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Abstract

Research into computational jigsaw puzzle solving, an

emerging theoretical problem with numerous applications,

has focused in recent years on puzzles that constitute square

pieces only. In this paper we wish to extend the scien-

tific scope of appearance-based puzzle solving and consider

”brick wall” jigsaw puzzles – rectangular pieces who may

have different sizes, and could be placed next to each other

at arbitrary offset along their abutting edge – a more ex-

plicit configuration with properties of real world puzzles.

We present the new challenges that arise in brick wall puz-

zles and address them in two stages. First we concentrate

on the reconstruction of the puzzle (with or without missing

pieces) assuming an oracle for offset assignments. We show

that despite the increased complexity of the problem, under

these conditions performance can be made comparable to

the state-of-the-art in solving the simpler square piece puz-

zles, and thereby argue that solving brick wall puzzles may

be reduced to finding the correct offset between two neigh-

boring pieces. We then move on to focus on implementing

the oracle computationally using a mixture of dissimilarity

metrics and correlation matching. We show results on vari-

ous brick wall puzzles and discuss how our work may start

a new research path for the puzzle solving community.

1. Introduction

Although jigsaw puzzles were first introduced in 1760 as

a children’s game to teach geography [28], nowadays they

abstract a range of computational problems in which a set of

unordered fragments should be organized into visual or ge-

ometrical wholes. Indeed, applications are found in fields

as diverse as archeology [4, 13, 7], biology [17], recon-

structing of shredded documents or photographs [1, 16], and

learning visual representations [9, 18]. Theoretical work,

however, has focused on square pieces only and toward

that end various square piece puzzle reconstruction methods

Figure 1. The structure of a “brick wall” jigsaw puzzle and its so-

lution. A brick wall puzzle is based on organizing an unordered set

of rectangular pieces into a coherent image. The spatial placement

is in lines, where each brick (i.e. piece) can have arbitrary offset

relative to its neighbors perpendicular to the offset direction. The

piece numbers in this sketch replaces the pictorial content for illus-

tration only. The shaded pieces represent the possibility of missing

pieces in the puzzle (both in the input and output).

have been proposed over the years where common to many

approaches is a basic operation of seeking the unassigned

piece that should link to an existing piece by finding its best

neighbors according to some affinity function that examines

appearance differences at interfacing boundaries [23, 6, 21],

or matching contours [16, 10, 24, 31, 30, 14]. Such an oper-

ation can repeat itself until a proper solution is achieved and

all parts are put in place, but this somewhat naive greedy ap-

proach is likely to fail because often “best neighbors” are

false-positives, a result of the occasionally unpredictable

continuation between true neighbors and the properties of

the metrics used to predict it. To alleviate this problem var-

ious stronger (often less local) conditions have been pro-

posed, from the best buddies condition by Pomeranz et al.

[23], through loop constraints by Son et al. [26], to tree-

based reassembly constraints by Gallagher et al. [11] and

quadratic programming by Andaló et al. [3] (to name but

a few). These heuristics serve to avoid checking all possi-

ble permutations of piece placements in order to examine

which one scores the best according to some global mea-

sure. Indeed, the problem was proved NP-complete [8] and

the race has been focusing on improving result accuracy.

The latter now appears to saturate at over 95% reconstruc-

tion accuracy in some cases while problem sizes (i.e. num-
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ber of pieces) extend well beyond human solving capacity.

In this paper we wish to extend the scientific scope of

computational jigsaw puzzle solving. If thus far research

focused on square pieces [5, 23, 8, 2] with possible orien-

tation uncertainty [11, 25] and missing pieces [29, 27, 20],

here we wish to consider jigsaw puzzles whose pieces are

rectangular, may have different sizes, and could be placed

next to each other at arbitrary offset along their abutting

edge. With these properties in mind our puzzles are best de-

scribed as “brick wall” where the lines (or rows) of bricks

may have different heights, each brick has its own width,

and its position in its “brick line” could be arbitrary. Since

“brick lines” can be either vertical or horizontal, to sim-

plify presentation we will focus on one case only. Without

loss of generality we therefore consider vertical brick lines

and thus brick “columns”. This situation abstracts the most

obvious application of brick wall puzzles, namely shred-

ded documents, whose importance was demonstrated by a

DARPA challenge [1]. The latter, however, resulted in

semi-automatic solutions with humans in the loop, while

here not only do we seek a formal abstraction of the prob-

lem, but also fully-automatic algorithms. Without loss of

generality we will also focus on the case where columns

have equal width1. Figure 1 illustrates the geometric struc-

ture of a typical “brick wall” jigsaw puzzle.

New challenges arise in brick wall puzzles. To facilitate

both the present and future research, we divide the problem

into two sub-problems. The first concentrates on the recon-

struction of brick wall puzzles assuming an oracle for off-

set assignments, and the second focuses on implementing

(an imperfect version of) the oracle computationally using

a mixture of dissimilarity metrics and correlation matching.

2. The “Brick Wall” puzzle problem

Recall the elements of the square piece jigsaw puzzle

problem: pieces are square and identical in size and their

placement is such that their vertices always meet vertices

of other pieces. This setup is interesting from a compu-

tational point of view because appearance is the sole cue

for reconstruction, a very different condition from the orig-

inal jigsaw puzzles where pieces are endowed with shape,

and a far less constrained condition compared to a typical

“torn-page” puzzles where the geometrical constraints are

far more informative than appearance cues [16].

However, the geometrical setup can be more complicated

than square pieces meeting in vertices and yet provide less

constraints to reconstruction. In (vertical) brick wall puz-

zles pieces are rectangles, they have fixed width but at the

same time can have different heights. As a consequence,

pieces do not always meet at their vertices and thus may be

1If this is not the case then piece width adds additional constraint that

in fact simplifies the solution rather than complicates it.

found at arbitrary offset (or shift) relative to their neighbors.

As illustrated in figure 2a, we will denote the offset between

the top edges of piece xi and piece xj by Si
j(R), where R

is the relation between the pieces. In this sense the brick

wall puzzle problem is in fact a strict generalization of the

square piece problem. Its new degrees of freedom greatly

expands the complexity of the challenge because each puz-

zle piece may have many possible neighborhood configura-

tions. Indeed, if square piece puzzles could have 4 possi-

ble neighborhood configurations between two given pieces

(or 16, if piece orientation is unknown also), now we have

2(H(xi)+H(xj)− 1)+2 possible neighborhood configu-

rations, where H(xi) is the height (in number of pixels) of

piece xi. For our present work we assumed that the orien-

tation of pieces is known because only 180◦ rotations could

keep the brick wall configuration under rectangular pieces.

At the same time, we further complicate the brick wall puz-

zle problem by allowing missing pieces as well.
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Figure 2. (a) Neighborhood relationships in brick wall puzzles.

Two pieces xi and xj are aligned with a shift offset between their

top edges. When S
j
i = 0 there is no offset between the pieces

and their top edges match. By definition, the offsets Si
j(R) and

S
j
i (R

−1) are opposing. (b) Illustration of the irreducibility of

brick wall puzzles to square (of fix size) piece puzzle problem.

To address the brick wall puzzle problem we first note

that it is impossible to reduce it to a square piece puz-

zle by cutting the pieces to fixed size, in particular to the

greatest common divisor (GCD) of piece heights. Unfortu-

nately, such manipulation would not eliminate the need to

join pieces away from their vertices and therefore will not

remove the need to find correct offset between pieces (see

Fig. 2b), a critical factor absent from the square (or fixed

size) piece puzzle problem. This observation is true even if

no residuals remain after cutting the pieces to some fix size,

and needless to say that it becomes even more severe if one

allows missing pieces (as we do). A new type of solution

is thus needed, and to pursue it we divide the problem into

two parts. First we devise a reconstruction algorithm that

assumes an oracle for offset assignments. More specifically,

when queried on two true neighboring pieces, the oracle re-

turns their true relative offset, but if the pieces are not neigh-

bors, it returns a random value (i.e. the oracle itself cannot

indicate if pieces are neighbors or not). Note that assum-

ing such an offset oracle does not reduce brick wall puzzles

into square piece-like jigsaw puzzle because each piece may
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still have multiple correct neighbors at either side, a condi-

tion that is strictly prohibited in the latter classical (square

piece) problem. On top of that, because we wish to allow

missing pieces, the geometrical relationship between pieces

both within and between columns are further loosened up

to increase the complexity of the problem as a whole. As

we show, despite the increased complexity that requires dif-

ferent treatment, performance can be made extremely good

on brick wall puzzles, and comparable to previous work on

square piece puzzles. Thus, in this sense we show that solv-

ing brick wall puzzles may be reduced to finding the correct

offset between two pieces. We thus then turn to address

this part of the problem and focus on possible implemen-

tations of the oracle to find piece offsets computationally

using tools formed for this task. While results on this end

are still imperfect, we hope that our present work will start

a new research path by the puzzle solving community.

2.1. Problem formulation

Given a set of unordered rectangular image pieces of

equal-width, with the possibility of missing pieces and an

arbitrary shift at the correct assignment between them, we

seek to reconstruct the original image.

We denote each piece as xi of dimensions H(xi) × W

pixels, where H(xi) is the height of piece xi. Each piece xi

needs to be placed correctly next to some xj with relation

R ∈{l=Left, r=Right, u=Up, d=Down} and a relative shift

Si
j(R) where here R ∈{l, r}. Following the definition of

Si
j(R), we define xi

∣

∣

Si
j
(R)

as the sub-region of xi that over-

laps xj according to the shift Si
j(R) (see Fig. 2), where we

later describe its use in our algorithm in Sec. 4.

2.2. Problem complexity

As mentioned before, the single and most critical fac-

tor that differentiates brick wall puzzles from the simpler

square piece puzzles is the possibility to have multiple

neighbors at either side of each piece. While we will not

elaborate on the exact combinatorial formulation, a brief

discussion of the key features that influence the complexity

is worth telling. Let us consider the number of possibili-

ties one needs to examine (had the search was exhaustive)

in trying to assign a new neighbor to one side of a piece

which already belongs to the reconstructed puzzle. Let n be

the number of pieces left unassigned from which this new

neighbor should be selected. Since in the original square

piece puzzle problem one could have exactly one neigh-

bor at each side, the number of possibilities in the worst

case is
(

n
1

)

= n. To compute the analogous number in the

brick wall puzzle problem, we first realize that the number

of neighbors can be much larger and is dictated by the size

ratio between the largest and smallest pieces in the puzzle.

If this Maximum Size Ratio is MSR = ⌈max−1
min

⌉ then the

maximum number of neighbors at each side can be at most

MSR+1 which implies
(

n
MSR

)

possible combinations, or ap-

proximately O(nMSR) possibilities in the typical case where

n >> MSR. It is this polynomial factor compared to the

square piece puzzle problem that makes our new problem

particularly challenging.

3. A Base algorithm for square-piece puzzles

In order to approach the new problem as a generalization

of the square piece puzzle problem we first devise a base re-

construction algorithm that is able to solve the square piece

jigsaw puzzles with missing pieces. Not unlike previous

work, we too employ both dissimilarity and compatibility

measures (e.g. see [23, 11, 20, 27]), but we frame the base

algorithm in a modular way that prepares the ground and

permits the extensions needed for brick walls.

3.1. Dissimilarity

Let D(xi, xj , R) be the dissimilarity between two pieces
xi, xj with relation R, where R∈(l, r, u, d). Numerous types
of dissimilarity functions have been used in previous works,
including various norms between the boundary pixels of the
two pieces and/or their gradients (e.g. [5, 23, 11]), or be-
tween the boundary pixels of one piece and the correspond-
ing pixels as predicted by the other piece [23, 20]. In this
paper we use the latter type of dissimilarity with L2 norm,
i.e. the right relation equation becomes:

D(xi, xj , r) =

H(xi)
∑

h=1

3
∑

c=1

(2xi(h,W, c)− xi(h,W − 1, c)− xj(h, 1, c))
2

(1)

where h runs over the rows of the piece, W is its width

and the index of the last column, and c is the color channel.

The equations for the other relations are derived similarly.

We note that this dissimilarity function is not a metric since

D(xi, xj , R) is not necessary equal to D(xj , xi, R
−1).

When extending the problem to brick wall puzzle pieces,
dissimilarity for left and right relations will be consider only
along the overlapping sub-region xi

∣

∣

Si
j

, xj

∣

∣

S
j

i

and normal-

ize by the length (height) of the abutting boundary. More
formally, the adjusted dissimilarity for left and right rela-
tions in brick wall puzzles becomes:

D|Si
j
(xi, xj , R) =

D(xi

∣

∣

Si
j

, xj

∣

∣

S
j

i

, R)

H(xi

∣

∣

Si
j

)
(2)

where H(·) is again the height of a piece (see also Sec. 2.1).

3.2. Compatibility

The compatibility function C(xi, xj , R) is a key mea-
sure in determining how likely it is for two pieces xi and xj

to neighbors with relation R. Optimally, this function, that
depends strongly on the dissimilarity measure, will return 1
iff xi and xj are true neighbors with relation R, and 0 other-
wise. If such a function existed, the jigsaw puzzle problem
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could be solved in polynomial time by a simple greedy al-
gorithm [8]. Evolving from Pomeranz et al. [23], here we
use the compatibility function from [20], i.e.,

C(xi, xj , R) = 1−
D(xi, xj , R)

secondBest(i, R)
(3)

where secondBest is defined as the dissimilarity

D(xi, xk, R) with xk being the second best piece in the dis-

similarity ranks of xi.
Having the compatibility, we rank piece xj as the best

neighbor of piece xi with relation R iff :

∀xk ∈ Parts : C(xi, xj , R) ≥ C(xi, xk, R) (4)

and xi, xj are called best buddies [23] iff they both agree

to be best neighbors with relations R and R−1, respectively.

As we discussed above, in the case of brick walls each

piece can have multiple neighbors. It does not change the

ranking method but it does influence the implementation,

where instead of enabling only one neighbor at each side of

xi, we allow as many neighbors as necessary to cover the

edge of a piece. We will return to this point after describing

the base algorithm that handles square pieces.

3.3. The base algorithm

The base algorithm first calculates the dissimilarity

and compatibility between all pieces using the definitions

above. Next, it extracts a good piece to start with by look-

ing for one that has best buddies in all four directions, such

that these neighbors also have best buddies in all four direc-

tions. Multiple candidates are ranked as in [20].

The main part of the base algorithm manages a candi-

dates set C where each piece is regarded legit for the com-

ing placements. Except for the initial piece, new candidates

are added to C when a piece is fetched out of C and added

to the reconstructed puzzle. Then, its best buddies, or, if

none exists, its best neighbors, are added to C.

Choosing the next piece to place from the set C is a cru-

cial step, since a bad choice could accumulate into major

errors and eventually poor results. With this in mind we

compute 4 different measures that facilitate informed rank-

ing of the candidates in C: two measures of support, one

measure of compatibility, and the number of best buddies

a owns has (see below). The best candidate xi is selected

according to these measures and its assigned location in the

reconstructed puzzle is then computed.

It is important to realize that xi may not have a vacant

location next to its already-placed neighbors, because all

desired locations are already occupied by more fit candi-

dates. In that case we discard the connection between xi

and piece xj who pooled him to C with the relevant rela-

tion. For that reason, when C is empty we recalculate the

compatibility and neighbors connections while considering

only the remaining unplaced pieces. This results in an up-

dated compatibility which implies new best neighbors and

best buddies. Next, we extract all neighbors of the partially

reconstructed puzzle, henceforth the “unplaced” set. As was

done with the set C, we now follow the same procedure of

sorting, extracting, and placing a new piece and adding its

neighbors to set C.

The assignment of location for piece xi is obviously a

critical step. First, we recover the best buddies of xi (or

best neighbors, if no best buddy exists) that have already

been placed. Let us denote this set as Xj . Second, we cal-

culate candidate positions from the relative relation of xi

and its placed neighbors Xj . Finally, each assignment of

xi in a candidate position is evaluated according to the four

measures, and the best position is returned. If all positions

are occupied we discard the connection as mentioned be-

fore, a “false” result is then returned to indicate unresolved

placement, and the next piece in the set is now examined.

Alg. 1 describes the main extraction procedure, and Alg. 2

details the main reconstruction loop.

Algorithm 1 Extract

Require: Set s

Sort(s) according to ranking measures

part←Pop(s)

if (x, y)←Get Best Placement(part) then

Place(part, x, y)

Add Neighbors(part)

return True

else

return False

Algorithm 2 Reconstruct Puzzle

Require: An unordered set of puzzle “bricks”

part←Select Best Seed()

Place(part)

Add Neighbors(part)

while C is not Empty do

Extract(C)

if C is Empty then

Recalculate Parameters()

unplaced← Get Unplaced Parts()

while unplaced is not Empty do

if Extract(unplaced) then

break

Missing from the top level description of the algorithms

is how we rank unassigned candidate pieces in sets C and

unplaced with the 4 measures mentioned. The details of

these ranking, in particular the measure of support, serve

the goal of reconstructing the puzzle while keeping the re-

constructed regions as “convex” as possible – we will prefer

to assign unassigned pieces that not only are supported (in

terms of high compatibility) by as many assigned neighbors

as possible, but those whose candidate neighbors are also

supported in a similar way (see Sec. 3.4 below). If no sup-

port is found, that best candidate will be assigned where it
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has large compatibility and as many best buddies as possi-

ble, but it is still considered as a less confident assignment.

3.4. Support

xm

xi
xi

xmxi 2 N 5(m;R) xj 2 N 5(i; R) \N 5(m;R')

xj

Figure 3. An illustration of 1st order (left) and 2nd order (right)

Support. Green dashed pieces represent the current candidate xi in

its examined position for the support calculation. Red pieces indi-

cate matches according to the support and Blue dashed piece repre-

sent an unplaced neighbor of xi that is a k-neighbor of both xi and

a placed piece xm. Both support measures count how many com-

binations like those shown exist for xi and by doing so how much

support this candidate location obtains from the placed pieces.

As implied above, our new reconstruction approach uti-

lizes information from the pieces that were already assigned

to the reconstructed puzzle in order to assist the placement

of subsequent ones. As much as knowing the compatibility

between two pieces is constructive, it still yields false as-

signments. By “querying” the reconstructed section about

upcoming assignment we can tell if it is likely to cause prob-

lems over the next steps and thus avoid them if needed. This

query attempts to find the support a piece can get, a measure

divided into two parts, dubbed below a first order and sec-

ond order support (support1 and support2, respectively).
Toward that end, we first say that piece xi is a k-neighbor

of xj with relation R if xi is ranked at xj top k neighbors
in the opposite relation R. While other small constants are
possible, we used k = 5 and denote:

N
k(j, R) = {xj top-k neighbors in relation R} (5)

Let xi be the piece wish to place next. The first order sup-

port measure, Support1, is defined as the number of placed

neighbors xm of xi such that xi is their k-neighbor in the

proper relative relation, xi ∈ Nk(m,R). The second or-

der support, support2, is defined as the number of assigned

pieces xm such that Nk(i, R) and Nk(m,R′) share a piece

xj , where R′ is the proper relation between xi neighbors

Nk(i, R) and xm. Figure 3 illustrates these two cases.

With the support measures defined, the algorithm just de-

scribed can solve the square piece puzzle problem with per-

formance on par with the state-of-the-art. While results are

discussed in Sec. 5, this algorithm is not our goal but merely

a means to devise a reconstruction algorithm for the brick

wall puzzle problem, as discussed next.

4. Brick wall reconstruction algorithm

In this section we present the modifications needed for

the base algorithm in order to modify it to handle the brick

wall problem. There are two main issues that need to be

considered. First, each piece will have multiple neighbors.

Second, we will need to predict the correct offset even if

neighbors are determined correctly. As we commented ear-

lier, this second part will first be addressed by an oracle,

prior handling it computationally.

4.1. Handling multiple neighbors

One way to address the multitude of possible neighbors

is to handle them one at a time. Indeed, in our algorithm we

maintain just one best neighbor for each piece despite the

fact that the latter may eventually have several neighbors.

The guiding assumption is that it is safer to consider (and in

particular, assign) the most compatible piece before others,

and thus need not worry about the latter before their turn.

When a connection between two pieces is either realized

(placed next to each other in the reconstructed puzzle) or

discarded (due to a conflict with previously placed piece),

we can ignore their compatibility and allow each of them

to obtain a new best neighbor, if so possible (i.e. if their

common edge was not exhausted by neighbors).

Another implication of multiple neighbors is that search-

ing for the best placement for part xi now becomes more

complex, as we are not only checking if a specific side of

an already placed piece xj is available, but we also need to

come up with the best offset between the pieces and to make

sure that this offset does not make xi overlap or intersect

previously assigned neighboring pieces along that edge. In

anticipation for errors in the offset prediction module, we

endow the process with a “push” mechanism that allows

placements that overlap up to M pixels to push its conflict-

ing prospective neighbors from above or below (recall that

we are speaking of vertical brick walls) accordingly in order

to generate the required free space. While this parameter

may be optimized, in our experiments we select M = 5.

4.2. Offset estimation

In our initial stage we implemented the algorithm above

while obtaining the offset values between prospective

neighbors from an oracle. This oracle provided the correct

offset when queried on correct neighbors and a random off-

set when the pieces are not true neighbors. In reality, of

course, such an oracle does not exist and it needs to be esti-

mated computationally. As the results show in Figure 6 and

Table 1, this is the main challenge in brick wall puzzles and

in order to address it we apply yet another metric we call

the correlation metric between pieces.

The correlation metric is defined as a measure of dis-

similarity between two series as a function of their relative

phase, or offset. As it turns out, several standard tools for

detecting the proper phase between signals do not perform

well enough in our context. We discuss the issues with these

tools and present an alternative for better estimation.
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S
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S
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Corr(xi; xj ; r)[n]

Figure 4. Illustration of correlation process between two pieces

with H(xi) = 4 and H(xj) = 3, respectively whose abutting

boundaries are shown on the left. Pixel colors and correlation re-

sults are fictitious for the illustration only. Red dotted box repre-

sents the correlation vector Corr(xi, xj , r)[n] of a right relation

between xi and xj , where here n = 4 is the minimal result high-

lighted in green. S
j
i = −2 and Si

j = +2 are the result of the

offset estimation corresponding to n = 4.

Indeed, one of the standard tools in computer vision for
matching signals is cross-correlation [22], a measure used
widely for patch matching or object tracking [15]. One of
its advantages is the ability to compute it in the Fourier
domain [12] and by that improve computational cost. In
our attempt to replace the oracle computationally we em-
ploy this tool, as well as the Euclidean distance, but will
also show that by themselves they are not performing well
enough. In the following we develop the proposed compu-
tation for the right relation, though corresponding equations
for the other relation are completely analogous. To further
simplify the presentation we assume (without loss of gener-
ality) that xi is the predicted boundary of xj as described in
section 3.1 and reflected in the following equation:

xi(h,W, c) = 2xi(h,W, c)− xi(h,W − 1, c) (6)

For convenience we also refer to the vertical (i.e. height)

indices as if the top one in the sub-region of overlap between

xi and xj is numbered 0 (refer again to Fig. 2). Hereby we

develop a few baseline equations based on intuitive function

and dissimilarity measures proposed by previous work.
Consider the following two basic types of interaction:

πi,j(h, c, n) =xi(h,W, c)xj(h, 1, c) (7)

δi,j(h, c, n) =xi(h,W, c)− xj(h, 1, c) (8)

where 7 is a similarity measure at the foundations of cross-

correlation and 8 is dissimilarity measure at the foundations

of L1 norm distance. We remind that the original index h

of each xi and xj for a given offset n is different and derive

from the sub-regions.

Let Corr(xi, xj , R) be the vector consisting of all
matching results for all possible relative offsets between
the two pieces xi and xj by combining the basic measures
in Eqs. 7 and 8 into a normalized cross-correlation or L2

norm (or SSD), and normalizing accordingly. The follow-
ing equations refer to 7 and 8 respectively:

Corr(xi, xj , R)[n] = 1−

w

w

w

w

1

H̃

∑

h

∑

c

πi,j(h, c, n)

w

w

w

w

(9)

Corr(xi, xj , R)[n] =
1

H̃

∑

h

∑

c

(

δi,j(h, c, n)
)2

(10)

where we define H̃ = H
(

xi

∣

∣

Si
j
(R)=n

)

as the height of xi

sub-region when Si
j(R) = n. Intuitively, we now define the

shift value between two pieces xi and xj to be:

S
i
j(R) = argmin

n

Corr(xi, xj , R)−
(

H(xj)− 1
)

(11)

or in other words, the predicted offset is one that minimize

the correlation vector. Figure 4 illustrates the correlation

process and the above definitions.
Further elaborating in the spirit of the Lq

p norm by
Pomeranz et al. [23], we also defined the measure:

Corr(xi, xj , R)[n] =
1

H̃

[

∑

h

∑

c

(

δi,j(h, c, n)
)p

]
q

p

(12)

and one based on the Mahalanobis distance:

Θi,j(h, c, n) = (x̃i − x̃j)COV
−1(x̃i − x̃j) (13)

where COV is the covariance matrix and x̃ is x normalized
by its mean and standard deviation. This results in follow-
ing correlation function Corr(xi, xj , R)[n]:

Corr(xi, xj , R)[n] =
1

H̃

∑

h

∑

c

Θi,j(h, c, n) (14)

Combining all of the above, and given poor results for each
of the measures by itself (c.f . Fig. 6) , we propose to com-
bine several of the correlation measures as follows:

Corr(xi, xj , R)[n] =

1

H̃

∑

h

∑

c

(

Θi,j(h, c, n) + 1
)(

δi,j(h, c, n) + 1
)

(15)

Ultimately, we are able to estimate the offset more precisely

and compute relative dissimilarity between xi and xj , but

unlike the base square-piece algorithm, we of course use it

only over xi

∣

∣

Si
j

and xj

∣

∣

S
j

i

as mentioned in section 2.1.

Two main issues arise in this process. First, the compu-

tational time of this metric is two orders of magnitude (i.e.

∼ 100) slower than calculating the dissimilarity function,

the slowest computational component in previous work and

in our base algorithm. Second, it is not guaranteed that the

“best” result obtained by this computation is also the cor-

rect one. We discuss this issue in Sec. 5.3 where we con-

sider two cases, one when a wrong placement is made due
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a1 a2 a3 a4 a5 a6

b1 b2 b3 b4 b5 b6

c1 c2 c3 c4 c5 c6
Figure 5. Results of three types of puzzles over two datasets. images 1-3 from [5] and 4-6 from [19]. (a) Brick Wall puzzles with oracle.

(b) Brick Wall puzzles with oracle and 15% missing pieces. (c) Brick Wall puzzles without oracle.

to wrong offset and the other when wrong offset is not real-

ized thanks to other neighbor who has stronger relation and

a correct offset with the current piece.

5. Results

In this section we discuss three types of brick wall puzzle

results. As our work addresses a new type of jigsaw puz-

zle problem, a comparison to a state-of-the-art in brick wall

puzzles is impossible. However, to set some baseline com-

parison, we first tested our base algorithm on square piece

puzzles and compared it to the prior art. These results are

shown in Table 1. Although the base algorithm is designed

to be “looser” than previous square puzzle algorithms in or-

der to allow the extension to brick walls, performance is

comparable and only slightly inferior to the state-of-the-art.

Another baseline comparison to the prior art focuses on the

estimation metrics and is described below (Sec. 5.2).

With the baseline of the base algorithm established, we

continue to our primary evaluation. We first show results of

brick wall reconstructions with offset oracle, evaluated on

brick wall puzzles with and without missing pieces. Next,

we evaluate and compare the performance of the 5 differ-

ent correlation metrics to reveal limitations and opportuni-

ties ,and finally we show results for brick wall algorithm

with predicted offset (i.e., without offset oracle) based on

our proposed correlation measure. For each of the above,

puzzles are generated by randomly splitting each test im-

age to 10 different sets of brick pieces from which average

performance and standard deviation are presented.

The running time of our brick wall (with oracle) and base

solvers is faster than most previously proposed algorithms,

while without an oracle it is roughly ∼ 50 times slower.

5.1. “Brick walls” with oracle

Results of the brick wall algorithm with oracle are pre-

sented in Fig. 5 a-b. Row (a) shows perfect reconstruction

of images, indicating that the proposed algorithm is capable

of dealing with the new problem and handles well the new

degrees of freedom. Row (b) shows solutions of brick wall

puzzles with missing pieces. Table 1 presents results of the

percentage of correct neighbors as a function of the MSR,

where the pieces that were curved off the images to form

the input of the algorithms were set to have uniformly dis-

tributed random height from 28 pixels up to 28·MSR pixels.

Two interesting points emerge from these results. First,

being so excellent, the result with an oracle suggests that

brick wall puzzles can be essentially reduced to the prob-

lem of correctly estimating the offset between prospective

neighbors. Second, and somewhat counter-intuitive, is the

observation that results appear to improve as the MSR in-

creases. This happens due to our greedy assembly that

considers only one best neighbor, therefore the amount of

pieces is highly significant.

5.2. Correlation metrics performance

Figure 6 shows statistics of the five suggested correla-

tion functions from Sec 4.2. We tested these functions be-

tween two pieces of 75 pixels in height 2. The graph shows

the prediction value of each possible offset (shift) averaged

over 360 piece samples. Here the optimal line represents

the target function and it is clear that the intuitive functions

under-preform the proposed metrics for dissimilarity. This

2This size is larger than the typical 28 pixel piece used in most previous

square piece puzzle solvers, but for brick walls it is reasonable to allow a

descent range of MSRs.
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MIT [5] McGill [19]) BGU [23] (980× 644) BGU [23] (1652× 1120) BGU [23] (1848× 1400)

Mean STD Mean STD Mean STD Mean STD Mean STD

Algorithm Original square-pieces puzzles

Pomeranz et al. [23] 95.0% - 90.9% - 89.7% - 84.7% - 85.0% -

Sholomon et al. [25] 96.2% - 96.0% - 96.3% - 88.9% - 92.8% -

Son et al. [26] 95.5% - 95.2% - 94.9% - 96.4% - 96.4% -

Paikin et al. [20] 95.8% - 96.1% - 95.1% - 96.3% - 95.3% -

Son et al. [27] 95.5% - 96.1% - 95.0% - 96.7% - 95.1% -

Proposed Base Alg. 95.8% - 91.6% - 91.7% - 91.8% - 92% -

MSR “Brick wall” puzzles - With Oracle

2 93.5% 11.0% 96.1% 11.4% 92.8% 10.2% 96.5% 3.3% 99.5% 0.8%

3 93.6% 11.6% 98.4% 5.4% 95.6% 6.5% 96.7% 3.1% 99.6% 0.7%

4 94.4% 9.8% 97.8% 7.1% 96.6% 6.9% 97.5% 3.8% 99.7% 0.4%

5 94.4% 9.8% 99.0% 2.0% 98.0% 3.9% 98.9% 1.5% 99.8% 0.3%

6 93.4% 13.0% 97.9% 2.8% 98.5% 2.8% 97.5% 3.3% 99.8% 0.4%

MSR “Brick wall” puzzles - Without Oracle

2 70.5% 18.3% 56.1% 19.7% 52.1% 13.2% 54.2% 7.6% 55.9% 7.2%

3 70.2% 17.8% 57.5% 20.8% 51.4% 14.6% 51.9% 8.5% 53.4% 5.4%

4 74.7% 17.3% 52.3% 17.2% 51.6% 11.0% 52.1% 6.8% 53.3% 5.9%

5 71.7% 20.6% 51.2% 15.5% 51.5% 11.3% 52.0% 7.3% 52.5% 6.8%

6 73.6% 20.5% 51.3% 14.9% 51.9% 14.7% 51.3% 7.1% 52.5% 7.4%

Table 1. Correct neighbors performance. (Top table) Square-pieces jigsaw puzzles. (Bottom tables) “Brick Wall” with random heights.
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Figure 6. Average correlation metrics performance over pieces of

height 75px. The optimal line represent the target function we

wish to predict. Some metrics perform poorly while the one we

propose in Eq. 15 outperform the rest.

implies that a good dissimilarity function may be good also

for correlation. Note how our proposed correlation function

outperforms the rest of the baseline measures.

5.3. “Brick wall” without oracle

Fig. 5 (c) and Table 1 show results of brick wall puz-

zles with predicted offsets (i.e., where the oracle is imple-

mented computationally). As expected, compared to the use

of an oracle, the average result are degraded. However, both

Fig. 5 and standard deviation results suggest that while the

proposed algorithm can fail on some puzzles, it can achieve

excellent (and sometimes perfect) accuracy on others.

A further examination of results reveals two cases for

success and failure. Consider two pieces xi and xj for

which one computes a wrong offset estimation. Best case

scenario dictates that it will result with a correct assignment

of xi with another neighbor xk, forcing the correct later as-

signment of xi and xj . Indeed, the possibility to have sev-

eral neighbors in the brick wall puzzle problem implies op-

portunities for overcoming bad placement estimations but

also more room for mistakes. Worst case scenario suggests

that xi and xj will be placed as neighbors at that wrong

offset, preventing the true neighbor(s) from being placed

correctly later on. Panels c4-c6 in Fig. 5 show fragments of

correct matches in harder images.

6. Conclusion

In this paper we extended the scope of visual jigsaw

puzzle problem to ‘brick walls” - a strict generalization of

the square piece puzzles with rectangular pieces of differ-

ent shapes and multiple neighbors. We presented a new al-

gorithm that addressed such problems with missing pieces.

When the offset between prospective neighbors are handled

by an oracle, result are superior, suggesting that the main

aspect in solving brick wall puzzles is the correct estima-

tion of these offsets. Combined with a possible approach

for making these estimations, we conclude that future re-

search on brick wall puzzles is likely to steer this way.
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