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Abstract

In recent years, there have been a variety of proposals

for high quality 3D reconstruction by fusion of depth and

normal maps that contain good low and high frequency in-

formation respectively. Typically, these methods create an

initial mesh representation of the complete object or scene

being scanned. Subsequently, normal estimates are as-

signed to each mesh vertex and a mesh-normal fusion step

is carried out. In this paper, we present a complete pipeline

for such depth-normal fusion. The key innovations in our

pipeline are twofold. Firstly, we introduce a global multi-

view non-rigid refinement step that corrects for the non-

rigid misalignment present in the depth and normal maps.

We demonstrate that such a correction is crucial for pre-

serving fine-scale 3D features in the final reconstruction.

Secondly, despite adequate care, the averaging of multiple

normals invariably results in blurring of 3D detail. To miti-

gate this problem, we propose an approach that selects one

out of many available normals. Our global cost for normal

selection incorporates a variety of desirable properties and

can be efficiently solved using graph cuts. We demonstrate

the efficacy of our approach in generating high quality 3D

reconstructions of both synthetic and real 3D models and

compare with existing methods in the literature.

1. Introduction and Relevant Work

The recent availability of consumer-grade depth camera

technology has lead to very significant advances in dense

3D scene reconstruction techniques. Of the numerous ap-

proaches, the methods of RGBD Mapping [10], Kinect Fu-

sion [11] and DynamicFusion [15] are representative. De-

spite such advances, there is a fundamental limit to the 3D

reconstruction quality achievable due to the inherent low

quality of individual depth maps obtained from devices such

as the Kinect.

One class of approaches enhance 3D reconstruction
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Figure 1: Non-rigid misalignments: a) shows the presence

of significant non-rigid misalignments in 3 rigidly regis-

tered input scans, b) shows the histograms of non-rigid mis-

alignments present in the 3 scans, c) shows that these mis-

alignments are corrected by our method. Please view this

figure in colour.

quality by using additional information obtained through

radiometric methods. Of these methods, some implicitly

use shading information [6, 8, 12, 17] whereas others ex-

plicitly solve for surface normals using photometric stereo.

While depth maps are noisy in nature, their low frequency

component is of good quality. Conversely photometric nor-

mals are good at preserving high frequency or fine scale 3D

surface details. Therefore, many methods fuse 3D depth

representations with their corresponding photometric nor-

mals [2,5,9,14,16,18]. While the approach presented in this

paper falls into this category and assumes inputs of depth

and normal estimates, our formulation is in principle not

limited to photometric stereo for obtaining normals.

Of the methods mentioned above, our approach is closest

to those of [2,9]. In [2], the authors obtain 2D normal maps

from multiple viewpoints and combine them in a weighted

fashion before passing on to a depth-normal fusion step.

In [9], instead of averaging the normals the authors select

one of them. Both [2] and [9] carry out their mesh-normal

fusion using approaches similar to [14] to provide a high

quality refined scan. Additionally, in [9] the photometric

normals are obtained using the IR camera of the depth cam-
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Figure 2: A schematic representation of our full pipeline. Please view this figure in colour and see text for details.

era itself, with the resulting advantage of automatically co-

registered depth and normal maps.

Handling Non-rigid Deformations: In practice in a

multi-view setup, even after accurate rigid 3D registration

of the scans, there is a significant non-rigid misalignment

among the depth and normal maps. This may arise due to

a variety of reasons including residual alignment discrepan-

cies, errors in normal estimates, camera non-linearities etc.

Figure 1 (a) shows misaligned 3D surface features in a set of

3 rigidly registered scans. Figure 1 (b) shows a histogram of

the magnitudes of non-rigid misalignments present among

the three scans. This histogram is obtained by running our

non-rigid refinement step explained in Section 2, but for

now we can easily note that the amount of such misalign-

ment is significant enough to result in either blurring of the

finer details if averaged or misaligned details at the seam

lines. Figure 1 (c) shows that our approach successfully cor-

rects for the non-rigid misalignments across different scans.

1.1. Our Approach and Contributions

In this paper, we develop global, multi-view methods

for the non-rigid refinement of depth and normal maps and

adaptive selection of normals that are fused to result in high

quality 3D representations that preserve very fine-scale sur-

face details and minimise non-rigid misalignments. Figure

2 shows the full pipeline of our method. We obtain depth

and normal maps from different viewpoints that cover the

entire surface of the object to be scanned. In our approach,

following that of [9], the depth and corresponding normal

maps are obtained in the same co-ordinate system, i.e. they

are automatically co-registered. For normal maps that are

obtained using an external RGB camera, an additional reg-

istration step will be required. The rigid alignment of the

input depth data is solved using a multi-view ICP algorithm.

The salient steps of our approach are:

1. Global, multi-view non-rigid refinement of 3D scans

as well as corresponding 2D normal maps

2. Graph-cut based global, multi-view normal selection.

We recall that a key objective of our method is to correct for

non-rigid misalignments between normal maps that cover

the same surface region. To this end, we first fuse the in-

dividual depth-normal maps obtained from each individual

viewpoint. This ensures that the warping of the normal

maps is done in a manner consistent with both the depth

and normal information. The fused high quality scans are

then aligned by a global, multi-view non-rigid refinement

method described in Section 2. The resulting non-rigid mo-

tion estimates are used to warp the individual normal maps

as described in Section 2.1. We also note that the multi-

view nature of this refinement step ensures that the individ-

ual errors and deformations are properly accounted for by

being distributed over all the scans. At this point we have

obtained sets of scans and corresponding normal maps that

are both aligned according to the estimated global non-rigid

alignment. The aligned scans are merged using a volumetric

method [7] giving us a mesh representation of the scanned

object or scene. This mesh gives a complete representation

that is accurate in the low frequency sense.

We note that each 3D surface point has a number of can-

didate corresponding normal estimates in the warped nor-

mal maps from different viewpoints from which it is visible.

However, despite adequate care, the intuitive idea of averag-

ing these candidate normal estimates will invariably result

in blurring of the finest scale details available in the indi-

vidual normal maps. Therefore, as described in Section 3,

we use a graph-cut based multi-view adaptive approach to

select only one of the normals to be associated with each

mesh vertex. Our graph-cut approach carefully accounts for

the relative reliability of the individual normals depending

on the viewing direction and the amount of non-rigid dis-

placement and thereby retaining the fine-scale details and

minimising misalignment artefacts across different scans.

Finally, the selected normals are fused with the 3D mesh

obtained from the aligned scans using the method described

in [9].
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2. Global Non-rigid Refinement of 3D Scans

A key step in our pipeline is the non-rigid refinement

of the 3D scans or meshes. Since we are interested in the

correct registration of high frequency details in the form of

normal maps, we fuse the corresponding depth and normal

maps from individual viewpoints using the method in [9].

The resulting scans are then used as inputs for our global,

multi-view non-rigid refinement procedure. While there are

a number of non-rigid refinement approaches in the liter-

ature [4, 13], we use a global method based on [1]. The

use of an affine motion model for each individual scan ver-

tex ensures that there are enough degrees of freedom that

will allow the high frequencies components to align as well

as possible. To make our method both robust and global,

we use the normal information in weighting the pairwise

alignments and an adaptive weighted averaging for the final

non-rigid warping of the scans respectively.
Pairwise Non-rigid Alignment: We first describe the

non-rigid alignment of a pair of scans, wherein a template
scan is warped onto a target scan. Our global, multi-view
approach builds on individual pairwise alignments. Here we
closely follow the approach of [1] with appropriate modifi-
cations. For each vertex vi in homogeneous form, we asso-
ciate an affine transformation T (vi) = Xivi where Xi is a
3 × 4 matrix representing the affine transformation applied
to vertex vi. Similar to [1], we develop a net cost to be min-
imised consisting of two terms. The first term Cfit in Equa-
tion 1 penalises the distance of each warped template vertex
from its nearest neighbour in the target scan. The second
term Cstiff in Equation 2 penalises the differences between
the affine transformation at each vertex Xi and those of its
neighbours. For N vertices in the template scan, we denote
the Cfit term as

Cfit (X) =
∥

∥

∥

∥
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(1)

where X = [X1, · · · ,XN ]
T

is the set of all affine models to

be estimated, ui is the nearest neighbour in the target scan

for the warped template vertex T (vi) and W = diag(w)
is a diagonal weight matrix. Similarly, we denote the net

stiffness term as

Cstiff (X) = ‖(Q⊗G)X‖2F (2)

where Q is the node-arc incidence matrix for the template

scan and G := diag (1, 1, 1, γ) where γ is a parameter used

to weight the linear and the translational components of the

transformation differently. The solution for the non-rigid

alignment X is obtained by the minimisation of the total

cost, i.e.

argmin
X

Cfit(X) + αCstiff(X) (3)

which is equivalent to solving a sparse linear system of

equations. Much like the standard ICP algorithm, upon

solving for the motion model X using Equation 3, we can

update the correspondences ui. These steps are iterated till

convergence. In our experiments, we also progressively an-

neal X by sequentially decreasing the stiffness weight α
with values α = {2000, 800}. The reader may refer to [1]

for a detailed explanation of all of these terms.

Adaptive Weighting: In Equation 1 we provide a per-

vertex weight value wi that reflects our confidence in the

alignment of vertex vi. Since we are interested in correcting

for misalignments in high frequency details, we utilise the

normal information available at all vertices. Specifically

wi =

{

n(vi) · n(ui) if n(vi) · n(ui) ≥ δ

0 otherwise
(4)

where n(vi) and n(ui) are the normals co-registered to

the template vertex vi and its nearest neighbour correspon-

dence ui in the target scan respectively. In Equation 4,

while we provide a higher weightage to vertices with sim-

ilar normals, we also ensure that vertices with dissimilar

normals do not influence the non-rigid warping of the tem-

plate scan. Such a weighting function ensures that our final

non-rigid alignment has good agreement with both the low

and high frequency components of the scans.

Global, multi-view non-rigid alignment: While the

solution of Equation 3 allows us to non-rigidly align a pair

of high quality scans, for our purposes we need to jointly

align a set of such scans. Since we have already regis-

tered the scans using a rigid Euclidean motion model, we

know the overlap relations between the entire set of scans.

For global, multi-view non-rigid alignment, we carry out

the following steps. Consider a template scan k and let its

overlapping set of target scans be O(k). Now each target

scan l ∈ O(k) will induce a warp on vertex vi in scan k as

T l
(

vk
i

)

where T l denotes that the warp is into the target

scan l and vk
i denotes the i-th vertex in the template scan k.

However, since each target scan l ∈ O(k) will “pull” vertex

vk
i towards itself, we need to warp vk

i in a manner most con-

sistent with all the individual warps. In our approach, we

use a weighted average of all the individual warped points

T l
(

vk
i

)

, i.e. the updated vertex v
′k
i is given as

v
′k
i =





∑

l∈O(k)

P l
i T l

(

vk
i

)



 /





∑

l∈O(k)

P l
i



 (5)

where the adaptive weights P l
i = 1

||T l(vk

i )−v
k

i
||2+η

for

some positive η such that when a particular scan l pulls the

vertex vk
i by a large amount towards itself, we reduce its

influence so as to keep the warped vertex as consistent with

the remaining scans in O(k) that have a better fit. We note
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(a) W/O non-rigid

alignment

(b) With our

non-rigid

alignment

(c) Non-rigid

misalignment map

Figure 3: Zoomed-in views of final reconstructions of a clay

horse model: (a) without non-rigid alignment and (b) with

our global, multi-view, non-rigid alignment. (c) Colour map

of globally estimated mean non-rigid misalignments across

all views. It is evident that the input data has significant

non-rigid misalignments that are accurately corrected for by

our approach. Please view this figure in colour.

here that one may prefer that the global, multi-view non-

rigid alignment solution be such that all warped scans are

fully consistent among themselves, i.e. the warped individ-

ual vertices are co-incident. While that requires an expen-

sive iterative process, we find that for all our experiments a

single iteration multi-view warp of Equation 5 is adequate

to correct for the non-rigid misalignments present in the full

set of scans.

The value of our non-rigid alignment procedure is illus-

trated in Figure 3 by comparing the reconstructions of a

clay horse model. Figure 3(a) shows the result obtained by

our pipeline without any non-rigid alignment. Figure 3(b)

shows the result obtained when we apply our global, multi-

view non-rigid alignment to the individual depth scans. Fig-

ure 3(c) shows the colour map of globally estimated non-

rigid misalignments across all views. The mean and max-

imum warps for the 3D depth scans are 0.74 mm and 7.25
mm respectively. The equivalent 2D warp induced on the

normal maps have a mean and maximum values of 0.27 pix-

els and 6.04 pixels respectively. It is evident that there is a

significant amount of non-rigid misalignment present in the

original data and that our approach accurately recovers the

non-rigid alignments involved. As a result, our approach is

able to remove the visible seam-line artefacts in Figure 3(a)

and preserve fine-scale 3D details in the final reconstruction

as shown in Figure 3(b).

2.1. Nonrigid inplane 2D warping of normal maps

Since we are applying a non-rigid warp to the depth

scans, we have to also correspondingly warp the 2D normal

maps so that they remain co-registered. Recall that we orig-

inally had co-registered depth and normal maps, i.e. in each

scan, for every un-warped initial vertex vi, we assign a cor-

responding location pi in the corresponding 2D normal map

using the pin-hole camera equation pi ≡ K (Rvi + t),
where K and {R, t} are respectively the intrinsic and ex-

trinsic calibration parameters of the Kinect’s IR camera for

a given scan. Note that although the depth and normals are

obtained in the same co-ordinate system, for a global rep-

resentation, we need to represent all scans and cameras in

a common global frame of reference. Since the non-rigid

warp on vertex vi has moved it to v′
i = vi +∆vi, the pro-

jected position of the corresponding normal map has also

moved to a new location as p′
i ≡ K (Rv′

i + t), i.e. the 2D

motion for the normal position is ∆pi = p′
i − pi. Using

all the individual {∆pi} shifts of normal positions, we can

warp the normal map so as to account for the non-rigid 3D

alignment. However instead of using a simple bilinear or

cubic interpolation for warping, we use a bilateral-weighted

kernel to ensure the accurate preservation of boundaries and

edges in the warped normal map.

3. Graph-cut Based Adaptive Normal Selection

After applying the estimated global, multi-view non-

rigid warps on the individual depth scans, we can obtain a

single complete 3D mesh representation of the object. In

our pipeline we use the popular volumetric merging ap-

proach using TSDF [7]. However, while our non-rigid

warping removes the misalignments present in the individ-

ual depth maps, we still need to use the high quality normal

information to add fine-scale 3D detail to the final mesh rep-

resentation. In other words, we now need to associate a sin-

gle normal vector to each vertex in the volumetric merged

mesh. Since each vertex in the merged mesh is visible from

multiple viewpoints or depth camera positions, we have

multiple normals associated with it. An intuitive approach

would be to take the average of these multiple normals and

assign it to the mesh vertex. However, owing to the pres-

ence of residual positional errors as well as errors in the

normal orientations themselves, a naive averaging is not de-

sirable since it would result in blurring of the fine-scale de-

tails present in the individual normal maps.

In [2], the authors address the estimation of the final

mesh vertex normals by combining the associated normals

in a weighted fashion. Their cost function consists of a)

a data term that measures the weighted difference between

the estimated normal and that of the corresponding normal

observations in the different normal maps and b) a smooth-

ness penalty that compares the local gradient of the esti-

mated normals with that in the corresponding locations in

the 2D normal maps. This approach allows for a smooth

estimation of normals, thereby reducing the effect of view-

point transition artefacts. In [9], instead of averaging the

available normals, the authors select one of the available

normals and assign it to the mesh vertex. In their heuristic

approach, the individual scans are ordered in a priority se-

quence and for each mesh vertex, amongst the available nor-
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(a) Top view (b) Frontal view (c) Right view

Figure 4: Quality of photometric normals with varying

viewing angle mapped to the corresponding 3D mesh. The

top view in (a) shows the regions marked. The regions

which are oblique to the viewing direction (marked in blue

in (c)) have poorer quality of normals as compared to the

regions in the direct front (marked in green in (c)). Please

view this figure in colour.

mals, the one from the highest priority scan is selected with-

out any smoothness constraint imposed on the adjacent nor-

mals. As we shall show in detail later, this approach results

in poor normal selection since the fixity of the priority or-

der results in unreliable normals that are almost orthogonal

to the viewing direction being selected. More importantly,

both approaches don’t account for the non-rigid misalign-

ments. Thus the uncorrected misaligned normals results in

blurring of high frequency details in [2] and seam-line arte-

facts in [9].

Like the approach in [9] we also prefer to select a single

normal from the available possibilities instead of averag-

ing them. We choose to do so since there is always a cer-

tain amount of residual alignment error despite our global,

multi-view non-rigid refinement step and even any intelli-

gent averaging of normals will result in a loss of high fre-

quency 3D detail. However, instead of a per-vertex normal

selection as in [9], we jointly solve for the normal selection

as a graph-cut based minimisation of a global cost function

over the entire mesh. We desire our cost function to take

into account: a) the amount of the non-rigid warp in our

non-rigid refinement step of Section 2 and b) the viewing

angles of the candidate normals in the different views. In

other words, if a vertex has a higher non-rigid warp mag-

nitude, its associated normal is deemed to be correspond-

ingly less reliable. Additionally, if a vertex lies in a region

which is highly oblique to the viewing angle, then the asso-

ciated normal is deemed to be less accurate. We illustrate

this scenario in Figure 4 which shows the quality of photo-

metric normals mapped onto the corresponding single-view

3D mesh of a clay pot with an elephant motif. In the top

view shown in Figure 4 (a) we have marked two different

regions. The corresponding regions are also marked and

shown in two convenient orientations in Figure 4 (b-c). It

is clear that the quality of the normals obtained at the re-

gions (marked in green and shown in Figure 4 (b)) which is

frontal to the view is much higher than those on right side

regions (marked in blue and shown in Figure 4 (c)).

Thus in our global cost function we incorporate a data

term capturing the relative reliability of the normals and

a smoothness term ensuring that the selection is smooth

across regions. Our overall cost function is given as

C (L) =
N
∑

i=1

∥

∥

(

κ− ni · e
li
)

fi,li
∥

∥

2

2
+

N
∑

i=1

∑

j∈N (i)

h (li, lj)

(6)

where L =
[

l1 l2 · · · lN
]T

, lk ∈ {1, 2, · · · ,K} is

the selection label vector that indicates the view from which

a corresponding normal is chosen. N denotes the number

of mesh vertices and K denotes the number of viewpoints

from which the normal maps are available. κ is a positive

constant in the range (1, 2]. Here, ni is the normal at vertex

vi estimated using the mesh neighbourhood around vi. Fur-

ther, eli is the viewing direction for the li-th mesh and f li,li
is the magnitude of the non-rigid warp with respect to the

li-th view. Since our solution is a label defining the selected

viewpoint for each normal, we incur a smoothness penalty

only when we make a transition from one viewpoint label

to another. Therefore, we define the smoothness penalty

h (li, lj) = λ · 1 (li 6= lj) for j ∈ N (i) where 1 (·) is the

indicator function, N (i) is a neighbourhood of i and λ is

a positive constant. Apart from its ability to preserve high

frequency information in the normal map, our selection ap-

proach has the additional advantage that we can very effi-

ciently solve for a global selection map using the graph-cut

method proposed in [3].

We now demonstrate the advantages of our graph-cut

based adaptive normal selection method by considering a

simple synthetic example as shown in Figure 5 and com-

paring our result with the approach of MERGE2-3D [2]

and the priority ordering approach of [9]. Three views (40◦

apart) of deformed normals maps are synthetically gener-

ated from a sphere of radius 100mm with ridges of height

5mm and are fused on smoothed depth-maps of the sphere

from the respective viewpoints as mentioned in [9]. The

respective non-rigid 3D deformation magnitude maps are

shown in the second, third and fourth columns of first row in

Figure 5. We run the MERGE2-3D [2], Priority Selection

(PS) [9] and our global, non-rigid refinement and adaptive

normal selection steps for the final multi-view fusion and

compare their performances. Specifically, we measure the

mesh-to-mesh ℓ2 distance in the overlapping region. The

second and third rows in Figure 5 show the distance maps

and the 1-d horizontal profiles along the highlighted blue

lines for the initial mesh and outputs of the three methods.

While clearly the maximum distance in the initial smooth

mesh (first column) is at the sides of the ridges, the Pri-

ority Selection (second column) results in high amount of

estimation error in the left half of the output. This is due

to an assigned higher priority of the frontal view with high

non-rigid deformation despite the availability of better nor-
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Figure 5: Synthetic sphere with ridges for 3 normal maps.

Top row: Columns show the ground truth model and the ini-

tial error maps (in mm) of the single-view fused depth maps

obtained from normal maps from 3 different viewpoints 40◦

apart respectively. Middle row: Columns show the error

maps (in mm) of initial smooth reconstruction and the re-

fined reconstructions obtained using MERGE2-3D [2], Pri-

ority Selection (PS) [9] and our method respectively. Bot-

tom row: Shows the respective 1-d horizontal profiles (non-

black coloured) along the highlighted blue lines against the

ground truth (black coloured). Please view this figure in

colour.

mals from the left view. The output (third column) from

MERGE2-3D results in blurring of the ridges, hence high

error in those regions. However, the error is minimum in

the output of our method with more precise estimation of

the ridges.

We now demonstrate the smoothness of the solution

from our normal selection method. In Figure 6 we show

the normal selection index as a colour map for a Buddha

figurine. In this example, we consider selecting a normal

from a set of three views that are coloured as cyan, green

and blue corresponding to the left, frontal and right views

respectively. In Figure 6 (a) we can notice that the simple

priority ordering heuristic results in labels that randomly al-

ternate between adjacent mesh vertices which results in a

diffusion of errors during the fusion step. As a result there

is a corresponding loss of accuracy in preserving high fre-

quency 3D detail. In contrast, as shown in Figure 6 (b) our

solution promotes spatial continuity of the selection labels

and we do not suffer from arbitrarily alternating labelling.

It will also be noted in our solution that since the Buddha

head and the base are nearly symmetric, our selection label

is also almost symmetrically (vertically) split and each side

of the head and the base are assigned to the left and right

views. However, when the normal orientation is away from

the viewing direction, then the label is switched to a better

conditioned viewing direction. This is evident, for instance,

if we consider the green patches on the left upper arm and

hand of the Buddha.

(a) Priority Selection of [9] (b) Our Graph-cut Solution

Figure 6: Comparison of normal selection labels on a Bud-

dha figurine for 3 normal maps from the left (cyan), central

(green) and right (blue) views. a) shows the solution la-

bel map from [9]; b) shows our graph-cut based label map.

Please view this figure in colour and see text for details.

Method
Type

Minimisation

Cost

Non-rigid

Refinement

Averaging (AVG) EST Squared norm ×

Weighted Average

(MERGE2-3D) [2] EST

Direction

+

Gradient

Smoothness

×

Priority Selection

(PS) [9]
SEL × ×

OURS SEL
Direction+Non-rigid

+

Selection Smoothness

X

Table 1: Comparison of attributes of normal estimation in

different approaches. (SEL - selection and EST - estima-

tion)

Mesh-Normal Fusion: Once we obtain the high quality

optimal normals from the previous step, we use the mesh

normal fusion [14] to obtain the final results.

4. Results

4.1. Synthetic Datasets

In this Section, we evaluate the efficacy of our method

compared to some other approaches. We consider the syn-

thetic sphere with ridges and the Bunny and the Armadillo

from the Stanford 3D Scanning Repository as our objects

of interest. We resize the maximum dimension of each of

them to 200mm to emulate a real world situation. We gener-

ate synthetic co-registered smooth depth maps and normal

maps of the objects from 12 known viewpoints differed by

30◦ rotations about the Y-axis. However, each of the normal

maps are synthetically obtained from non-rigid deformed

versions of the true mesh. The deformations are restricted

to 5% of the dimensions of the object. Thus, although the

normals maps contain high quality details, they have non-

rigid deformation. We then run our non-rigid refinement
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method, adaptive normal selection and fusion steps on these

input data and obtain the final multi-view 3D reconstructed

models, denoted as OURS. We then compute the mesh-to-

mesh ℓ2 distances of the outputs from the ground truths.

We compare our results with three approaches. The first

approach is that of a simple averaging of all available nor-

mals for a given mesh vertex, denoted as AVG. The second

method is of [2] that we denote as MERGE2-3D. The third

approach we compare with is the priority scheme for normal

selection described in [9], denoted as PS. Of these methods,

AVG and MERGE2-3D estimate the mesh-vertex normals

by averaging of available normals, whereas PS and OURS

are normal selection schemes. Unlike our method, none of

the other methods estimate any non-rigid alignment or cor-

rection step. While Table 1 summarises the comparative

attributes of all these four methods, Table 2 shows the com-

parisons of the errors in the output from all these methods.

Model

Reconstruction Errors

(Mesh-to-mesh ℓ2 distance)

AVG MERGE2-3D [2] PS [9] OURS

Sphere w/ridges 0.451 0.630 0.450 0.418

Bunny 0.498 0.710 0.531 0.497

Armadillo 0.325 0.374 0.387 0.296

Table 2: Comparison of performance of our method OURS

with AVG, MERGE2-3D [2] and PS [9] on synthetic

datasets with 12 views.

Figure 7: Comparative results on the Bunny model obtained

from 12 views. The columns correspond to ground truth,

AVG, MERGE2-3D [2], PS [9] and our method OURS re-

spectively. The first and second rows show overall views

and zoomed-in views of a part of the 3D reconstruction.

The third row shows the normal selection labels for PS and

OURS. AVG and MERGE2-3D are indicated in grey since

they average normals. Please view this figure in colour and

see text for details.

From Table 2, it can be observed that the outputs of

our method have the minimum errors. An interesting ob-

servation is that the AVG performs better than PS and

MERGE2-3D. This is because PS prioritises the better

views for selecting the normals but only on a per-view basis

and MERGE2-3D blindly depends on the viewing direc-

tion without considering the reliability of the normals due to

non-rigid deformations. On the other hand, AVG performs

a blind uniform averaging of all available normals which for

the synthetic datasets, enables in reducing the deformations

to some extent. Figure 7 shows the results for the 3D recon-

struction of the Bunny model for 12 views. The columns

correspond to the methods AVG, MERGE2-3D, PS and

OURS respectively. The first row shows the respective 3D

reconstructions and the second row shows a label map for

normal selection. Since both AVG and MERGE2-3D av-

erage the normals instead of selection, we indicate them as

grey images, i.e. these two methods have no label selection.

In the first row, it can be observed that the reconstructions

of AVG, MERGE2-3D and PS contain non-rigid artefacts

in the regions highlighted with red boxes while our method

recovers the surface more accurately. It can be also noted

from the second row of Figure 7 that the non-smooth nature

of normal selection of PS at the viewpoint transitions leads

to large amount of artefacts in its output. For more results

on synthetic data, please refer to the supplementary material

for this paper.

4.2. Real Datasets

In this Section, we present some results on real datasets.

For our input depth maps, we use a version 1 Kinect

(structured-light stereo) and also use the IR camera of

the Kinect to obtain high quality photometric normals as

described in [9], i.e. for each viewpoint we obtain co-

registered depth and normal estimates. All the data from

the multiple viewpoints are registered using a multi-view

ICP method, resulting in the rigid Euclidean alignment of

the depth and normal maps. We then run all the four meth-

ods as before, i.e. OURS, AVG, PS and MERGE2-3D.

In Figure 8, we present results for the 3D reconstruc-

tion of two objects, i.e. a clay horse using depth and

normal observations from 6 viewpoints shown in the first

four columns and a clay pot with an elephant motif viewed

from 4 positions shown in last four columns. We also

note that while the objects in our experiments used are

of single albedo, for multi-albedo objects we could use

the approach [5] to recover the photometric normals. The

columns correspond to the methods AVG, MERGE2-3D,

PS and OURS respectively. The first row shows the re-

spective 3D reconstructions and the second row shows a

zoomed-in detail of the reconstructions. The third row

shows a label map for normal selection. Since both AVG

and MERGE2-3D average the normals instead of selection,

we indicate them as grey images, i.e. these two methods

have no label selection. It will be immediately obvious that

the naive averaging method (AVG) ends up blurring fine-
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Figure 8: Comparative results on a horse model and a pot with an elephant motif obtained from 6 views and 4 views

respectively. The columns correspond to the AVG, MERGE2-3D [2], PS [9] and our method OURS respectively. The first

and the second rows show overall views and zoomed-in views of a part of the 3D reconstructions. The third row shows the

normal selection labels for PS and OURS. AVG and MERGE2-3D are indicated in grey. Please view this figure in colour

and see text for details.

scale 3D surface features. Unlike the synthetic cases in Sec-

tion 4.1, the MERGE2-3D method does better than AVG

as in real datasets, the quality of normals at oblique angles

from viewing direction is extremely poor and MERGE2-

3D does a more intelligent averaging of the normals, but it

can preserve surface details only upto an intermediate scale.

This is largely due to the fact that MERGE2-3D does not

account for the non-rigid misalignments and also carries out

an averaging of misaligned normals resulting in a loss of

detail. In contrast, since our approach corrects for the non-

rigid misalignments and also selects a single normal out of

many choices, it is able to preserve high frequency 3D sur-

face detail at the finest scale. This is particularly evident

if we compare the details of the eye and other parts of the

horse and the elephant heads shown in the middle row of

Figure 8. From the normal selection map shown in the third

row of Figure 8, we notice that the priority selection method

(PS) of [9] results in poor normal selection. In particular we

note that green labels on the eye and the green patch on the

sides of the horse neck and the clay pot. The surface nor-

mals in these regions are oriented away from the viewing di-

rection selected, with the result that the selected normals are

of poor quality. Consequently, there are strong distortions

present in the final reconstruction. In contrast, our graph-

cut based solution for the label map correctly selects the

normals from the appropriate and desirable viewing direc-

tions, thereby ensuring that the normals are of good quality

while also avoiding undesirable artefacts. For more results

on real data, please refer to the supplementary material for

this paper.

5. Conclusion

We have introduced a novel global, multi-view method

for non-rigid refinement of 3D meshes with corresponding

high quality 2D normal maps. We have also introduced a

well-motivated normal selection scheme that can be effi-

ciently solved using graph-cuts. Taken together, non-rigid

alignment and normal selection result in high quality 3D

reconstruction where both low and high frequency informa-

tion is preserved.
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