
A Spatiotemporal Oriented Energy Network for Dynamic Texture Recognition

Isma Hadji

York University, Toronto

hadjisma@cse.yorku.ca

Richard P. Wildes

York University, Toronto

wildes@cse.yorku.ca

Abstract

This paper presents a novel hierarchical spatiotempo-

ral orientation representation for spacetime image analy-

sis. It is designed to combine the benefits of the multilayer

architecture of ConvNets and a more controlled approach

to spacetime analysis. A distinguishing aspect of the ap-

proach is that unlike most contemporary convolutional net-

works no learning is involved; rather, all design decisions

are specified analytically with theoretical motivations. This

approach makes it possible to understand what information

is being extracted at each stage and layer of processing as

well as to minimize heuristic choices in design. Another

key aspect of the network is its recurrent nature, whereby

the output of each layer of processing feeds back to the in-

put. To keep the network size manageable across layers, a

novel cross-channel feature pooling is proposed. The mul-

tilayer architecture that results systematically reveals hier-

archical image structure in terms of multiscale, multiorien-

tation properties of visual spacetime. To illustrate its utility,

the network has been applied to the task of dynamic tex-

ture recognition. Empirical evaluation on multiple standard

datasets shows that it sets a new state-of-the-art.

1. Introduction

Hierarchical representations play an important role in

computer vision [30]. The challenge of extracting use-

ful information (e.g. objects, materials and environmen-

tal layout) from images has led to incremental recovery

of progressively more abstracted representations. Convo-

lutional networks (ConvNets) provide an interesting con-

temporary example of this paradigm yielding state-of-the-

art results on a range of classification and regression tasks,

e.g. [18, 36, 43, 8]. While such learning-based approaches

show remarkable performance, they typically rely on mas-

sive amounts of training data and the exact nature of their

representations often remains unclear. Deeper theoretical

understanding should lessen dependence on data-driven de-

sign, which is especially important when training data is

limited. In complement, the present work explores a more

controlled approach to network realization. A small vocab-

ulary of theory motivated, analytically defined filtering op-

erations are repeatedly cascaded to yield hierarchical repre-

sentations of input imagery. Although the same operations

are applied repeatedly, different information is extracted at

each layer as the input changes due to the previous layer’s

operations. Since the primitive operations are specified an-

alytically, they do not require training data and the result-

ing representations are readily interpretable. Further, the

network yields state-of-the-art results on the important and

challenging task of dynamic texture recognition.

Previous work pursuing controlled approaches to hier-

archical network realization variously relied on biologi-

cal inspiration and analytic principles. Most biologically-

based approaches mimic the multilayered architecture of

the visual cortex with cascades of simple and complex cells

[29, 24, 16]. Typically, these approaches still use learning

and leave open questions regarding the theoretical basis of

their designs. More theoretically driven approaches typi-

cally focus on network architecture optimization, e.g. the

number of filters/layer or the number of learned weights

[19, 9]. Other work made use of predetermined filters at all

layers, as learned via PCA [4] or over a basis of 2D deriva-

tives [14]. Two commonalities appear across these efforts.

First, they address only a single aspect of their architecture,

while assuming all others are fixed. Second, they rely on

learning in optimization. More closely related to the present

work is ScatNet [3]. This network is rigorously defined to

increase invariance to signal deformations via hierarchical

convolution with filters of different frequency tunings. In its

restricted application to 2D spatial images, ScatNet bases

its design on optimization with respect to 2D invariances.

In contrast, the present approach considers 3D spacetime

images, which leads to a spatiotemporal orientation analy-

sis for extracting varying dynamic signal properties across

levels, including invariance maximization via a multiscale

network. Moreover, while the present approach analyti-

cally specifies the number of filters/layer, ScatNet’s choice

of wavelets limits it from analytically specifying the num-

ber of filters/layer, which instead are chosen empirically.

Dynamic texture recognition also has received much at-

tention. Here, features used can be largely categorized as

3066

learned vs. hand-crafted. Those in the former category rely

on either autoregressive [35] or Linear Dynamical Systems

(LDS) [32]. Recent trends typically rely on LDS with dic-

tionary learning [23, 12, 27]. The main downside of such

approaches comes from their inability to represent patterns

beyond their training data. In contrast, hand-crafted ap-

proaches to dynamic texture analysis typically eschew mod-

eling the underlying dynamical system in favor of more di-

rectly encoding the spacetime signal with an attempt to bal-

ance discriminability and generalizability. Such approaches

can be subcategorized according to treating each frame as a

static texture [11, 40], 3D Local Binary Patterns [42, 28], re-

liance on optical flow [25, 21] and building more directly on

spatiotemporal filtering [5, 39, 17, 38, 7]. This last approach

is most akin to the present work, as it also has at its core the

application of spatiotemporal filters to data streams. In con-

trast, the proposed approach exploits repeated application of

such filters and combination of their outputs at each layer to

extract progressively more abstract information.

Contributions. In light of previous research, the contri-

butions of this paper are as follows. 1) A novel processing

network, based on a repeated spatiotemporal oriented en-

ergy analysis, is presented where the layers interact via a

recurrent connection so the output feeds back to the input.

The resulting multilayer architecture systematically reveals

the hierarchical structure in its input. Exposed properties

progress from simple and local to abstract and global across

layers, but are always interpretable in terms of the network’s

explicit design. 2) At every layer, extracted feature maps

are combined via cross-channel pooling to yield coherent

groups based on the employed filters. This innovation con-

strains the representation dimensionality while maintaining

interpretability and high discriminating power. 3) Every

stage of processing in the network is designed based on the-

oretical considerations. Ties to biological modeling are also

established. This design approach removes the need for a

learning phase, which is not always feasible, e.g., when con-

fronted with modest datasets. 4) The resulting network is

used as a novel approach to representation and recognition

of dynamic textures (DTs). In empirical evaluation on stan-

dard datasets, the system achieves superior performance to

virtually all current alternative DT recognition approaches.

Code is available at https://github.com/hadjisma/soe-net.

2. Technical approach

The proposed network architecture is designed to cap-

ture spatiotemporal image structure across multiple layers

of processing as shown in Fig. 1. The input to the system

is a three-dimensional, x = (x, y, t)⊤, spacetime volume,

V (x), and the output is a volume of feature maps, F (x),
that capture the spatiotemporal structure. Each processing

layer, Lk, is comprised of a sequence of four stages: con-

volution, rectification, normalization and pooling. A key

novelty of the approach is the repeated filtering, whereby

F(x)

(x,θM,σN)

(x,θ3,σ1)

(x,θ2,σ2)

(x,θ1,σ1)

Rectification

Normalization

Convolution

Pooling

Input
Volume

Figure 1. Overview of the SOE-Net Architecture. The same set

of operations are repeatedly applied via a recurrent connection;

however, different information, F , is extracted at each pass as the

input changed due to the operations of the previous pass.

the final processing stage of each layer (pooling) feeds back

to the initial processing stage (convolution) to yield a sub-

sequent layer of processing, Lk+1. The entire process is

repeated K times, after which the energy remaining in the

signal about to be fed back through has essentially vanished.

The final output of the network, F (x), is the set of fea-

ture maps extracted at the Kth layer. Each layer in the net-

work corresponds to Spatiotemporal Oriented Energy filter-

ing; therefore, the network is dubbed SOE-Net.

2.1. Repeated filtering

Key to the success of multilayer architectures (e.g. Con-

vNets) is their ability to extract progressively more abstract

attributes of their input at each successive layer and thereby

yield a powerful data representation. As a simple example,

a degree of shift-invariance emerges via linear filtering, fol-

lowed by nonlinear rectification and pooling: The exact po-

sition of the extracted features becomes immaterial across

the pooling support. A similar interpretation becomes more

subtle, however, as the entire filter-rectify-pool block of op-

erations is repeated, especially when using learned filters.

Consider the simple example of Fig. 2. The left side de-

picts a sinusoidal pattern alternately moving rightward and

staying static across time. On the right, the same pattern is

moving rightward behind a similarly textured static picket

fence. An initial stage of directional (motion) filtering can-

not extract the difference in the overall dynamic behavior

of the two patterns. However, further directional filtering

that operates on the output of the initial layer can detect the

overall patterns and thereby allows to make the distinction

between the two different dynamic textures. More gener-

ally, this example shows how powerful features can emerge

across multiple layers of processing: The exposed proper-

ties progress from simple and local to abstract and global.

Motivated by these observations, the proposed SOE-Net

is designed to extract progressively more abstract represen-

tations of the input signal at each layer, while maintaining

interpretability. To achieve these ends, repeated filtering is

employed via a recurrent connection, whereby the output of

3067

R S F R

RR SR FR RR SR

S F

FR

R S F R S F

RRR SRR FR RRR SRR FR

Layer 1

Layer 2 Layer 2

Layer 1

x

y

t x

y

t Input 1 Input 2

Figure 2. Emergence of Abstract Features via Repeated Filtering. (Left) Input synthetic sinusoidal pattern alternately moves right (orienta-

tion along x-t diagonal) and stays static (orientation parallel to time axis). (Right) Same pattern moving right behind a static picket fence

with same spatial pattern (i.e. background motion viewed between the spaces in a stationary picket fence). SOE-Net is used with filters

tuned to Rightward motion, Static (no motion) and Flickering (pure temporal change). Layer 1 captures the local rightwardly moving and

static portions; but not the more abstract alternating temporal move-stop pattern of the left input, nor the fact that the right input maintains

the same spatially interleaved moving and static stripes. Indeed, measurements aggregated over the volumes (shown as histograms on the

right) are the same at this layer. The difference is revealed at L2 after applying the same filters on the R response of L1: The move-stop

behavior of the left texture becomes explicit and yields a large F response. In contrast, the constant rightward motion and picket fence of

the right texture yield a large S response. In practice, more directional filters are applied at each layer; see Sec. 2.2.

layer Lk, denoted as Lk, feeds back to the initial convolu-

tional stage (i.e. convolution with the same filter set) to yield

a subsequent layer of processing, Lk+1. Since the process-

ing at each layer is defined precisely (see following sub-

sections), it will be interpretable. Also, since it is applied

repeatedly, abstraction emerges. This process is depicted in

Fig. 3 with an unfolded recurrence, and symbolized as

Lk+1 = Lk+1 (Lk) , (1)

with L1 = L1 (V (x)). Interestingly, biological models

have advocated that similar processing (termed Filter →
Rectify → Filter) takes place in visual cortex to deal

with higher-order image structures [2].

2.2. Convolution

Convolution serves to make local measurements reveal-

ing salient properties of its input. Given a temporal se-

quence of images, local spatiotemporal orientation is of fun-

damental descriptive power, as it captures the 1st-order cor-

relation structure of the data irrespective of the underlying

visual phenomena [1, 37, 5]. Also, such measures provide

a uniform way to capture spatial appearance and dynamic

properties of the underlying structure. Spatial patterns (e.g.

static texture) are captured as the filters are applied within

the image plane. Dynamic attributes of the pattern are ob-

tained by filtering at orientations extending into time.

Based on the above theoretical motivations, in this work

convolution is designed to extract local measurements of

multiscale, spatiotemporal orientation. Still, having com-

mitted to convolution that captures spatiotemporal orienta-

tion, a variety of options exist for specifying an exact set of

filters, e.g. Gabor, lognormal, wavelet or Gaussian deriva-

tives. Here, Gaussian derivative filters are selected for two

main reasons, c.f . [10]. First, for any given order of Gaus-

L

R

L

R

L

R

C-R-N-S

C-R-N-S

C-R-N-S

Layer k Layer k+1

Input
Volume

R

RR

LR

RL

LL

L

C-R-N-S

C-R-N-S

C-R-N-S

Figure 3. Unfolding the SOE-Net Recurrent Connection. Local

spatiotemporal features at various orientations are extracted with

an initial processing layer, Lk. C-R-N-S indicate Convolution,

Rectification, Normalization and Spatiotemporal pooling, as de-

tailed in Secs. 2.2, 2.3, 2.4 and 2.5, resp., while R and L indicate

rightward vs. leftward filtered data, resp., with symbol strings (e.g.

LR) indicating multiple filterings. A network with only 2 filters

(i.e. 2 orientations) is shown for illustration. Each of the feature

maps at layer Lk is treated as a new separate signal and fed back

to layer Lk+1 to be convolved with the same set of filters but at a

different effective resolution due to spatiotemporal pooling.

sian derivative, a set of basis filters that allow synthesis of

the response at an arbitrary orientation can be specified.

This property makes it possible to set the exact number of

filters used at each layer on a theoretical basis, rather than

experiments or learning. Second, these filters are separable,

which provides efficient implementation. In particular, 3D

Gaussian 3rd- order derivative filters are used, G
(3)
3D(θi, σj),

with θi and σj denoting the 3D filter orientation and scale,

resp. Given an input spacetime volume, V (x), a set of out-

put volumes, C(x; θi, σj), are produced as

C(x; θi, σj) = G
(3)
3D(θi, σj) ∗ V (x), (2)

3068

with ∗ denoting convolution. Since 3rd- order Gaussian fil-

ter are used, M = 10 filters are required to span the space

of orientations [10]. The directions, θ, are chosen to uni-

formly sample 3D orientations as the normals to the faces

of an icosahedron, with antipodal directions identified. The

number of scales, σ, is determined by the size of the space-

time volume to be analyzed; details are provided in Sec. 2.7.

2.3. Rectification

The output of the convolutional stage, C(x; θi, σj), is

comprised of positive and negative responses. Both indi-

cate a contrast change along the direction of the oriented

filters and hence structure along that direction. It is there-

fore interesting to keep the distinction between the two re-

sponses. Also, in anticipation of the subsequent pooling

stage of processing, it is critical to perform some type of

rectification. Otherwise, the pooling across positive and

negative responses will attenuate the signal. By squaring

the individual responses, it is possible to consider the re-

sults in terms of spectral energy, e.g. [37]. Based on these

considerations, the present approach makes use of a nonlin-

ear operation that splits the signal into two paths: The first

path carries the positive responses, while the second carries

the negative responses, both of which are pointwise squared

to relate to spectral energy measurements to yield

E+(x; θi, σj) = (max[C(x; θi, σj), 0])
2

E−(x; θi, σj) = (min[C(x; θi, σj), 0])
2 . (3)

Interestingly, biological findings suggest a model for cor-

tical simple cells that includes a nonlinearity in the form of

two half wave rectifications that treat the positive and neg-

ative outputs in two different paths [13]. Similarly, recent

ConvNet analysis also revealed that learned filters tend to

form pairs with opposite phases [34].

Beyond physical interpretation (signed energy) and re-

lation to biology, use of the squaring function at this stage

is advantageous as it allows for keeping track of the fre-

quency content of the processed signal (i.e. doubling the

maximum frequency present). This information plays an

important role in specifying the pooling stage parameters,

detailed below. Given that the following processing stages

treat the two paths in the exact same way, in the remainder

of the paper the + and − superscripts will be suppressed

when referring to energy measurements, E(x; θi, σj).

2.4. Normalization

Owing to the bandpass nature of the filtering used in the

convolutional stage, (2), the responses are invariant to over-

all additive brightness offsets. Still, the responses remain

sensitive to multiplicative contrast variations, i.e. the filter

response increases with local contrast independent of local

orientation structure. Moreover, the responses after rectifi-

cation, (3), are unbounded from above, which makes prac-

tical signal representation challenging. Divisive normaliza-

tion is a way to correct for these difficulties. Significantly, it

also serves to lessen statistical dependencies present in nat-

ural images via signal whitening [22]. Therefore, the next

stage operates via pointwise division of the rectified mea-

surements by the sum over all orientations to yield

Ê(x; θi, σj) =
E(x; θi, σj)

∑M
m=1 E(x; θm, σj) + ǫ

. (4)

Here, ǫ serves as a noise floor and to reduce numerical in-

stabilities. It is specified as the standard deviation of the

energy measurements across all orientations. Once again, it

is interesting to note that biological modeling of visual pro-

cessing have employed a similar divisive normalization, in-

cluding use of a signal adaptive saturation constant [13]. Fi-

nally, note that features captured at this layer, Ê(x; θi, σj),
are measures of Spatiotemporal Oriented Energy [37, 5];

therefore, the overall network is named SOE-Net.

2.5. Pooling

Two pooling mechanisms are employed to achieve the

desired level of abstraction. First, spatiotemporal pooling is

performed following a frequency decreasing path. Thus, the

same set of filters in the convolution block operate on lower

spatiotemporal frequencies at each subsequent layer thereby

revealing new information from the originally input signal.

Second, the feature maps extracted for each layer are lin-

early combined, through cross-channel pooling, to capture

more complex structures at each layer while preventing the

number of feature maps from exponential increase.

Spatiotemporal pooling. Spatiotemporal pooling

serves to aggregate normalized responses, (4), over space-

time. Aggregation provides for a degree of shift invariance

in its output, as the exact position of a response in the pool-

ing region is abstracted. In SOE-Net, spacetime pooling

is implemented via low-pass filtering with a 3D Gaussian,

G3D(γ), followed by downsampling, ↓τ (·), where γ is the

standard deviation and τ is the sampling period,

Sk(x; θi, σj) =↓τ

(

G3D(γ) ∗ Ê(x; θi, σj)
)

. (5)

Here, a key question is how to specify the pooling param-

eters, γ and τ? Typical ConvNets rely on heuristic choices,

as their learning based approach does not yield enough the-

oretical insight for a formal answer. In contrast, since the

signal properties of the present architecture have been spec-

ified precisely, these parameters can be specified analyti-

cally. First, applying a 3rd- order Gaussian derivative fil-

ter, G
(3)
3D, with zero mean and standard deviation, σ, in the

convolution stage greatly attenuates frequencies ωc > 3
√
3

σ

(i.e. a factor of ≈ 3 beyond the central frequency). How-

ever, given the frequency doubling effect from the squar-

ing in the rectification stage, consideration must instead be

given to η = 2ωc as the effective cut-off frequency. Corre-

spondingly, it is appropriate to select the low-pass filter of

the pooling stage with a cut-off frequency ωl = αη , with

0 < α < 1 to ensure operations on lower spatiotemporal

3069

Cross-
Channel
Pooling

RL

LR

R

LL

L

Spatio-
Temporal
Pooling

1×1×M
Convolution

Cross-
Channel
Pooling

Figure 4. Overview of the Proposed Cross-Channel Pooling.

frequencies at each layer. This implies taking γ = 3
αη

(i.e.

approximating the cut off frequency to be ≈ 3 standard de-

viations away from the central frequency).

To avoid aliasing in downsampling, the sampling theo-

rem is used such that ωs > 2αη. Correspondingly, the sam-

pling period is τ = β 2π
ωs

, 0 < β < 1. In implementation, a

conservative β = 0.5 is employed. Notably, use of low-pass

filtering with decreasing frequencies guarantees an energy

decay from layer Lk to layer Lk+1.

Cross-channel pooling. Cross-channel pooling serves

to aggregate pooled responses, (5), across feature maps.

Figure 3 unfolds the recurrence to illustrate how once all

features maps from layer Lk have gone separately through

the recurrence, the number of feature maps, Sk, for each

scale, σj , used in the convolution block is Mk. This sit-

uation is unsatisfactory for two reasons. First, it fails to

capture the emergence of common attributes across feature

maps that result from applying the same filter orientation,

θi, to the inputs from Lk−1. Second, there is potential for

explosion of the representation’s size as many layers are

cascaded. Both of these concerns can be dealt with by pool-

ing across all feature maps from Lk that result from filtering

with a common orientation, as illustrated in Fig. 4.

To formalize pooling across feature maps, recall that be-

yond the very first layer, each Sk derives from input that

was itself parameterized by an orientation, θk−1
m , from fil-

tering at the previous layer, Lk−1. This dependence is

now captured explicitly by extending its parameterization

to Sk(x; θi, σj , θ
k−1
m). This extension allows the desired

cross-channel pooling to produce the final output of Lk as

Lk(x; θi, σj) =
1

M

M
∑

m=1

Sk(x; θi, σj , θ
k−1
m). (6)

In implementation this operation is realized as a 1× 1×M

convolution with an averaging kernel. Note that the sum-

mation holds vacuously at the very first layer of processing.

Theoretically, (6) can be seen as an oriented energy gen-

eralization of the construction for derivatives of multivalued

images c.f . [6, 33, 31], but is novel in the current context

of oriented energy processing. In particular, given a mul-

tivalued function f(x) = [f1(x), ..., fM (x)]T with x =

(x1, ..., xN)T and defining G =
∑M

m=1 ∇fm(x)∇T fm(x),
a measure of change along v̂ is given as v̂

T
Gv̂. Note that

letting v̂ = êi, with êi the unit vector along xi, yields

ê
T
i Gêi =

∑M
m=1(

∂fm
∂xi

)2. Comparatively, in (6) the multi-

valued function is just the set of feature maps obtained from

a previous layer, Lk−1, that has been differentially filtered

and squared in the convolution and rectification blocks,

resp. Thus, Lk(x; θi, σj) captures the energy along direc-

tion θi taken across the multivalued Sk(x; θi, σj , θ
k−1
m).

Conceptually, the cross-channel pooling, (6), produces a

set of M feature maps (one for each filter orientation, θ) that

capture the amount of structure present in the previous layer

at that orientation, irrespective of the source (i.e. irrespec-

tive of a particular feature map at the previous layer). This

approach thereby yields immediate insight into the nature

of the representation, in contrast to alternative approaches

that rely on random cross-channel combinations, e.g. [20].

Reflecting back on the motivating examples, Fig. 2, the pro-

posed processing was used to generate the feature maps,

yielding exactly the desired abstractions.

2.6. Dynamic texture recognition

The SOE-Net representation, F (x; θi, σj), extracted af-

ter the normalization block of the Kth layer, provides a rich

hierarchical description of visual spacetime in terms of mul-

tiscale spatiotemporal orientation. As such, it has potential

to serve as the representational substrate for a wide variety

of spacetime image understanding tasks (e.g. segmentation,

tracking and recognition). As an illustrative example, dy-

namic texture (DT) recognition is considered. This task has

been considered for two main reasons. First, DTs are perva-

sive phenomena in the visual world. Second, the ability to

recognize these patterns provides the basis for a number of

further applications, including video indexing, scene recog-

nition and change detection in surveillance and monitoring.

For the specific application of dynamic texture recog-

nition, each spacetime volume, V (x), to be recognized is

taken to contain a single pattern. Therefore, the point-

wise extracted feature maps, F (x; θi, σj), can be aggre-

gated over a region, Ω, that covers the entire spacetime tex-

ture sample to be classified to yield a global feature vector,

F(θi, σj) =
∑

x∈Ω

F (x; θi, σj). (7)

The resulting global feature vector is l2 normalized to yield

the overall descriptor F̂(θi, σj). To compare the feature

distributions of an input query to database entries, the Bhat-

tacharyya coefficient is used, as it provides a principled way

to compare two normalized distributions kept as histograms.

While previous work made use of spatiotemporal ori-

ented energies for dynamic textures [5], it differs from the

current work in five significant ways. First and foremost,

previous work did not use repeated filtering, (1), for hierar-

chical abstraction of image structure. Second, it marginal-

ized appearance information so that it did not capture purely

spatial structure and therefore was less able than the current

approach to capitalize on both appearance and dynamics.

3070

Third, it did not separate the opposite phase responses in

rectification, (3). Fourth, it did not employ multiple scales,

σ, (2). Fifth, no cross-channel pooling was involved in pre-

vious work, while it has a key role in the current work, (6).

2.7. Implementation details

Convolution with the Gaussian 3rd derivatives, (2), is re-

alized with separable 13-tap filters, with M = 10 orienta-

tions/scale and σ = 1. Multiscale filtering is realized by ap-

plying the same filters across levels of a Gaussian pyramid,

with factor of 2 subsampling between levels. The number

of scales, |σ|, is chosen automatically to avoid undue border

effects depending on the size of the input spacetime volume:

The coarsest scale is the last such that the filter can fit en-

tirely within the corresponding pyramid level. Unless oth-

erwise noted, this constraint yields |σ| = 2 for all datasets,

except Dyntex++ where |σ| = 1 due to the very small size

of its videos (50 × 50 × 50). Similarly, the number of it-

erations over the network, (1), i.e. the number of layers, K,

is stopped when the spatiotemporal support of the signals

to be fed back through the recurrence is less than or equal

to the filter size; see Sec. 3 for specifics by dataset. Due to

the cross-channel pooling, (6), the output of the convolution

block starting from layer 2 is always M2×|σ| feature maps.

Also, because the proposed rectification strategy, (3), splits

the results of each convolutional block into 2 paths, the ef-

fective number of feature maps after the rectification block

is doubled at each layer. Therefore, the dimension, DK ,

of feature vectors extracted after the normalization block of

the Kth layer is DK = M2 × |σ| × 2K .

3. Empirical evaluation

SOE-Net is evaluated according to standard protocols on

the two most recent dynamic texture datasets, YUVL [5]

and Dyntex [26]. YUVL is the larger with 610 sequences

grouped into 5 classes (YUVL1) or by further subdividing

3 of the initial classes into 6 subclasses (YUVL2), but only

using 509 sequences from the full set; see [5]. Here, a third

organization is introduced (YUVL3), where 2 classes ne-

glected in YUVL2 are reinstated to use the entire set divided

into 8 classes. Dyntex is used in 5 main variations: Dyntex-

35 has 35 classes with 10 sequences/class [41]; Dyntex++

has 36 classes with 100 sequences/class [11]; Alpha, Beta

and Gamma have 60, 162 and 275 sequences, divided into 3,

10 and 10 classes, resp [7]. The same protocol is used for all

datasets. Feature vectors from the last layer of SOE-Net are

input to a Nearest-Neighbor (NN) classifier using the leave-

one-out procedure [32, 5, 27]. Although NN is not state-of-

the-art as a classifier, it is appropriate here where the goal is

to highlight the discriminative power of the features with-

out obscuring performance via use of more sophisticated

classifiers. Still, for completeness and fair comparison to

previous work, results also are reported using Nearest Class

Center (NCC) and SVM classifiers in Sec. 3.3.

3.1. Component-wise validation

SOE-Net’s theory based component specifications are

now validated empirically. Primarily, classification accu-

racy on YUVL is used for this goal, as it is the largest avail-

able and is well organized according to pattern dynamics.

Convolution. The theoretical basis for use of multiscale,

spatiotemporally oriented filters, in general, and Gaussian

derivative filters, in particular, was given in Sec. 2.2. Still,

a choice remains regarding the order of the derivative used.

Table 1 compares 2nd-, 3rd- and 4th-order Gaussian deriva-

tives, in terms of classification accuracy, while using a sin-

gle layer and scale of SOE-Net. The results show G3 as

the best performer. This choice provides the right balance

between tuning specificity and the numerical stability of rel-

atively low-order filtering. In light of these observations, all

subsequent results rely on 3rd-order Gaussian derivatives.

YUVL1 YUVL2 YUVL3

SOE-Net (3D)
G2 G3 G4 G2 G3 G4 G2 G3 G4

83.3 91.1 89.8 85.1 90.2 90.1 74.1 84.6 82.9

Table 1. Comparison of 2nd, 3rd, 4th order Gaussian derivatives.

Also, one could question the benefit of 3D filtering that

captures temporal information in recognizing dynamic tex-

tures over 2D filtering that captures only spatial appearance.

Thus, a 2D version of SOE-Net is used as a baseline com-

parison. Further, a 2D state-of-the-art hand crafted network,

originally proposed for 2D texture analysis, ScatNet [3] is

compared. In both cases, 2D frames are supplied to the 2D

networks. Table 2 shows the decided advantage of 3D over

2D filtering for dynamic texture recognition.

YUVL1 YUVL2 YUVL3

ScatNet (2D) [3] 68.7 69.7 64.8

SOE-NET (2D) 64.0 70.1 60.8

SOE-Net (3D) 95.6 91.7 91.0

Table 2. Benefits of 3D vs. 2D filtering.

Multiple layers and scales. Table 3 documents the ben-

efits of multiscale filtering, (2), at each level of the proposed

network as well as those of multiple layers, (1). The re-

sults show that addition of multiple layers and scales con-

sistently improve classification accuracy, with an increase

ranging from ∼ 2% to ∼ 6% in going from a single layer

and scale to multiple layers and scales. Significantly, the

combined multiscale, multilayer results also outperform the

best results previously presented on this dataset of 94% and

90% for YUVL1 and YUVL2, respectively [5]. (There are

no previously reported results on YUVL3.) These results

highlight the pivotal role of the recurrent connection in the

proposed network that allows it to decompose the input sig-

nal to reveal novel information across scales and layers.

Notably, the network instantiation applied to YUVL is

limited to 2 layers and scales due to the small spatiotempo-

ral extent of some sequences in the dataset; see Sec. 2.7 for

how dataset extent determines layers and scales. Based on

these results, all SOE-Net results presented in the remainder

of this paper are based on feature vectors formed through

3071

YUVL1 YUVL2 YUVL3

Scale 1 Scale 2 [Scale 1, Scale 2] Scale 1 Scale 2 [Scale 1, Scale 2] Scale 1 Scale 2 [Scale 1, Scale 2]

Layer 1 91.1 87.5 92.9 90.2 85.3 90.9 84.6 80.8 86.2

Layer 2 94.3 91.9 95.6 89.0 88.2 91.7 86.7 86.9 91.0

[5] - - 94.0 - - 90.0 - - -

Table 3. Classification accuracy on the YUVL dataset using SOE-Net with multiple layers and scales.

the concatenation of the last layer’s output at all scales.

Two path rectification. Next, the advantage of the pro-

posed two path rectification, (3), is evaluated. Compari-

son is made to two alternative rectification approaches: 1)

full wave rectification, where the positive and negative sig-

nals are combined as its input signal is simply pointwise

squared; 2) ReLU rectification, where only the positive part

of its input signal is retained. Table 4 shows the benefit

of the proposed rectification approach. It is seen that not

only is there value of not neglecting one signal component

(i.e. full-wave outperforms ReLU), but moreover additional

benefit comes from keeping the positive and negative com-

ponents separate, which suggest their complementarity.
YUVL1 YUVL2 YUVL3

Full Wave Rectification 94.2 90.3 89.3

Positive Path (ReLU) 94.2 89.4 88.4

Two Paths 95.6 91.7 91.0

Table 4. Benefits of the proposed two path rectification approach.

Normalization. Normalization, (4), serves to increase

invariance to contrast changes. To document this advan-

tage, an instantiation of SOE-Net without the normalization

block is compared. The results in Table 5 clearly demon-

strate the usefulness of this step.
YUVL1 YUVL2 YUVL3

No Normalization 90.6 87.2 82.8

With Normalization 95.6 91.7 91.0

Table 5. Benefits of the normalization step.

Spatiotemporal pooling. The theoretical basis for use

of a Gaussian filter in spatiotemporal pooling was given

in Sec. 2.5. Here, this choice is validated through com-

parison to two alternative pooling approaches [15]: 1) the

Gaussian filter is replaced with a simple boxcar filter; 2) the

more widely used max pooling is considered. Table 6 shows

the benefit of the proposed spatiotemporal pooling approach

that outperforms other pooling strategies by at least 4%.
YUVL1 YUVL2 YUVL3

boxcar filter 91.7 87.3 87.0

max pooling 91.6 87.4 85.7

Gaussian filter 95.6 91.7 91.0

Table 6. Benefits of the used spatiotemporal pooling approach.

Cross-channel pooling. SOE-Net’s novel cross-channel

(CC) pooling plays a pivotal role in keeping the dimension-

ality manageable. Table 7 compares the size of the feature

vectors with and without CC-pooling for |σ| = 1. Note that

dimensionality reduction does not occur until layer 3, as fi-

nal feature vector output occurs prior to where CC-pooling

would apply and is vacuous at level 1; see Sec. 2.5. To ex-

amine the impact of such striking dimensionality reduction

on classification, SOE-Net is compared with and without

CC-pooling. Here, a dataset with spatiotemporal size big

enough to support 3 layers is needed, as it is the point where

dimensionality reduction becomes apparent. Also, compar-

ing beyond layer 3 is not computationally feasible due to di-

mensionality explosion without CC-pooling, even though it

is reasonable with CC-pooling, as done in Secs. 3.2 and 3.3.

Since the spatial dimensions of YUVL only support up to

layer 2, two variations of Dyntex (Beta and Dyntex 35) are

used here. Significantly, on both datasets accuracy of SOE-

Net with vs. without CC-pooling is comparable, i.e. 97.7%
vs. 96.8% on Dyntex 35 and 95.7% vs. 95.1% on Beta,

although the feature vectors extracted using CC-pooling are

an order of magnitude smaller. These results show that CC-

pooling keeps network size manageable while maintaining

high discriminating power.

L1 L2 L3 L4 L5

SOE-Net (a) 20 400 8000 160000 3200000

SOE-Net (b) 20 400 800 1600 3200

Table 7. Feature dimensions (a) without vs. (b) with CC-pooling.

3.2. Comparison to a learned 3D ConvNet

It is interesting to compare the performance of SOE-Net

to a learning based 3D ConvNet. For this comparison C3D

[36] is used for 3 main reasons. 1) Currently, C3D is the

only ConvNet trained end-to-end using 3D filters only with-

out any pre-processing of the input volumes (e.g. to extract

optical flow). This architecture makes it the most similar

trained network to SOE-Net that also relies on 3D convo-

lutions on the raw input volumes. 2) This pre-trained net-

work has shown state-of-the-art performance, without any

fine tuning, on a variety of tasks, including action recog-

nition, object recognition and dynamic scene classification,

which is very similar to dynamic texture recognition. In-

deed, C3D is advocated as a general feature extractor for

video analysis tasks without fine tuning (see Sec. 3.3 in

[36]). 3) It is not feasible to fine tune a network with any of

the available DT datasets due to their very limited size. So,

alternative ConvNets that require such data for fine tuning

prior to testing cannot be compared in a meaningful fashion.

C3D features are extracted (FC-6 activations as speci-

fied in [36]) for all versions of the YUVL and Dyntex, ex-

cept Dyntex++, which is discarded as the small size of its

videos (50 × 50 × 50) precludes application of C3D. For

experiments with the considered Dyntex versions, the rela-

tively large size of the sequences makes it possible to push

SOE-Net to 3 layers on Dyntex 35 and to 5 layers on Alpha,

Beta, Gamma. The results in Table 8 show that SOE-Net

outperformed C3D on the majority of cases (5 of 7). The

larger performance gaps between SOE-Net and C3D on the

YUVL dataset are of particular note, especially given that

SOE-Net uses only 2 layers on YUVL.

3072

YUVL1 YUVL2 YUVL3 Alpha Beta Gamma Dyntex 35

C3D [36] 88.0 89.8 85.5 100 96.3 95.0 96.3

SOE-Net 95.6 91.7 91.0 98.3 96.9 93.6 97.7

Table 8. Comparison of SOE-Net features versus C3D features.

Alpha Beta Gamma Dyntex 35 Dyntex++

Method SVM NCC SVM NCC SVM NCC NN NCC SVM

Learning-based

[11] - - - - - - - - 63.7

[23] - - - - - 98.6 - -

[12] - - - - - - - 92.8

[27] 87.8 86.6 76.7 69.0 74.8 64.2 99.0 97.8 94.7

Hand-crafted

[39] 84.9 83.6 76.5 65.2 74.5 60.8 - 97.6 89.9

[38] 82.8 - 75.4 - 73.5 - - 96.7 89.2

[17] - - - - - - - 96.5 88.8

[42] 83.3 - 73.4 - 72.0 - - 97.1 89.8

[7] - 85.0 - 67.0 - 63.0 - - -

SOE-NET 96.7 96.7 95.7 86.4 92.2 80.3 97.7 93.1 94.4

Table 9. Comparison to state-of-the-art methods on Dynamic Texture recognition.

Significantly, design of YUVL was motivated by interest

in building a true dynamic texture dataset. So, it groups pat-

terns based on their dynamics, rather than their appearance.

Thus, relative performance on YUVL suggests that SOE-

Net is more able to capitalize on dynamic information than

C3D. Further, SOE-Net either outperforms or is on par with

C3D on datasets that group dynamic textures with more em-

phasis on visual appearance, i.e., Dyntex, suggesting that

SOE-Net is able to capitalize on appearance information as

well. Overall, these results show that SOE-Net can capture

rich, discriminative information, be it dynamic or static ap-

pearance, without reliance on extensive and costly training.

3.3. Dynamic texture recognition state-of-the-art

Comparison now is made to state-of-the-art approaches

designed for dynamic texture recognition using the cur-

rently most widely used DT datasets (i.e. various break-

downs of Dyntex, as YUVL has received notably less at-

tention). In particular, SOE-Net is compared to 4 learning

based [11, 23, 12, 27] and 5 hand-crafted [39, 38, 42, 17, 7]

DT descriptors. Following previous research using Dyntex

[39, 38, 42, 17, 7, 27], evaluation is performed variously us-

ing SVM, Nearest Class Center (NCC) and Nearest Neigh-

bor (NN) classifiers. For SVM, the same protocol used in

previous research is followed, whereby 50% of samples per

category are used for training and the rest for testing.

Table 9 shows that SOE-Net outperforms all other ap-

proaches on the Alpha, Beta and Gamma datasets, with siz-

able performance gaps between ≈ 9 − 19% using SVM .

Using NCC, SOE-Net outperforms all other methods by at

least 10%. Overall, these results speak decisively for the

high discriminative power of SOE-Net’s descriptors.

Similarly, on Dyntex++ SOE-Net extracts stronger fea-

tures than all hand-crafted methods, achieving an accuracy

that is 4.5% higher than previous state-of-the-art approach

[39]. Also, under SVM, SOE-Net is on par with state-of-

the-art learning based method, with only marginal differ-

ence (≈ 0.3%). Moreover, using a NN classifier SOE-Net

outperforms all other methods, with an accuracy of 95.6%
(results not shown in table, as not reported by others). These

results again confirm the discriminative power of the pro-

steam1-clup1 steam2-clup2 waterboil2-clup curly-hair

(Q) (N) (Q) (N)

Figure 5. Misclassification examples on Dyntex 35 using NCC.

(Q) is the query class. (N) is the nearest class in the database.

posed representation. Notably, due to the extremely small

size of the Dyntex++ videos, SOE-Net was restricted to

only a single scale and 2 layers on this particular dataset.

Finally, on Dyntex 35 SOE-Net performs slightly worse

than state-of-the-art using the NN classifier (a difference of

≈1.3%); however, the difference is greater using the NCC

classifier. Interestingly, closer examination of these results

reveals that confusions typically occur between slightly dif-

ferent views of the same physical process, which naturally

yield visually very similar dynamic textures. Other confu-

sions arise from different physical processes, which happen

to yield similar visual appearances. Figure 5 shows exam-

ples. Overall, the fact that these are the types of confusions

made by the network suggests an ability to generalize across

viewpoint, which arguably is more important than ability to

make fine grained distinctions between viewpoints during

texture classification as well as other recognition tasks.

4. Conclusion

This paper presented a novel hierarchical spatiotempo-

ral network based on three key ideas. First, a multilayer

repeated filtering architecture is employed. Second, design

decisions have been theoretically motivated without relying

on learning or other empirically driven decisions. Third,

in addition to adding insight into convolution, rectification,

normalization and spatiotemporal pooling, a novel cross-

channel pooling has been introduced that keeps the repre-

sentation compact while maintaining representational clar-

ity. The repeated filtering architecture and theory driven

design makes the representation understandable in terms of

multiorientation, multiscale properties. Further, by eschew-

ing learning, the approach does not rely on training data.

Finally, the benefits of SOE-Net were shown on dynamic

texture recognition, where it extends the state-of-the-art.

3073

References

[1] E. Adelson and J. Bergen. The plenoptic function and the

elements of early vision. In Computational Models of Visual

Processing, pages 3–20. MIT Press, Cambridge, 1991. 2.2

[2] C. L. Baker and I. Mareschal. Processing of second-order

stimuli in the visual cortex. Progress in Brain Research,

134:171–91, 2001. 2.1

[3] J. Bruna and S. Mallat. Invariant scattering convolution net-

works. PAMI, 35:1872–1886, 2013. 1, 3.1

[4] T. H. Chan, K. Jia, S. Gao, J. Lu, Z. Zeng, and Y. Ma.

PCANet: A simple deep learning baseline for image clas-

sification? TIP, 24:5017–5032, 2015. 1

[5] K. Derpanis and R. Wildes. Spacetime texture representation

and recognition based on spatiotemporal orientation analy-

sis. PAMI, 34:1193–1205, 2012. 1, 2.2, 2.4, 2.6, 3, 3.1, 3.1

[6] S. DiZenzo. A note on the gradient of a multi-image. CVGIP,

33:116–125, 1986. 2.5

[7] S. Dubois, R. Peteri, and M. Michel. Characterization and

recognition of dynamic textures based on the 2D+T curvelet.

Sig. Im. & Vid. Proc., 9:819–830, 2013. 1, 3, 3.2, 3.3

[8] D. Eigen and R. Fergus. Predicting depth, surface normals

and semantic labels with a common muli-scale convolutional

architecture. In ICCV, 2015. 1

[9] J. Feng and T. Darrell. Learning the structure of deep convo-

lutional networks. In ICCV, 2015. 1

[10] W. T. Freeman and E. H. Adelson. The design and use of

steerable filters. PAMI, 13:891–906, 1991. 2.2, 2.2

[11] B. Ghanem and A. Narendra. Max margin distance learning

for dynamic texture. In ECCV, 2010. 1, 3, 3.2, 3.3

[12] M. Harandi, C. Sanderson, C. Shen, and B. Lovell. Dictio-

nary learning and sparse coding on Grassmann manifolds:

An extrinsic solution. In ICCV, 2013. 1, 3.2, 3.3

[13] D. J. Heeger. Nonlinear model of neural responses in cat

visual cortex. In M. Landy and J. Movshon, editors, Compu-

tational Models of Visual Processing, chapter 9, pages 119–

134. MIT Press, Cambridge, 1991. 2.3, 2.4

[14] J. H. Jacobsen, J. V. Gemert, Z. Lou, and A. W. Smeulders.

Structured receptive fields in CNNs. In CVPR, 2016. 1

[15] K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun.

What is the best multi-stage architecture for object recog-

nition? In ICCV, 2009. 3.1

[16] H. Jhuang, T. Serre, L. Wolf, and T. Poggio. A biologically

inspired system for action recognition. In ICCV, 2007. 1

[17] H. Ji, X. Yang, H. Ling, and Y. Xu. Wavelet domain multi-

fractal analysis for static and dynamic texture classification.

TIP, 22:286–299, 2013. 1, 3.2, 3.3

[18] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

NIPS, 2012. 1

[19] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-

based learning applied to document recognition. Proc. IEEE,

86:2278–2324, 1998. 1

[20] M. Lin, Q. Chen, and S. Yan. Network in network. In ICLR,

2014. 2.5

[21] Z. Lu, W. Xie, J. Pei, and J. Huang. Dynamic texture recog-

nition by spatio-temporal multiresolution histograms. In

WACV, 2005. 1

[22] S. Lyu and E. P. Simoncelli. Nonlinear image representation

using divisive normalization. In CVPR, pages 1–8, 2008. 2.4

[23] A. Mumtaz, E. Coviello, G. Lanckriet, and A. B. Chan. Clus-

tering dynamic textures with the hierarchical EM algorithm

for modeling video. PAMI, 35:1606–1621, 2013. 1, 3.2, 3.3

[24] J. Mutch and D. G. Lowe. Multiclass object recognition with

sparse, localized features. In CVPR, 2006. 1

[25] R. Peteri and D. Chetverikov. Dynamic texture recognition

using normal flow and texture regularity. In IbPRIA, 2005. 1

[26] R. Peteri, F. Sandor, and M. Huiskes. DynTex: A compre-

hensive database of dynamic textures. PRL, 31:1627–1632,

2010. 3

[27] Y. Quan, Y. Huang, and H. Ji. Dynamic texture recognition

via orthogonal tensor dictionary learning. In ICCV, 2015. 1,

3, 3.2, 3.3

[28] J. Ren, X. Jiang, and J. Yuan. Dynamic texture recognition

using enhanced lbp features. In ICASSP, 2013. 1

[29] M. Riesenhuber and T. Poggio. Hierarchical models of object

recognition in cortex. Nat. Neuro., 2:1019–1025, 1999. 1

[30] A. Rodriguez-Sanchez, M. Fallah, and A. Leonardis. Hierar-

chical object representation in the visual cortex and computer

vision. Frontiers in Comp. Neuro., 9, 2015. 1

[31] Y. Rubner and C. Tomasi. Coallescing texture descriptors. In

Proceedings of the ARPA IUW, 1996. 2.5

[32] P. Saisan, G. Doretto, Y. Wu, and S. Soatto. Dynamic texture

recognition. In CVPR, 2001. 1, 3

[33] G. Sapiro and D. Ringach. Anisotropic diffusion of multival-

ued images with applications to color filtering. TIP, 5:1582–

1586, 1996. 2.5

[34] W. Shang, K. Sohn, D. Almeida, and H. Lee. Understanding

and improving convolutional neural networks via concate-

nated rectified linear units. In ICML, 2016. 2.3

[35] M. Szummer and R. W. Picard. Temporal texture modeling.

In ICIP, 1996. 1

[36] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri.

Learning spatiotemporal features with 3D convolutional net-

works. In ICCV, 2015. 1, 3.2, 3.2

[37] R. P. Wildes and J. R. Bergen. Qualitative spatiotemporal

analysis using an oriented energy representation. In ECCV,

2000. 2.2, 2.3, 2.4

[38] Y. Xu, S. Huang, H. Ji, and C. Fermuller. Scale-space texture

description on sift-like textons. CVIU, 116:999 – 1013, 2012.

1, 3.2, 3.3

[39] Y. Xu, Y. Quan, H. Ling, and H. Ji. Dynamic texture classi-

fication from fractal analysis. In ICCV, 2011. 1, 3.2, 3.3

[40] F. Yang, G. Xia, G. Liu, L. Zhang, and X. Huang. Dynamic

texture recognition by aggregating spatial and temporal fea-

tures via SVMs. Neurocomp., 173:1310 – 1321, 2016. 1

[41] G. Zhao and M. Pietikainen. Dynamic texture recognition

using volume local binary patterns. In ECCV, 2006. 3

[42] G. Zhao and M. Pietikainen. Dynamic texture recognition

using local binary patterns with an application to facial ex-

pressions. PAMI, 29:915–928, 2007. 1, 3.2, 3.3

[43] C. Zzegedy, A. Toshev, and D. Erhan. Deep neural networks

for object detection. In NIPS, 2013. 1

3074

