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Figure 1: Pipeline of our high-resolution shape completion method. Given a 3D shape with large missing regions, our method

outputs a complete shape through global structure inference and local geometry refinement. Our architecture consists of two

jointly trained sub-networks: one network predicts the global structure of the shape while the other locally generates the

repaired surface under the guidance of the first network.

Abstract
We propose a data-driven method for recovering miss-

ing parts of 3D shapes. Our method is based on a new

deep learning architecture consisting of two sub-networks:

a global structure inference network and a local geometry

refinement network. The global structure inference network

incorporates a long short-term memorized context fusion

module (LSTM-CF) that infers the global structure of the

shape based on multi-view depth information provided as

part of the input. It also includes a 3D fully convolutional

(3DFCN) module that further enriches the global structure

representation according to volumetric information in the

input. Under the guidance of the global structure network,

the local geometry refinement network takes as input lo-

cal 3D patches around missing regions, and progressively

produces a high-resolution, complete surface through a vol-

umetric encoder-decoder architecture. Our method jointly

trains the global structure inference and local geometry re-

finement networks in an end-to-end manner. We perform

qualitative and quantitative evaluations on six object cate-

gories, demonstrating that our method outperforms existing

state-of-the-art work on shape completion.

*equal contribution

1. Introduction

Inferring geometric information for missing regions of

3D shapes is a fundamental problem in the fields of com-

puter vision, graphics and robotics. With the increasing

availability of consumer depth cameras and geometry acqui-

sition devices, robust reconstruction of complete 3D shapes

from noisy, partial geometric data remains a challenging

problem. In particular, a significant complication is the exis-

tence of large missing regions in the acquired 3D data due

to occlusions, reflective material properties, and insufficient

lighting conditions. Traditional geometry-based methods,

such as Poisson surface reconstruction ([12]), are only able

to handle relatively small gaps in the acquired 3D data. Un-

fortunately, these methods often fail to repair large miss-

ing regions. Learning-based approaches are more suitable

for this task because of their ability to learn powerful 3D

shape priors from large online 3D model collections (e.g.,

ShapeNet, Trimble Warehouse) for repairing such missing

regions.

In the past, volumetric convolutional networks have been

utilized [8] to learn a mapping from an incomplete 3D shape

to a complete one, where both the input and output shapes are

represented with voxel grids. Due to the high computational
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cost and memory requirement of three-dimensional convolu-

tions, the resolution of the voxel grids used in these methods

is severely limited (323 in most cases). Such a coarse rep-

resentation gives rise to loss of surface details as well as

low-resolution, implausible outputs. Post-processing meth-

ods, such as volumetric patch synthesis, could be applied

to refine the shape, yet producing a high-quality shape still

remains challenging as synthesis starts from a low-resolution

intermediate result in the first place.

In this paper, we propose a deep learning framework

pursuing high-resolution shape completion through joint in-

ference of global structure and local geometry. Specifically,

we train a global structure inference network including a 3D

fully convolutional (3DFCN) module and a view-based long

short-term memorized context fusion module (LSTM-CF).

The representation generated from these modules encodes

the inferred global structure of the shape that needs to be

repaired. Under the guidance of the global structure infer-

ence network, a 3D encoder-decoder network reconstructs

and fills missing surface regions. This second network oper-

ates at the local patch level so that it can synthesize detailed

geometry. Our method jointly trains these two sub-networks

so that it is not only able to infer an overall shape structure

but also refine local geometric details on the basis of the

recovered structure and context.

Our method utilizes the trained deep model to convert an

incomplete point cloud into a complete 3D shape. The miss-

ing regions are progressively reconstructed patch by patch

starting from their boundaries. Experimental results demon-

strate that our method is capable of performing high-quality

shape completion. Qualitative and quantitative evaluations

also show that our algorithm outperforms existing state-of-

the-art methods.

In summary, this paper has the following contributions:

• A novel global structure inference network based on a

3D FCN and LSTM. It is able to map an incomplete

input shape to a representation encoding a complete

global structure.

• A novel patch-level 3D CNN for local geometry re-

finement under the guidance of our global structure

inference network. Our patch-level network is able to

perform detailed surface synthesis from the starting

point of a low-resolution voxel representation.

• A pipeline for jointly training the global structure and

local geometry inference networks in an end-to-end

manner.

2. Related work

There exist a large body of work on shape reconstruction

from an incomplete point cloud. A detailed survey can be

referred to [4].

Geometric approaches. By assuming local surface or vol-

umetric smoothness, a number of geometry-based methods

([12] [26] [30]) can successfully recover the underlying sur-

face in the case of small gaps. To fill larger missing regions,

some methods employ hand-designed heuristics for partic-

ular shape categories. For example, Schnabel et al. [22]

developed an approach to reconstruct CAD objects from in-

complete point clouds, under the assumption that the shape is

composed of many primitives (e.g., planes, cylinders, cones

etc.). Li et al. [15] further considered geometric relation-

ships (eg. orientation, placement, equality, etc.) between

primitives in the reconstruction procedure. For objects with

arterial-like structures, Li et al. [14] proposed snake de-

formable models and successfully recovered the topology

and geometry simultaneously from a noisy and incomplete

input. Based on the observation that urban objects are usu-

ally made of non-local repetitions, many methods ( [20] [32])

attempt to discover symmetries from input data and use them

to complete the unknown geometry. Harary et al. [11] also

utilizes self-similarities to recover shape surfaces. Compared

to these techniques, we propose a learning-based approach

that learns a generic 3D shape prior for reconstruction with-

out resorting to hand-designed heuristics or strict geometric

assumptions.

Template-based approaches. Another commonly used

strategy is to resort to deformable templates or nearest-

neighbors to reconstruct an input shape. One simple ap-

proach is to retrieve the most similar shape from a database

and use it as a template that can be deformed to fit the in-

put raw data ( [19] [21]). These template-based approaches

usually require user interaction to specify sparse correspon-

dences ( [19]) or result in wrong structure ( [21]) especially

for complex input. These approaches can also fail when the

input does not match well with the template, which often

happens due to the limited capacity of the shape database.

To address this issue, some recent works ( [24] [25]) in-

volved the concept of part assembly. They can successfully

recover the underlying structure of a partial scan by solving

a combinatorial optimization problem that aims to find the

best part candidates from a database as well as their com-

bination. However, these methods also have a number of

limitations. First, each shape in the database needs to be

accurately segmented and labeled. Second, for inputs with

complicated structure, these methods may fail to find the

global optimum due to the large solution space. Lastly, even

if coarse structure is well recovered, obtaining the exact un-

derlying geometry for missing regions remains challenging

especially when the input geometry does not match well any

shape parts in the database.

Deep learning-based methods. Recently, 3D convolu-

tional networks have been proposed for shape completion.
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Wu et al. [31] learn a probability distribution over binary

variables representing voxel occupancy in a 3D grid based

on Convolutional Deep Belief Networks (CDBNs). CDBNs

are generative models that can also be applied for shape com-

pletion. Nguyen et al. [18] combines CDBNs and Markov

Random Fields (MRFs) to formulate shape completion as

a Maximum a Posteriori (MAP) inference problem. More

recent methods employ encoder-decoder networks that are

trained end-to-end for shape reconstruction [23, 28]. How-

ever, all these techniques operate on low-resolution grids

(303 voxels to represent global shape) due to the high compu-

tational cost of convolution in three dimensions. The recent

work of Dai et al. [8] is most related to ours. It proposes

a 3D Encoder-Predictor Network (EPN) to infer a coarse

shape with complete structure, which is then further refined

through nearest-neighbor-based volumetric patch synthe-

sis. Our method also learns a global shape structure model.

However, in contrast to Dai et al., we also learn a local

encoder-predictor network to perform patch-level surface

inference. Our network produces a more detailed output in a

much higher resolution (2563 grid) by processing local shape

patches through this network (323 patches cropped from the

2563 grid). Local surface inference is performed under the

guidance of our global structure network that captures the

necessary contextual information to achieve a globally con-

sistent, and at the same time, high-resolution reconstruction.

3. Overview

Given a partial scan or an incomplete 3D object as input,

our method aims to generate a complete object as output.

At a high level, our pipeline is similar to PatchMatch-based

image completion [1]. Starting from the boundary of missing

regions, our method iteratively extends the surface into these

regions, and at the same time updates their boundary for

further completion until these missing regions are filled. To

infer new geometry along the boundary, instead of retrieving

the best matching patch from a large database as in [11], we

designed a local surface inference model based on volumetric

encoder-decoder networks.

The overall pipeline of our method is shown in Figure 1.

Our shape completion is performed patch-by-patch. At first,

the input point cloud is voxelized in a 2563 grid, and then

323 patches are extracted along the boundary of missing

regions. Our local surface inference network maps the volu-

metric distance field of a surface, potentially with missing

regions, to an implicit representation (0 means inside while

1 means outside) of a complete shape (Section 4.2). The dis-

tance field can then be extracted with Marching Cubes [17].

To improve the global consistency of local predictions dur-

ing shape completion, another global structure inference

network is designed to infer complete global shape struc-

ture and guide the local geometry refinement network. Our

global structure inference network generates a 323 shape
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Figure 2: The inputs for global structure inference consist of

projected depth images with size 1282 and down-sampling

voxelized point cloud D32 with resolution 323. “S” stands

for the feature stack operation. “C” stands for the concate-

nate operation.

representation, capturing its overall coarse structure, using

both view-based and volumetric deep neural networks. To

make use of high-resolution shape information, depth images

generated over the six faces of the bounding cube are con-

sidered as one type of input data (view-based input). Six 2D

feature representations of these depth images are extracted

through six parallel streams of 2D convolutional and LSTM

recurrent layers. These 2D feature maps are assembled into

a 323 feature representation, which is fused with another

volumetric-based feature representation extracted through

3D convolutional layers operating on volumetric input. The

resulting fused representation is used for final voxel-wise

prediction. Both our global and local network are trained

jointly (Section 4).

4. Network Architecture

The incomplete point cloud is represented as a 2563 vol-

umetric distance field (Section 5), denoted as D256. Our

deep neural network is composed of two sub-networks. One

infers underlying global structure from a down-sampled ver-

sion (323) of D256. The down-sampled field is denoted as

D32 and the inferred result is denoted as S32. Another sub-

network infers high-resolution local geometry within 323

volumetric patches (denoted as P32) cropped from D256.

4.1. Global Structure Inference

Although an incomplete point cloud has missing data,

most often it still provides adequate information for rec-

ognizing the object category and understanding its global

structure (i.e. object parts and their spatial layout). Such cat-

egorical and structural information provides a global context

that can help resolve ambiguities arising in local shape com-

pletion. Therefore, there is a need to automatically infer the

global structure of the underlying object given an incomplete

point cloud of the object.

To this end, we design a novel deep network for global
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structure inference. This network takes two sets of input data.

Since processing D256 would be too time- and memory-

consuming, the first set of input is D32, the down-sampled

distance field of the input point cloud. To compensate for the

low resolution of D32, the second set of input data consists

of six 1282 depth images, each obtained as an orthographic

depth image of the point cloud over one of the six faces of

its bounding box. Inspired by the LSTM-CF model [16] and

ReNet [29], each depth image passes through two convolu-

tional layers, each of which is followed by a max-pooling

layer. The feature map from the second pooling layer is

further fed into the ReNet, which consists of cascaded verti-

cal and horizontal bidirectional LSTM (BLSTM) layers for

global context modeling,

hv
i,j = BLSTM(hv

i,j−1
, fi,j), for j = 1, . . . , 32;

hh
i,j = BLSTM(hh

i−1,j , h
v
i,j), for i = 1, . . . , 32, (1)

v

Figure 3: 3D feature map as-

sembles from six 2D feature

maps.

where fi,j is the

feature map from the

second max pooling

layer, hv
i,j and hh

i,j are

the output maps of the

vertical and horizontal

BLSTMs, respectively.

Afterwards, 2D output

maps from the six hori-

zontal BLSTMs are as-

sembled together into

a 3D feature map with size 323 as follows. A voxel v in

the 3D feature map is first projected onto the six faces of its

bounding box. The projected location on each face is used to

look up the feature vector at that location in the correspond-

ing 2D output map. The six retrieved feature vectors from

the six 2D maps are concatenated together as the feature for

v (in Fig. 3 for details). In parallel, D32 is fed into three

3D convolutional layers with the same resolution and a 3D

feature map with size 323 is obtained after the third layer. Fi-

nally, both 3D features maps from the two parallel branches

are concatenated and flow into a 3D convolutional layer with

1× 1× 1 kernels for voxel-wise binary prediction.

It is worth mentioning that the occupancy grids are sparse

when used for representing voxelized point clouds. This re-

sults in highly uneven distributions of two-class data (inside

and outside). For instance, the ratio between the inside and

outside voxels for the ‘chair’ category is 25. Meanwhile, pre-

cision and recall both play an importance role in shape com-

pletion, especially for inside voxels. To address this problem,

we add the AUC loss to the conventional cross-entropy loss

for classification [5, 7]. According to [5], the AUC of a pre-

dictor f is defined as (here f is the final classification layer

with softmax activation illustrated in Fig. 2) AUC(f) =
P (f(t0) < f(t1)|t0 ∈ D0, t1 ∈ D1), where D0, D1 are the

samples with groundtruth labels 0 and 1, respectively. Its

unbiased estimator, i.e. Wilcoxon-Man-Whitney statistics, is

n0n1AUC(f) =
∑

t0∈D0

∑
t1∈D1 I[f(t0) < f(t1)], where

n0 = |D0|, n1 = |D1|, and I is the indicator function. In

order to add the noncontinuous AUC loss to the continuous

cross-entropy loss and optimize the combined loss through

gradient decent, we consider an approximation of the AUC

loss by a polynomial with degree k [5], i.e.

n0n1lossauc =
∑

t0∈D0

∑

t1∈D1

d∑

k=0

k∑

l=0

αklf(t1)
lf(t0)

k−1

where αkl = ckC
l
k(−1)k−l is a constant. Thus, our global

loss function can be formulated as

lossglobal = −
1

N

∑

i

s∗i log(si)− λ1lossauc, (2)

where si stands for the predicted probability of a label, s∗i
stands for a ground-truth label, N is the number of voxels

and λ1 is a balancing weight between the cross-entropy loss

and the AUC loss.

4.2. Local Geometry Refinement

We further propose a deep neural network for inferring

the high-resolution geometry within a local 3D patch P32

(each 323 patch is a crop from D256) along the boundary

of missing regions. Instead of a 3D fully convolutional net-

work, we exploit an encoder-decoder network architecture to

achieve this goal. This is because local patches are sampled

along the boundary of missing regions, the surface inside

a local patch usually suffers from a larger portion of miss-

ing data (on average 50%) than the global shape and fully

connected layers are better suited for higher-level inference.

As shown in Fig. 4, the first part of our network trans-

forms the input patch into the latent space through a series

of 3D convolutional and 3D max pooling layers. This en-

coding part is followed by two fully connected layers. The

decoding part then achieves voxel-wise binary predictions

with a series of 3D deconvolutions. In comparison to prior

network designs [8, 23, 28], our network has a notable

difference, which is the incorporation of global structure

guidance. Given S32 generated by our global structure in-

ference model, for each input patch P32 centered at (x, y, z)
in D256, we use S32 as guidance at two different places of

the pipeline. First, a 83 patch centered at (x/8, y/8, z/8) is

cropped from S32 and passes through a 3D convolutional

layer followed by 3D max pooling. The resulting 43 patch is

concatenated with the 3D feature map at the end of the en-

coding part. Second, a 43 patch centered at (x/8, y/8, z/8)
is cropped from S32 and directly concatenated with the 43

feature map at the beginning of the decoding part. Similar to

the loss function of the global structure inference network,
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Figure 4: The inputs of local surface refinement network

consist of local patches P32 with size 323 and output S32

with size 323 from the global structure inference network as

global guidance.

the loss of our local geometry refinement network is defined

as losslocal = − 1

M

∑
i p

∗

i log(pi), where pi is the predicted

probability of a local geometry, p∗i is a ground-truth label,

and M is the number of voxels.

4.3. Network Training

Our two deep networks are trained in two phases. In the

first phase, the global structure inference network is first

trained alone. In the second phase, the local geometry refine-

ment network is trained while the global structure inference

network is being fine-tuned. As illustrated in Fig.4, a local

patch from S32, which is the output from the global structure

inference network, flows into the local geometry refinement

network as a global guidance, which is vital for shape com-

pletion. On the other side, local patch prediction results can

benefit global structure inference as well, e.g., the refined

disconnected regions between the side and leg of a chair can

give feedback to global structure inference. Thus, due to

the interactions between our global and local sub-networks,

joint training is performed to improve their performance and

robustness. Since the global network has been trained during

the first phase, it is further fine-tuned during joint training in

the second phase. The loss for such joint training is defined

as follows.

loss = losslocal + λ2lossglobal + λ3‖θ‖2, (3)

where λ2 is a balancing weight between the local and global

loss functions, θ is the parameter vector (L2 norm is adopted

for regression terms in our loss).

5. Training Data Generation

Our network has been tested on 6 categories of objects

separately. Among them, ‘chairs’, ‘cars’, ‘guitars’, ‘sofas’,

and ‘guns’ are from ShapeNet [6] and ‘animals’ were col-

lected by ourselves. For each category from ShapeNet, we

select a subset of models by removing repeated ones with

very similar structures and thin models that cannot be well

voxelized on a 323 grid. All animal models were also manu-

ally aligned in a coordinate system consistent with ShapeNet.

To generate training samples, we simulate object scanning

using an RGBD camera and create an incomplete point cloud

for each model by fusing multiple partial scans with missing

regions. On each created incomplete model, we randomly

sample n patches along the boundary of missing regions (n
is set to 50 for all object categories). The number of created

training models for each category are shown in Table 1.

Note that we create multiple scanned models by simulation

from each original virtual model. Each point cloud is repre-

sented using a volumetric distance field. Note that, to make

occupancy grid as dense as possible, different scaling fac-

tors are applied to models from different categories before

voxelization. This is also the reason why we do not train a

single network on all categories.

Table 1: Number of training samples

Category Chair Car Guitar Gun Sofa Animal

# Samples 1000x3 500x5 320x5 300x5 500x5 43x10

Virtual Scanning. We first generate depth maps by plac-

ing a virtual camera at 20 distinct viewpoints, which are

vertices of a dodecahedron enclosing a 3D model. The cam-

era is oriented towards the centroid of the 3D model. We

then randomly select 3-5 viewpoints only to generate par-

tial shapes simulating scans obtained through limited view

access. On top of random viewpoint selection, we also ran-

domly add holes and noise to the depth maps to simulate

large occlusions or missing data due to specularities and

scanner noise. The method in [27] is adopted to create holes.

For each depth map, this method is run multiple times and

super-pixels are generated at a different level of granularity

each time. A set of randomly chosen superpixels are re-

moved at each level of granularity to create holes at multiple

scales. The resulting depth maps are then backprojected to

the virtual model to form an incomplete point cloud. Note

that missing shape regions will also exist due to self oc-

clusions (since depth maps cannot cover the entire object

surface).

Colored SDF + Binary Surface. Each point cloud is con-

verted to a signed distance field as in [8]. To enhance the

border between points with positive and negative distances,

we employ colored SDF (CSDF), which maps negative dis-

tances (inside) to colors between cyan and blue and positive

distances to colors between yellow and red. As a distance

field makes missing parts less prominent, we also take the

binary surface (i.e. occupancy grid of input points) as an

additional input channel, denoted as BSurf. Thus, a point

cloud is converted to a volumetric grid with four channels.

Projected Depth Images. Our global network takes 6

depth images as the second set of input data. These depth
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images are orthographic views of the point cloud from the

6 faces of the bounding cube. These depth images are en-

hanced with jet color mapping [10].

Patch Sampling. In general, there would be a large num-

ber of patches with similar local geometry if they were cho-

sen randomly (for example, several chair patches would

originate from flat or cylindrical surfaces). To avoid class

imbalance and increase the diversity of training samples,

we perform clustering on all sampled patches and only the

cluster centers are chosen as training patches. Here we only

use BSurf as the feature during patch clustering.

6. Shape Completion

During testing, given an incomplete point cloud P , as the

first step, we apply our global structure inference network

to generate a complete but coarse structure. As discussed

earlier, starting from the boundary of missing regions, our

method iteratively extends the surface into these regions until

they are completely filled. In this paper, the method from [3]

is used to detect the boundary of missing regions in a point

cloud.

During each iteration, local 3D patches with a fixed size

of overlap are chosen to cover all points on the boundary

of missing regions. Our local geometry refinement network

runs on these patches with the guidance from the inferred

global structure to produce a voxel-wise probability map

for each patch. The probability at each voxel indicates how

likely that voxel belongs to the interior of the object rep-

resented by the input point cloud. For voxels covered by

multiple overlapping patches, we directly average the corre-

sponding probabilities in these patches. Then we transform

the

simply deducting the probability values by 0.5. Marching

Cubes [17] is then used to extract a partial mesh from the set

of chosen patches and a new point set Q is evenly sampled

over the partial mesh. We further remove the points in Q that

lie very closely to P , and detect new boundary points from

the remaining points in Q. Such detected boundary points

form the new boundary of missing regions. The above steps

are performed repeatedly until new boundary points cannot

be found. In our experiments, 5 iterations are sufficient in

most cases.

7. Experimental Results

Fig. 5 shows a gallery of results. For each object category,

two models with different views are chosen. The incomplete

point cloud and the repaired result are placed side by side.

7.1. Implementation

We jointly train the global and local networks for 20

epochs with an Adam optimizer [13]. We include one vox-

elized point cloud, six depth images associated with the

point cloud and 50 local patches sampled from the voxel

grid along missing regions in a single mini-batch. The bal-

ancing weights are set as follows: λ1 = 0.2 and λ2 = 2

3
.

The regression weight and learning rate are set to 0.001 and

0.0001, respectively. Considering diverse scales in different

object categories, we always pre-train our deep network for a

specific object category from scratch using 2400 (800 origi-

nal models with 3 different virtual scanning per model) chair

models. Afterwards, we fine-tune the pre-trained model

using training samples from that specific object category.

Fine-tuning on each category needs about 4 hours to con-

verge. On average, it takes 400ms to perform a forward

pass through the global structure inference and local geom-

etry refinement networks. Once we have the trained global

and local networks, it takes around 60s to obtain a com-

pleted high-resolution shape. The detailed configuration of

our global and local networks is illustrated in Figs. 2 and

4. The implementation is based on the publicly available

Lasagne [9] library built on the Theano [2] platform, and

network training is performed on a single NVIDIA GeForce

GTX 1080.

7.2. Comparisons with existing methods

Let Ptrue be the ground-truth point cloud and Pcomplete

be the repaired point cloud. The normalized distance from

Pcomplete to Ptrue is used to measure the accuracy of the

repaired point cloud. For each point v ∈ Pcomplete, we

compute dist(v, Ptrue) = min{||v − q||, q ∈ Ptrue}. The

average of these distances is finally normalized by the maxi-

mum shape diameter (denoted as dm) across all models in a

given category. Following [25], we also use “completeness”

to evaluate the quality of shape completion. Completeness

records the fraction of points in Ptrue that are within dis-

tance αeval of any point in Pcomplete. In our setting, αeval

is set to 0.001∗dm. The average accuracy and completeness

across all models from each object category are reported in

Table 2. Specifically, we randomly select 200× 3, 100× 5,

64× 5, 60× 5, 100× 5 and 8× 10 samples as the testing set

of chairs, cars, guitars, guns, sofas and animals, respectively.

To evaluate the accuracy and efficiency of the proposed

method, we perform comparisons against existing state-of-

the-art methods. Poisson surface reconstruction [12] is com-

monly used to construct 3D models from point clouds. How-

ever, it cannot successfully process point clouds with a large

percentage of missing data.

Recently, a number of methods [23, 28, 8] attempt to

perform shape completion at a coarse resolution (323) us-

ing 3DCNNs. The completeness and normalized distance

of these methods are reported in Table 2, where ‘3D-EPN-

unet’ stands for the 3D Encoder-Predictor Network with

U-net but without 3D classification in [8]. Note that their

model with the 3D classification network is not available.
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View 1 View 2 View 1 View 2

Figure 5: Gallery of final results. There are two models per category. For each model, the input and repaired point clouds are

shown side by side from two different views.

‘Vconv-dae’ stands for the network from [23] and ‘Varley

et al.’ stands for the network from [28]. For fair compar-

ison, we retrained these networks using our training data

and performed the evaluation on our testing data. Evalua-

tion results on our global network are also reported. They

demonstrate that our method outperforms all existing 323-

level methods even without local geometry inference. To

derive an upper bound on the completeness achievable by the

methods with 323-level outputs, we subsample the distance

field of Ptrue at resolution 323. We also create a point cloud

from that subsampled field (called Pdownsample), which rep-

resents a lower bound on the normalized distance that can be

achieved by these methods (since these methods introduce

additional errors in addition to downsampling). We report

the evaluation results on the downsampled point clouds as a

baseline for comparison. It can be verified that our results

are significantly better than those from existing methods.

As an intuitive comparison, Fig. 6 shows the outputs from

‘Poisson’, ‘Pdownsample’ and our method on two sampled

models.

The method in [8] also proposes a way to achieve high-

resolution completion by perfroming 3D patch synthesis as

Figure 6: Sampled comparison results with other methods.

a post-processing step for shape refinement. In comparison

to this approach, an important advantage of our method is

that our local geometry refinement network directly utilizes

the high-resolution information from the input point cloud,

which makes the refined results more accurate. Another type

of methods [24, 25] can also complete a shape with large

missing regions. However, they require a large database with

well-segmented objects. As the models in our datasets have

not been segmented into parts, we do not conduct compar-

isons against such methods since a fair comparison seems

out of reach.
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Table 2: Performance Comparison. For each category and each method, we show the value of completeness/normalized dist.

Category Input Varley et al. Vcov-dae 3D-EPN-unet Our global network Downsample Poisson Our whole network

Chair 71.5%/0 35.8%/0.022 47.7%/0.020 58.5%/0.018 70.1%/0.0108 73.32%/0.0144 87.61%/0.00925 97.25%/0.00398

Car 69.1%/0 42.3%/0.014 64.6%/0.013 66.4%/0.0092 81.8%/0.0081 84.35%/0.00756 82.18%/0.0147 95.88%/0.00312

Guitar 85.7%/0 45.8%/0.013 56.6%/0.011 62.9%/0.0092 69.7%/0.00626 72.16%/0.00675 88.4%/0.148 94.35%/0.00248

Sofa 72.31%/0 18.1%/0.024 58.4%/0.019 62.8%/0.012 77.0%/0.00845 85.15%/0.00615 82.78%/0.027 95.97%/0.00217

Gun 62.7%/0 28.5%/0.0165 39.1%/0.0134 49.2%/0.0132 54.3%/0.0091 56.4%/0.0102 77.68%/0.0114 98.58%/0.00281

Animal 69.05%/0 35.6%/0.0257 47.8%/0.0229 56.1%/0.019 82.4%/0.01137 85.14%/0.0114 88.88%/0.0567 95.53%/0.00363

7.3. Ablation Study

Input
Without 

global guidance
Ours Ground-truth

Figure 7: Completion results by using our model with and

without global guidance.

To discover the vital elements in the success of our pro-

posed model for shape completion, we conduct an ablation

study by removing or replacing individual components in our

model trained with 1000 × 3 chair samples, among which

800× 3 samples form the training set and 200× 3 samples

form the testing set. Specifically, for the global structure in-

ference network, we have tested its performance without the

AUC loss, high-resolution depth images, or global context

modeling using BLSTM. In addition, we have also tested the

global model where the 3DFCN branch only takes CSDF or

BSurf as the input to figure out the importance of different

input channels. In addition, an encoder-decoder network is

used to replace the final 1x1x1 convolutional layer in the

global network. For the local geometry refinement network,

we have tested its performance by removing the global guid-

ance. The results are presented in Table 3. Because of class

imbalance, we use the F1-score of the inside labels as the

performance measure of the global network. We directly use

classification accuracy to evaluate the performance of the

local network since class imbalance is not a concern in this

case. Note that the ground truth for the global network is

defined on a coarse (323) grid while the ground truth for the

local network is defined on a high-resolution (2563) grid.

During this ablation study, we find that CSDF, BSurf and

Table 3: Ablation Study

Network Component Performance

w/o AUC loss 0.904

w/o depth images 0.877

Global w/o BLSTM context modeling 0.896

Structure w/o BSurf channel 0.90

Inference BSurf channel only 0.836

Replace 1x1x1conv

with encoder-decoder 0.818

Complete global network 0.926

Local Geometry Without global guidance 0.912

Refinement With global guidance 0.961

high-resolution depth images are all necessary for global

structure inference as the performance drops to 0.90 if the

input to the 3DFCN branch is CSDF only (without the BSurf

channel) and the performance drops to 0.877 if the entire

2D branch taking depth images is eliminated. In addition,

the most effective components in our network are BLSTM

based context modeling and the AUC loss as the perfor-

mance drops to 0.896 and 0.904, respectively, without either

of them. Furthermore, the performance drops to 0.818 if the

final 1x1x1 convolutional layer in the global network is re-

placed with an encoder-decoder network perhaps because the

1x1x1 convolutional layer can better exploit spatial contex-

tual information. For the local geometry refinement network,

we find that global guidance is a vital component as the per-

formance of the local network drops to 0.912 without it. This

is also verified by Fig. 7, where the final completed point

cloud using our model with and without global guidance on

two sample models are illustrated.

8. Conclusion

We have presented an effective framework for completing

partial shapes through 3D CNNs. Our results show that our

method significantly improves the performance of existing

state-of-the-art methods. We also believe jointly training

global and local networks is a promising direction.
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