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Abstract

Estimating a depth map from multiple views of a scene

is a fundamental task in computer vision. As soon as

more than two viewpoints are available, one faces the very

basic question how to measure similarity across >2 im-

age patches. Surprisingly, no direct solution exists, in-

stead it is common to fall back to more or less robust av-

eraging of two-view similarities. Encouraged by the suc-

cess of machine learning, and in particular convolutional

neural networks, we propose to learn a matching function

which directly maps multiple image patches to a scalar sim-

ilarity score. Experiments on several multi-view datasets

demonstrate that this approach has advantages over meth-

ods based on pairwise patch similarity.

1. Introduction

3D reconstruction from two or more images of the same

scene is a central problem in computer vision. Assum-

ing that the camera poses are already known, the problem

reduces to (multi-view) stereo matching, i.e., establishing

dense point correspondences between the images, which

can then be converted to 3D points by triangulating the

corresponding rays. The core of stereo matching itself is

a function to measure the similarity between points in dif-

ferent images, respectively between the points surrounding

image patches. Once such a similarity measure is available,

it can be computed for a list of different putative correspon-

dences to find the one with the highest similarity.

For the classic two-view stereo case, the definition of a

similarity function is comparatively straight-forward: trans-

form the image intensities of the two patches such that

more similar ones end up closer to each other, accord-

ing to some pre-defined distance metric. Many methods

have been proposed, including simple sum-of-squared dif-

ferences, (inverse) normalized cross-correlation to afford

Figure 1. Multi-view depth estimation. A conventional, pairwise

similarity like ZNCC (top) is unable to find the correct depth in

corrupted regions, e.g. specular reflections; whereas the proposed

multi-view similarity (bottom) can predict correct depth values.

invariance against linear brightness changes, and even more

robust measures like the Hamming distance between Cen-

sus descriptors. More recently it has also been proposed

to learn the distance metric discriminatively from matching

and non-matching training examples.

In practice, multi-view stereo is often the method of

choice, since the higher redundancy and larger number of

viewpoints allows for more robust 3D reconstruction. A

host of rather successful multi-view stereo methods exist

(see benchmark results such as [12, 18, 19, 22]). Surpris-

ingly, these methods in fact have no mechanism to measure

the similarity between >2 image patches that form a puta-

tive multi-view correspondence. Instead, they heuristically

form a consensus over the pair-wise similarities, or a sub-

set of them (most often the similarities from all other stereo

partners to a “reference image” in which the depth map is
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parametrized). We note that the same is true for “multi-view

stereo” methods that reconstruct implicit [25] or explicit [5]

surfaces. These either reconstruct points from two images

and delay the multi-view integration to the surface fitting

stage; or they measure photo-consistency between pairs of

images, or between some “mean” surface texture and the

individual images.

Here, we pose the question why not directly measure

multi-view similarity? Encouraged by the successes of

learned similarity measures, we propose a multi-stream

(“Siamese”) convolutional neural network architecture that

takes as input a number of n > 2 image patches, and out-

puts a scalar similarity score. The network is learned di-

rectly from matching and non-matching example patches,

keeping decisions like the right weighting of individual im-

ages or image pairs (e.g., to account for varying contrast)

or the robustness of the consensus mechanism (e.g., due to

occlusions, specularities, and other disturbances in individ-

ual images) implicit. An alternative view of our work is as

a multi-view extension of learning-based stereo correspon-

dence [23, 26, 27] to more than two views. We posit that

the learning-based stereo should profit from the multi-view

setup, precisely because the additional images afford the

necessary redundancy to detect and resolve situations where

two-view stereo struggles. To test our similarity measure,

we embed it into a standard depth estimation setup, namely

multi-view plane-sweeping [4]: for each pixel in an image

we compute similarity scores for a range of depths along the

ray, and pick the depth with the highest similarity.

There are different strategies to cast stereo matching into

a machine learning problem. One can either fix the metric

(e.g., Euclidean distance) and learn to map image patches

to “descriptor vectors” that, according to that metric, have

small distance for matching patches and large distance for

non-matching patches [23]. For our case, that approach

does not resolve the problem of defining an n-view distance.

Alternatively, one can map raw patches to descriptors ac-

cording to some conventional recipe, e.g. SIFT, and train

a similarity/dissimilarity metric between them [24]. How-

ever, given the spectacular improvements that learned fea-

tures from CNNs have brought to computer vision, we pre-

fer to learn the mapping end-to-end from raw pixel intensi-

ties to a similarity score.

Conceptually, it is straight-forward to design a CNN for

multi-view similarity. A standard architecture to jointly pro-

cess two images with similar image statistics are “Siamese”

networks: the two inputs are passed through identical

streams with tied weights and then combined for the final

decision layers by simple addition or concatenation. We do

the same for n > 2 images and set up n parallel streams

with tied weights, without introducing additional free pa-

rameters. The network is trained on a portion of the public

DTU multi-view dataset [12], and evaluated on the remain-

ing part of it, as well as on an unrelated public dataset. We

will also show that it is possible to vary the number n of

input image patches at test time without retraining the net-

work. The comparison to other conventional and learning-

based approaches demonstrates the benefit of evaluating di-

rect multi-view similarity, especially in the case when the

reference view is corrupted, e.g., due to specular reflection

– see Figure 1.

2. Related Work

Depth Estimation. An enormous body of literature exists

on stereo matching. Much of the early work addressed the

minimal two-view case [1]. Given the relative pose of the

two images, stereo correspondence reduces to a 1D search

along corresponding epipolar lines. It is standard practice

to impose a smoothness prior, both along and across epipo-

lar lines, to better cope with ambiguities of the local simi-

larity measure. For disparity map computation a commonly

used measure is the sum of absolute differences (SAD) [14].

Here the similarity measure is based on intensity differences

of two image patches with the same size. Zero-mean nor-

malized cross correlation (ZNCC) [11] is another popular

similarity measure, which features invariance against lin-

ear brightness changes. A discussion of the complete two-

view stereo literature is beyond the scope of this paper, for

an overview and further reading please refer to benchmarks

like the Middlebury Stereo page [17] or KITTI [8].

While not as over-whelming as in the two-view case,

there still is an extensive literature about multi-view stereo.

Conceptually, there are two main approaches to generate

depth maps from multiple views. One exhaustively tests for

all possible depths, often by “sweeping” a fronto-parallel

plane through the 3D object space along the depth axis [4]

or in multiple directions [10] to sample different depth val-

ues efficiently. The other avoids exhaustive testing and in-

stead relies on efficient random sampling and propagation

schemes like PatchMatch [2] to find a good depth estimate

at every position, e.g. [6]. For both strategies, efficient GPU

implementations exist. Again, we refer the reader to bench-

mark datasets such as [19] and [12] for an overview of con-

temporary multi-view stereo algorithms. We note that there

is also a large body of work termed “multi-view reconstruc-

tion” that in fact computes depth maps from two views and

focuses on integrating the corresponding 3D point clouds

into implicit [7, 25] or explicit [5] surface representations.

Since these methods only start after having lifted image

points to 3D scene space, they are not directly relevant for

the present paper.

Patch Similarity Learning. With the rise of machine

learning for computer vision problems, it has also been pro-

posed to learn the similarity measure for (two-view) stereo.

Early work still relied on hand-tuned descriptors such as
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SIFT, the learning served to “distort” the descriptor space so

that nearby false matches get pushed apart and the distance

becomes more discriminative [24]. The advent of deep

learning suggested that the bottleneck might be the descrip-

tors themselves rather than the distance metric, so it was

proposed to learn similarity directly from raw images [27].

Closely related work started from separate steps for descrip-

tor learning and metric learning, and unified them to effec-

tively obtain a direct similarity prediction from raw image

data [9] as well. An extensive study of similarity measures

based on different CNN architectures is presented in [26].

That work also showed that CNN-based similarities out-

perform both classical descriptor spaces like SIFT [16] and

other learned descriptors such as [21]. Another strategy is

to learn patch descriptors, but freeze the distance measure

used to compare them. The recently proposed LIFT descrip-

tor [20, 23] is learned with the help of a Siamese network,

using a loss function that ensures that descriptors of match-

ing patches end up having low Euclidean distance, whereas

non-matching descriptors have not. The learned output is

a 128-dimensional descriptor vector which corresponds to

the size of the SIFT descriptor vector [16] so that LIFT can

serve as a drop-in replacement for SIFT or similar hand-

coded descriptors in existing matching pipelines.

Yet, the learned descriptors still share the limitation of

most two-view stereo methods, that similarity is measured

only for image pairs, as a distance in descriptor space.

3. Measuring n-way Patch Similarity with a

Neural Network

We aim for a function that directly maps n > 2 im-

age patches pi to a scalar similarity score S(p1, p2, . . . , pn).
Our proposed solution is to learn that function from exam-

ple data, in the spirit of what is sometimes called “metric

learning”.1 As learning engine, we use a convolutional neu-

ral network. We point out that the strategy to learn a multi-

patch similarity is generic, and not limited to stereo corre-

spondence. In fact, a main argument for learning it is that

a learned score can be tuned to different applications, just

by choosing appropriate training data. In our target appli-

cation, the n patches are the reprojections of a candidate

3D point into n different views of the scene.

For our purposes, we make the assumption that every set

of patches in the training data is either “similar” or “dis-

similar”, and do not assign different degrees of similarity.

I.e., we cast the similarity as a binary classification prob-

lem. Conveniently, this means that the similarity score is

bounded between 0 (maximally dissimilar) and 1 (maxi-

mally similar). Such a hard, discriminative approach re-

flects the situation of stereo matching (and correspondence

1We refrain from using that name, since the learned similarity score is

not guaranteed to be a metric in the mathematical sense.

mean
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Figure 2. The proposed network architecture with five “Siamese”

branches. The input are the five patches, the output is the similarity

score that is used to select the correct depth value

estimation in general), where for any given pixel in a ref-

erence image there is only one correct answer, namely the

set of patches that correspond to the ground truth depth. We

note that for other applications, for example image retrieval,

the definition may not be suitable and would have to be re-

placed with a more gradual, continuous one (for which it is

however not as straight-forward to generate training labels).

3.1. Network Architecture

The network we use for learning a depth map is illus-

trated in Figure 2. Its inputs are n image patches (w.l.o.g.

we set n = 5 for the remainder of the paper) of size

32 × 32 pixels. The early layers process each patch sep-

arately with the same set of weights, corresponding to an

n-way Siamese network architecture. Identical weights in

the different branches are a natural choice, since the result

should not depend on the order of the input patches. Note

that the number of free weights to be learned is independent

of the number n of views.

Each branch starts with a convolutional layer with 32 fil-

ter kernels of size 5 × 5. Then follow a tanh non-linearity

and a max-pooling layer with kernel size 2× 2. That same

sequence is then repeated, this time with 64 filter kernels

of size 5 × 5, and max-pooling over 2 × 2 neurons. From

the resulting 5× 5× 64 layers the mean is taken over all n

branches. The output is passed through two convolutional

layers with 2048 filter kernels, each followed by a ReLU

non-linearity, and a final convolutional layer with 2 filter

kernels. The final network output is the similarity score.
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The described, fully convolutional architecture has the

advantage that it is much more efficient to compute for

larger images at test time than a per-pixel similarity. Due

to the two pooling layers, the network outputs a similarity

score for every 4× 4 pixel region.

When designing the network, the straightforward ap-

proach would be to concatenate the outputs of the individual

branches, instead of averaging them. We evaluate both op-

tions and find their performance on par, see Tab. 2. Note

that averaging the branch outputs makes it possible to input

a varying number of views without retraining the network.

As usual, the exact network design is found empirically

and is somewhat hard to interpret. We tested several differ-

ent architectures and found the described one to work best.

Compared to other current architectures for image analysis,

our network needs fewer convolutional layers, presumably

because of the small input patch size; and, interestingly, old-

school tanh non-linearities work better than ReLU in the

early layers.

4. Application to Multi-view Stereo

Having introduced the multi-view similarity computa-

tion, we use it as a building block in a fairly standard multi-

view stereo pipeline [10], assuming known camera poses

(e.g., from prior structure-from-motion computation). As

usual, one camera is designated as the reference view for

which the depth map is computed. We emphasize that, other

than in most existing multi-view approaches, the reference

view serves only to fix the parametrization of the depth map.

In our method, its patches do not have a privileged role

as the “source” templates to be combined to the “target”

patches of the stereo partners in a pairwise fashion. Note,

in a multi-view setup it can happen that points are occluded

in the reference view, but visible in several other views. In

that case the learned similarity score may assign the highest

similarity to a point that is invisible in the reference image.

If the final product of multi-view stereo is a 3D point cloud,

this behavior does not hurt (except that the corresponding

point on the occluder is missing).

To find the most likely depth for a given pixel, we dis-

cretize the depth along the viewing direction of the refer-

ence view, as in standard plane-sweep stereo. Matching

then reduces to exhaustively testing all possible depth val-

ues and choosing the one with the highest similarity. For

a given patch in the reference view the matching patches

in the other images are extracted. This is repeated for all

planes, where each plane corresponds to a discrete depth

value. Each n-tuple of patches (including the reference

patch, which is the same for every depth) is fed to the sim-

ilarity network. Not surprisingly, rather larger patches give

more reliable similarity estimates, but there is a trade-off

against memory consumption and computational cost. We

found 32× 32 pixels to be a good compromise.

Figure 3. Generating training data. The ground truth 3D point

cloud is processed using the visibility check of [15]. Points not

visible in the reference view are removed. Next, points are ran-

domly selected, projected into the image, and a patch centered at

the projection is cropped out.

Training the Network. Our network is implemented in

Caffe [13], and learned from scratch. As training data,

we sample image patches from 49 scenes of the DTU

dataset [12] (Fig. 3).

Positive samples (similarity 1) are selected using the

ground truth depth information. Negative samples are se-

lected by picking patches from depth planes 15 steps be-

fore or after the ground truth. Note the power of the learn-

ing approach to optimally tune to the application: patches

on correct epipolar lines are the only ones the network will

ever see at test time (assuming correct camera poses). Us-

ing only such patches for training ensures that the model is

“complete”, in the sense that it sees all sorts of patch combi-

nations that can occur along epipolar lines; but at the same

time it is also “tight” in the sense that it does not contain

irrelevant negatives that do not correspond to any valid set

of epipolar geometries and merely blur the discriminative

power of the similarity.

It is a recurring question what proportion of positive and

negative samples to use in situations with very unbalanced

class distributions (for multi-view stereo, only one sample

within the entire depth range is positive for each pixel). For

our case it worked best to use a balanced training set in each

training batch, which also speeds up convergence. In total,

we sample 14.7 million positive and 14.7 million negative

examples. Learning is done by minimizing the softmax

loss w.r.t. the true labels with 500,000 iterations of standard

Stochastic Gradient Descent (SGD), with batch size 1024;

starting from a base learning rate of 0.001, that is reduced

by a factor of 10 every 100,000 iterations.

5. Experiments and Results

To evaluate our learned similarity measure, we conduct

multi-view depth estimation experiments on several scenes.

In the first experiment, we demonstrate the performance of

our approach using the DTU [12] evaluation framework and

compare it to four existing baseline methods. Second, we

test the similarity network’s ability to generalize across dif-

ferent environments. Without retraining the network, we

feed it with input images having different lighting condi-
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tions, depth range, and sensor characteristics than what was

observed during training.

The way the similarity measure is employed to provide

depth map predictions is the same for all the compared ap-

proaches. After picking a reference view, we find the four

camera viewpoints closest to it. These five images and

their camera poses are fed to a plane-sweeping routine –

we use the publicly available code of [10]. The explored

depth range is set according to the given dataset, and warped

views are generated for 256 uniformly sampled disparity

levels. The SAD and ZNCC similarity measures, already

implemented in the plane-sweeping library, are used to se-

lect the best depth estimate for each pixel position in the

reference view, based on the 4 × 256 pairwise similarity

scores. To ensure a fair comparison with the proposed ap-

proach, the same patch size of 32× 32 pixels is used.

For the other compared descriptors, SIFT [16] and

LIFT [20, 23], we compute similarity via the pairwise (Eu-

clidean) descriptor distances from the warped images, and

feed them to the same decision mechanism to select the best

per-pixel depth estimate. These descriptors were designed

to work with patch size 64 × 64 pixels, so we use these

dimensions, even though it gives them the advantage that

they can base their prediction on 4× more pixels. Note,

the warping already corrects for scale and orientation, so

we skip the corresponding parts and directly compute the

descriptor entries from the warped images. We point out

that this comparison is not completely fair, since the two

descriptors were designed for sparse interest-point match-

ing, where some translational invariance is desirable. Still,

we wanted to test against LIFT, as the most recent learned,

CNN-based descriptor. For completeness, we include its

hand-crafted counterpart.

In order to have a computationally efficient depth map

prediction with the proposed approach, we choose the input

patch size to be 128 × 128 pixels. This allows the network

to compute the similarity scores for 25 × 25 partially over-

lapping patches (stride 4) of size 32×32 in a single forward

pass, filling up a region of 100×100 similarity scores (after

upsampling). Doing this for every depth of the sweeping

plane, we obtain a list of 256 multi-view similarity scores

per pixel, and simply pick the depth with the highest score.

To compute the 25×25×256 similarity scores (covering an

area of 100×100 original pixels) takes 70ms, on an Intel i7

computer with Nvidia Titan X GPU using Caffe in Linux.

Practical matching software does not return raw depth

estimates, but improves them with different simple steps.

The plane-sweeping library [10] offers two such options:

(i) interpolation of the discrete depth levels to sub-pixel

accuracy, and (ii) box filtering to account for correlations

between nearby depth values. We tested both options and

found them to consistently improve the overall results, in-

dependent of the similarity measure. As we are primarily

interested how well different similarity metrics perform un-

der realistic conditions, we enable subpixel accuracy and

box filtering in all following experiments.

5.1. Evaluation on the DTU dataset

The DTU Robot Image Data (DTU) contains more than

80 different indoor table top scenes. Each DTU scene was

recorded from predetermined, known camera poses with the

help of a camera mounted on a robot arm, and a ground

truth 3D point cloud was generated by mounting a high-

accuracy active stereo sensor on the same robot arm. Im-

ages from 49 scenes are already used as our training data.

Beyond those, also scenes that share one or more objects

with any of the training scenes are excluded from testing, to

avoid potential biases. For DTU, we set the depth range to

[0.45 . . . 1]m.

Qualitative Results. The four example objects we use

in the following are labeled BIRD, FLOWER, CAN, and

BUDDHA. The BIRD has a uniform color so the inten-

sity differences are largely due to the shading effects. The

FLOWER is a difficult object due to the thin structure and

the small leaves. Underneath the flowerpot, there is a news-

paper with strong texture. The CAN has a metallic surface

with homogeneous texture, while the background is rather

strongly textured. The BUDDHA is made out of porcelain,

with significant specular reflections.

The provided color images are converted to grayscale

before processing, c.f . Fig. 4a-4d. The ground truth depth

maps have been generated by back-projecting ground truth

3D point clouds and are sparse, c.f . Fig. 4e-4h, whereas

the depth maps from multi-view stereo are dense. We thus

evaluate only at the sparser ground truth depths. Also the

difference plots in Fig. 4i-4t show only the pixels for which

ground truth is available. Depth differences are color-coded

on a logarithmic scale, where dark blue corresponds to zero

difference and dark red denotes differences > 20mm.

For the BIRD the right wing, which is partly in shadow,

is the most difficult part. For all three methods there are er-

rors at the wing boundary, the largest errors are observed for

LIFT. Note also errors on the left wing boundary present in

ZNCC and LIFT but not in the proposed method. The most

difficult object is the FLOWER. Here the ZNCC and our ap-

proach again outperform LIFT. All three methods struggle

with the dark, homogeneous soil in the flowerpot. On the

leaves, as far as present in the ground truth, our method has

the smallest error, especially near the boundaries. For the

CAN object, the homogeneous metal surface challenges the

LIFT approach, whereas the two others can resolve it cor-

rectly. For the BUDDHA the most difficult parts for depth

estimation are the small regions with specular reflection.

These can be seen in Figs. 1, 4d. In those regions ZNCC

and LIFT have large errors, while our direct multi-view ap-
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)

Figure 4. Plane sweeping using three different patch similarity measures. Proposed learned multi-view similarity vs. pairwise ZNCC and

pairwise LIFT. Reference images (a-d). Ground truth (e-h). Absolute deviations from ground truth for the proposed method (i-k), ZNCC

(m-p) and LIFT (q-t). Blue: no difference, red: high difference.

proach copes a lot better (Fig. 4l). Overall, the examples

suggest that our proposed similarity is more general: the

classic ZNCC method often works well, but struggles near

object boundaries. LIFT seems to have problems with cer-

tain surfaces materials like the metal of the CAN, and both

competitors struggle with specularities (which, incidentally,

are a main problem of stereo reconstruction, especially in

industrial applications).

1591



Similarity #views Accuracy Completeness

Mean Median Mean Median

SAD 4×2 1.868 0.617 2.534 1.148

ZNCC 4×2 1.237 0.577 2.260 1.025

OUR stereo 4×2 1.339 0.453 2.964 1.391

OUR 5-view 5 1.356 0.472 2.126 0.868

Table 1. Quantitative results for 20 objects from the DTU datasets.

Four similarity measures are compared: sum of absolute differ-

ences, zero-mean normalized cross correlation, proposed similar-

ity over 2 views, and proposed similarity over 5 views.

Quantitative results. The authors of the DTU dataset

provide an evaluation framework in which, per object, the

groundtruth 3D point cloud is compared to the one con-

structed from the depth estimates. For the evaluation we

thus convert the estimated depth maps to 3D point clouds by

lifting them with the known camera calibration. Note that

we do not use depthmap integration across multiple view-

points. Accuracy is defined as the average (truncated) dis-

tance from a reconstructed point to the nearest ground truth

point. Completeness is defined inversely, as average dis-

tance from ground truth points to the nearest model points,

i.e., lower values are also better.

We start with a comparison to standard similarity mea-

sures for 20 scenes in Table 1. While the mean values de-

scribe the overall performance, median values are less sen-

sitive to outliers. Note that, also for the mean, the per-point

distances of outliers are truncated at 20mm. To support

the claim that direct multi-view similarity is preferable to

consensus over 2-view scores, we also run our method in

2-view stereo mode and feed the scores to the same con-

sensus mechanism used for SAD and ZNCC. Directly com-

puting similarity over 5 input views delivers significantly

better completeness at similar accuracy as the best competi-

tors. We did not run the full experiment with LIFT, due to

the excessive runtime of pixelwise CNN prediction without

a fully convolutional architecture.

In Table 2 we compare the accuracy and completeness of

all tested methods for the four example scenes. Differences

are relatively small between SAD and ZNCC, probably due

to the controlled lighting. The results for SIFT and LIFT are

also quite similar, except for the CAN object where SIFT

clearly outperforms its learned counterpart.

The proposed method achieves the best median accuracy

and median completeness in all the scenes, and the best

mean accuracy and completeness for three of them. Note

that there is virtually no difference between averaging and

concatenation. There seems to be no performance penalty

for averaging, while at the same time one gains the flexibil-

ity to use a variable number of input views. On the BIRD,

our method ranks third in accuracy and second in complete-

ness. There are relatively big differences between median

Similarity Accuracy Completeness

(5 views) Mean Median Mean Median

BIRD

SAD 2.452 0.380 4.035 1.105

ZNCC 1.375 0.365 4.253 1.332

SIFT 1.594 0.415 5.269 1.845

LIFT 1.844 0.562 4.387 1.410

OUR concat 1.605 0.305 4.358 1.133

OUR 1.881 0.271 4.167 1.044

FLOWER

SAD 2.537 1.143 2.768 1.407

ZNCC 2.018 1.106 2.920 1.467

SIFT 2.795 1.183 4.747 2.480

LIFT 3.049 1.420 4.224 2.358

OUR concat 2.033 0.843 2.609 1.267

OUR 1.973 0.771 2.609 1.208

CAN

SAD 1.824 0.664 2.283 1.156

ZNCC 1.187 0.628 2.092 1.098

SIFT 1.769 0.874 3.067 1.726

LIFT 2.411 1.207 3.003 1.823

OUR concat 1.082 0.477 1.896 0.833

OUR 1.123 0.478 1.982 0.874

BUDDHA

SAD 0.849 0.250 1.119 0.561

ZNCC 0.688 0.299 1.208 0.656

SIFT 0.696 0.263 1.347 0.618

LIFT 0.688 0.299 1.208 0.656

OUR concat 0.682 0.231 1.017 0.473

OUR 0.637 0.206 1.057 0.475

Table 2. Quantitative results for BIRD, FLOWER, CAN, and

BUDDHA objects. Six similarity measures are compared: sum

of absolute differences, zero mean normal cross correlation, SIFT,

LIFT, proposed multi-view similarity using concatenation, and

proposed multi-view similarity using averaging.

and mean errors, apparently all measures show quite good

performance on the rather diffuse surface, whereas outliers

due to ambiguous texture inflate the mean values.

Overall, the proposed multi-view patch similarity ex-

hibits the quantitatively and qualitatively best performance.

In particular, the experiments support our claim that learn-

ing end-to-end multi-view similarity is preferable to com-

paring learned per-patch descriptors with conventional Eu-

clidean distance, and to a consensus over learned 2-view

similarities.

Varying the number of input patches. We go on

to demonstrate that the network architecture, in which

branches are averaged, can be applied to different numbers

of input views without retraining. We run experiments with

either three or nine views, respectively patches. Both give

reasonable depth estimates (Fig. 5). As expected, the re-

sults with only three views are a bit worse. However, using
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(a) input view (b) 3 views

(c) 5 views (d) 9 views

Figure 5. Matching different numbers of views with the similarity

network can be done without retraining. Result displayed without

sub-pixel refinement and box filtering to accentuate differences.

nine patches instead of five further improves performance

– although the similarity network has only been trained

with five. We speculate that information how to correctly

weight pixels at discontinuities, occlusions etc. passes down

the individual branches during training, so that the parallel

Siamese streams can also use it for additional branches. On

the other hand, averaging itself may have a stronger denois-

ing effect with more branches. Further research is needed

to clarify the underlying mechanisms. Whatever the reason,

in our view flexibility with respect to the number of input

views is an attractive and important feature for real-world

applications of multi-view stereo.

5.2. Evaluation on the Fountain dataset

The images recorded with the robot for the DTU dataset

are all taken in an indoor laboratory environment, and one

would expect that the specific lighting and camera charac-

teristics of the dataset are captured in our trained network.

Therefore, we apply the learned multi-view similarity mea-

sure also to the well-known Fountain dataset [22], without

retraining it.

For the experiment we select five neighboring images

and set the depth range to [5 . . . 10]m. The depth maps in

Fig. 6 show the qualitative result for three different meth-

ods. Our method works at least as well as ZNCC and SIFT,

which are generic and not learned from data. The network

does not seem to significantly overfit to the DTU setting.

(a) ground truth (b) OUR

(c) SIFT (d) ZNCC

Figure 6. The learned similarity generalizes to a different test en-

vironment, seemingly as well as the competing descriptors.

6. Conclusion

We have proposed to directly learn a similarity / match-

ing score over a set of multiple patches with a discriminative

learning engine, rather than heuristically assemble it from

pairwise comparisons. An n-way Siamese convolutional

network, which applies the same, learned transformation to

all input patches and combines the results, was identified as

a suitable state-of-the-art learning engine.

From a high-level perspective, machine learning for

3D vision started with very small steps like learning the dis-

tance metric between given descriptors, or learning descrip-

tor extraction for pairwise matching. Recently, bolder ideas

have emerged, all the way to learning an end-to-end map-

ping from images to (volumetric, low-resolution) 3D mod-

els [3]. Our work is positioned somewhere in the middle.

While we do not see an immediate reason to replace the geo-

metrically transparent and well-understood structure-from-

motion pipeline with a learned black-box predictor, we do

agree that certain steps of the pipeline lack a principled so-

lution and might be best addressed with machine learning.

In our work, we have used the learned similarity score for

multi-view stereo matching, but we believe that variants of

it could also be beneficial for other applications where simi-

larity, respectively distance, between more than two images

must be assessed.

Dedication. We dedicate this paper to the memory of Wil-

fried Hartmann, who did not live to see it published.
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