM

23.67 / 0.2078

23.47 / 0.1856

24.14 / 0.5234

PSNR / SSIM

23.68 / 0.9136

23.13 / 0.1622

23.44 / 0.9240

PSNR / SSIM

32.53 / 0.9728

26.00 / 0.7432

27.76 / 0.9194

Figure 9. Examples of consecutive pairs of stylized video frame output. Our method produces stylistically similar frame sequences like

Optim baseline. We report the PSNR/SSIM values for each example crop shown. Our method is significantly better in producing temporally

consistent frames than real-time baseline for highly unstable styles like Rain Princess and Metzinger.

Ours vs RT [22] Ours vs Optim [30]

Question Ours RT Ours Optim

More Flicker 26 193 6 4

Style Match 70 114 8 4

Overall Prefer 133 80 7 8

Table 3. Summary of user study results. We use 50 videos per style

to evaluate our method against the Real-Time (RT) baseline [22]

and 3 videos3 to evaluate against the Optim baseline [30]. Each

pair of videos is evaluated by five workers on Amazon Mechani-

cal Turk. We report the number of videos where the majority of

workers preferred one method over another for a particular ques-

tion. Values in bold are better.

methods, and users prefer the results from our method sig-

nificantly more often than the Real-Time baseline. We refer

the reader to Supplementary material for further details.

Failure Cases. Our method sometimes results in object

transparency when one object occludes another; for an ex-

ample see Supplementary Material. However, this effect

typically occurs for the first frame or two of object occlu-

sion, and is thus not very perceptible when viewing videos.

Our system sometimes suffers from shower-door arti-

facts; we hypothesize that the network learns a motion bias

from the Sintel dataset, since most frames exhibit global

camera motion. We have found that careful tuning of λt

and pretraining on the synthetic Flying Chairs dataset [7]

(which has static backgrounds) help reduce this effect.

6. Conclusion

We studied the stability of the recent style transfer meth-

ods based on neural networks. We characterized the in-

stability of style transfer methods based on Gram matrix

matching by examining the solution set of the style transfer

objective, arguing that instability is exacerbated when the

trace of the Gram matrix of the style image is large.

We then proposed a recurrent convolutional network for

real-time video style transfer which overcomes the insta-

bility of prior methods. As future work, we want to in-

vestigate methods which can encode long-term consistency

while maintaining real-time performance, ensuring stylistic

consistency of objects which get occluded and then reap-

pear over a sequence of consecutive video frames.
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