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Abstract

In this paper, we first provide a new perspective to di-

vide existing high performance object detection methods

into direct and indirect regressions. Direct regression per-

forms boundary regression by predicting the offsets from

a given point, while indirect regression predicts the offsets

from some bounding box proposals. In the context of multi-

oriented scene text detection, we analyze the drawbacks of

indirect regression, which covers the state-of-the-art detec-

tion structures Faster-RCNN and SSD as instances, and

point out the potential superiority of direct regression. To

verify this point of view, we propose a deep direct regres-

sion based method for multi-oriented scene text detection.

Our detection framework is simple and effective with a fully

convolutional network and one-step post processing. The

fully convolutional network is optimized in an end-to-end

way and has bi-task outputs where one is pixel-wise clas-

sification between text and non-text, and the other is direct

regression to determine the vertex coordinates of quadri-

lateral text boundaries. The proposed method is particu-

larly beneficial to localize incidental scene texts. On the

ICDAR2015 Incidental Scene Text benchmark, our method

achieves the F-measure of 81%, which is a new state-of-

the-art and significantly outperforms previous approaches.

On other standard datasets with focused scene texts, our

method also reaches the state-of-the-art performance.

1. Introduction

Scene text detection has drawn great interests from both

computer vision and machine learning communities be-

cause of its great value in practical uses and the technical

challenges. Owing to the significant achievements of deep

convolutional neural network (CNN) based generic object

detection in recent years, scene text detection also has been

greatly improved by regarding text words or lines as objects.

High performance methods for object detection like Faster-

RCNN [19], SSD [14] and YOLO [18] have been modi-

(a) (b)

Figure 1. Visualized explanation of indirect and direct regression.

The solid green lines are boundaries of text “Gallery”, the dash

blue lines are boundaries of text proposal, and the dashed yellow

vectors are the ground truths of regression task. (a) The indirect

regression predicts the offsets from a proposal. (b) The direct re-

gression predicts the offsets from a point.

fied to detect horizontal scene texts [27] [5] [21] [13] and

gained great improvements. However, for multi-oriented

text detection, methods like Faster-RCNN and SSD which

work well for object and horizontal text detection may not

be good choices. To illustrate the reasons, first we explain

the definitions of indirect and direct regression in detection

task.

Indirect Regression. For most CNN based detection meth-

ods like Fast-RCNN [3], Faster-RCNN, SSD, Multi-Box

[2], the regression task is trained to regress the offset val-

ues from a proposal to the corresponding ground truth (See

Fig.1.a). We call these kinds of approaches indirect regres-

sion.

Direct Regression. For direct regression based methods,

the regression task directly outputs values for the position

and size of an object from a given point (See Fig.1.b). Take

DenseBox [7] as an instance, this model learns to directly

predict offsets from bounding box vertexes to points in re-

gion of interest.

Indirect regression based detection methods may not be

effective for multi-oriented text detection, even methods

like Faster-RCNN and SSD have reached state-of-the-art

performance for object detection and are also implemented

for horizontal scene text detection. The reasons are mainly
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Figure 2. Illustration for the deficiency of anchor mechanism in

detecting long and heavily inclined text words or lines. The solid

yellow lines are boundaries of the text line and the dashed lines

are boundaries of anchors. There is no anchor that has sufficient

overlap with the text line in this image.

in three folds. First, there are few robust methods to gen-

erate word-level or line-level proposals for multi-oriented

text. Most previous methods could only provide propos-

als of character-level by extracting connected components.

Second, anchor mechanism in Faster-RCNN may not be an

effective solution to generate text proposals. The anchor

mechanism can be deemed as rectangular proposals of vari-

ous sizes and aspect ratios being evenly placed on an image,

and setting proposals which have high overlap with ground

truths as positive, otherwise as “NOT CARE” or negative.

However, for multi-oriented scene texts which are long and

heavily inclined, there may be no proper anchor that has suf-

ficient overlap with them as shown in Fig.2. Third, adopting

anchor mechanism may cause the detection system less ef-

ficient. Taking horizontal scene text detection as instance,

unlike generic objects, horizontal scene texts tend to have

larger variation in sizes and aspect ratios, which requires

more complicate design of anchors. The anchors used in

[27] [13] are much more than traditional Faster-RCNN in

both scale and aspect ratio. As to multi-oriented text de-

tection, inclined text proposals may be generated by adopt-

ing multi-oriented anchors like [15], however, this will cost

much more running time in the meanwhile and the proposal

may not be an optimal choice. Based on the analysis above,

direct regression based methods which need no proposals

beforehand could be a better choice to produce the irregular

quadrilateral boundaries for multi-oriented scene texts.

In this paper, we propose a novel multi-oriented text de-

tection method based on direct regression. Our method is

particularly beneficial to localize quadrilateral boundaries

of incidental scene texts which are hard to identify the con-

stitute characters and have large variations in scales and per-

spective distortions. On the ICDAR2015 Incidental Scene

Text benchmark, we obtain F-measure of 81%, which is a

new state-of-the-art and surpass the second placed method

by a large margin. On other popular datasets of focused im-

ages, the proposed method also reaches the state-of-the-art

performance.

The proposed method has several novelties and advan-

tages. First, this is the first direct regression based method

for multi-oriented scene text detection. Second, the whole

pipeline of the proposed method only has two parts in which

one is a convolutional neural network and the other is a

one-step post processing call Recalled Non-Maximum Sup-

pression. Modules like line grouping and word partition

are removed which saves much effort on tuning parameters.

Third, since our method could predict irregular quadrilat-

eral boundaries, it has great superiority in incidental texts

detection task which needs to localize four vertexes of each

word-level text.

The rest of this paper is organized as follows: In Sec-

tion 2 we give a brief review of scene text detection and

generic object detection, in Section 3 we introduce details

of our proposed method, in Section 4 we present the results

on benchmarks and the rationality analysis of the perfor-

mance, as well as comparisons to other scene text detection

systems, and in Section 5 we conclude this paper.

2. Related Work

Scene Text Detection. Most scene text detection methods

[26] [21] [8] [1] [17] treat text as a composite of charac-

ters, so they first localize character or components candi-

dates and then group them into a word or text line. Even for

multi-oriented text, methods like [23] [24] [10] also follow

the same strategy and the multi-oriented line grouping is ac-

complished by either rule based methods or more complex

graphic model. However, for texts in the ICDAR2015 Inci-

dental Scene Text Dataset [11], some blurred or low resolu-

tion characters in a word could not be well extracted, which

hinders the performance of localization.

Recently, some text detection methods discard the text

composition and take text words or lines as generic objects.

The method in [25] makes use of the symmetric feature of

text lines and tries to detect text line as a whole. Despite the

novelty of this work, the feature it uses is not robust for clut-

tered images. The method in [5] adopts the framework for

object detection in [18], but the post-processing relies on the

text sequentiality. The methods in [27] and [13] are based

on Faster-RCNN [19] and SSD [14] respectively. They both

attempt to convert text detection into object detection and

the performance on horizontal text detection demonstrate

their effectiveness. However, constrained by the deficiency

of indirect regression, those two methods may not be suit-

able for multi-oriented scene text detection. The method in

[15] rotates the anchors into more orientations and tries to

find the best proposal to match the multi-oriented text. Defi-

ciency of this method is that the best matched proposal may

746



not be an optimal choice since the boundary shape of scene

texts is arbitrary quadrilateral while the proposal shape is

parallelogram.

Generic Object Detection. Most generic object detec-

tion frameworks are multi-task structure with a classifier

for recognition and a regressor for localization. Accord-

ing to the distinction of regressor, we divide these methods

into direct and indirect regression. The direct regression

based methods like [7] predict size and localization of ob-

jects straightforwardly. The indirect regression based meth-

ods like [3] [19] [2] [14] predict the offset from proposals

to the corresponding ground truths. It should be noted that,

the proposals here can be generated by either class-agnostic

object detection methods like [22] or simple clustering [2],

as well as anchor mechanism [19] [14].

Although most of the recent state-of-the-art approaches

are indirect regression based methods, considering the wide

variety of texts in scale, orientation, perspective distortion

and aspect ratio, direct regression might have the potential

advantage of avoiding the difficulty in proposal generation

for multi-oriented texts. This is the main contribution of this

paper.

3. Proposed Methodology

The proposed detection system is diagrammed in Fig.3.

It consists of four major parts: the first three modules,

namely convolutional feature extraction, multi-level feature

fusion, multi-task learning, together constitute the network

part, and the last post processing part performs recalled

NMS, which is an extension of traditional NMS.

3.1. Network Architecture

The convolutional feature extraction part is designed so

that the maximum receptive field is larger than the input im-

age size S. This ensures the regression task could see long

texts and give more accurate boundary prediction. Consid-

ering that the text feature is not as complicated as that of

generic objects, our network tends to employ less parame-

ters than models designed for ImageNet to save computa-

tion.

The feature fusion part referring to the design in [16]

combine convolutional features from four streams to cap-

ture texts of multiple scales. However, to reduce computa-

tion, we only up-sample the fused feature to quarter size of

the input image.

The multi-task part has two branches. The classification

task output Mcls is a S
4 × S

4 2nd-order tensor and it can

be approximated as down-sampled segmentation between

text and non-text for input images. Elements in Mcls with

higher score are more likely to be text, otherwise non-text;

The regression task output Mloc is a S
4 × S

4 × 8 3rd-order

tensor. The channel size of Mloc indicates that we intend

to output 8 coordinates, corresponding to the quadrilateral

vertexes of the text. The value at (w, h, c) in Mloc is de-

noted as L(w,h,c), which means the offset from coordinate

of a quadrilateral vertex to that of the point at (4w, 4h) in

input image, and therefore, the quadrilateral B (w, h) can be

formulated as

B (w, h) =
{

L(w,h,2n−1)+4w,L(w,h,2n)+4h
∣

∣n ∈ {1, 2, 3, 4}
} (1)

By combining outputs of these two tasks, we predict a

quadrilateral with score for each point of S
4 × S

4 map. More

detailed structure and parameterized configuration of the

network is shown in Fig.4.

3.2. Ground Truth and Loss Function

The full multi-task loss L can be represented as

L = Lcls + λloc · Lloc, (2)

where Lcls and Lloc represent loss for classification task

and regression task respectively. The balance between two

losses is controlled by the hyper-parameter λloc.

Classification task. Although the ground truth for classi-

fication task can be deemed as a down-sampled segmenta-

tion between text and non-text, unlike the implementation

in [26], we do not take all pixels within text region as pos-

itive, instead, we only regard pixels around the text center

line within distance r as positive and enclose positive region

with an “NOT CARE” boundary as transition from positive

to negative (shown in Fig.5). The parameter r is propor-

tional to the short side of text boundaries and its value is

0.2.

Furthermore, text is taken as a positive sample only

when its short side length ranges in
[

32× 2−1, 32× 21
]

.

If the short side length falls in
[

32× 2−1.5, 32× 2−1
)

∪
(

32× 21, 32× 21.5
]

, we take the text as “NOT CARE”,

otherwise negative. “NOT CARE” regions do not contribute

to the training objective. Ground truths designed in this way

reduce the confusion between text and non-text, which is

beneficial for discriminative feature learning.

The loss function Lcls chosen for classification task is

the hinge loss. Denote the ground truth for a given pixel as

y∗i ∈ {0, 1} and predicted value as ŷi, Lcls is formulated as

Lcls =
1

S2

∑

i∈Lcls

max (0, sign (0.5− y∗i ) · (ŷi − y∗i ))
2

(3)

Besides this, we also adopt the class balancing and hard

negative sample mining as introduced in [7] for better per-

formance and faster loss convergence. Hence during train-

ing, the predicted values for “NOT CARE” region and eas-

ily classified negative area are forced to zero, the same as

the ground truth.
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Figure 3. Overview of the proposed text detection method.

Regression task. Considering that the ground truth val-

ues of regression task vary within a wide range, we use

a Scale&Shift module (shown in Fig.4) for fast conver-

gence. Scale&Shift takes the value z from a sigmoid neu-

ron as input and stretch z into ẑ by

ẑ = 800 · z − 400, z ∈ (0, 1) (4)

Here we assume that the maximum positive text size is

less than 400. We also use a sigmoid neuron to normalize

the values before Scale&Shift for steady convergence.

According to [3], the loss function Lloc used in regres-

sion task is defined as follows. Denote the ground truth for

a given pixel as z∗i and predicted value as ẑi, Lloc is formu-

lated as

Lloc =
∑

i∈Lloc

[y∗i > 0] · smoothL1
(z∗i − ẑi) , (5)

smoothL1
(x) =

{

0.5x2 if |x| < 1,
|x| − 0.5 otherwise.

(6)

We choose smooth L1 loss here because it is less sen-

sitive to outliers compared with L2 loss. During training

stage, smooth L1 loss need less careful tuning of learning

rate and decreases steadily.

3.3. Recalled Non­Maximum Suppression

After getting the outputs produced by multi-task learn-

ing, each point of the output map is related with a scored

quadrilateral. To filter the non-text region, we only preserve

points with high score in classification task. However, there

will be still densely overlapped quadrilaterals for a word

or text line. To reduce the redundant results we propose

a post-processing method called Recalled Non-Maximum

Suppression.

The Recalled NMS is a trade-off solution for two prob-

lems: (i) when texts are close, quadrilaterals between two

words are often retained because of the difficulty in clas-

sifying pixels within word space, (ii) if we solve problem

(i) by simply retaining quadrilaterals with higher score, text

region with relative lower confidence will be discarded and

the overall recall will be sacrificed a lot. The Recalled

NMS could both remove quadrilaterals within text spaces

and maintain the text region with low confidence.

The Recalled NMS has three steps as shown in Fig.6.

• First, we get suppressed quadrilaterals Bsup from

densely overlapped quadrilaterals B by traditional

NMS.

• Second, each quadrilateral in Bsup is switched to the

one with highest score in B beyond a given overlap.

After this step, quadrilaterals within word space are

changed to those of higher score and low confidence

text region are preserved as well.

• Third, after the second step we may get dense over-

lapped quadrilaterals again, and instead of suppres-

sion, we merge quadrilaterals in Bsup which are heav-

ily overlapped with each other.

Figure 6. Three steps in Recalled NMS. Left: results of traditional

NMS (quadrilaterals in red are false detection). Middle: recalled

high score quadrilaterals. Right: merging results by closeness.
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Figure 4. Structure of the network. Left: Detailed components of

the convolutional feature extraction and multi-level feature fusion.

The “ConvUnit(w, h, n)” represents a convolutional layer of n w×
h kernels, connected by a batch normalization layer and a ReLU

layer. The “UpSample(n)” represents a deconvolution layer of n×
n kernels with stride n. Right: The design of multi-task module.

“Scale&Shift” is used to stretch and translate the values.

3.4. Network Implementation

The training samples of 320 × 320 are cropped from

scaled images rotated randomly by 0, π/2, π, or 3π/2.

The task balance index λloc is raised from 0.01 to 0.5 after

the classification task gets well trained. The network should

learn what the text is first and then learn to localize the text.

In testing, we adopt a multi-scale sliding window strategy

in which window size is 320×320, sliding stride is 160 and

multi-scale set is
{

2−5, 2−4, · · · , 21
}

. Pixels on Mcls are

deemed as text if their values are higher than 0.7. In post

processing, the only parameter, overlap ratio, in Recalled

NMS is 0.5.

(a)

(b)

Figure 5. Visualized ground truths of multi-task. (a) The left map

is the ground truth for classification task, where the yellow regions

are positive, enclosed by “NOT CARE” regions colored in light

sea-green. The right map is the ground truth of “top-left” channel

for regression task. Values grow smaller from left to right within a

word region as pixels are farther from the top left corner. (b) The

corresponding input image of the ground truths.

4. Experiments

We evaluate our method on three benchmarks: IC-

DAR2015 Incidental Scene Text, MSRA-TD500 and IC-

DAR2013. The first two datasets have multi-oriented texts

and the third one has mostly horizontal texts. For fair com-

parison we also list recent state-of-the-art methods on these

benchmarks.

4.1. Benchmark Description

ICDAR2015 Incidental Scene Text. This dataset is re-

cently published for ICDAR2015 Robust Reading Compe-

tition. It contains 1000 training images and 500 test im-

ages. Different from previous scene text datasets where

texts are well captured in high resolution, this dataset con-

tains texts with various scales, resolution, blurring, orienta-

tions and viewpoint. The annotation of bounding box (actu-

ally quadrilateral) also differs greatly from previous ones

which has 8 coordinates of four corners in a clock-wise

manner. In evaluation stage, word-level predictions are re-

quired.

MSRA-TD500. This dataset contains 300 training images

and 200 test images, where there are many multi-oriented

text lines. Texts in this dataset are stably captured with high

resolution and are bi-lingual of both English and Chinese.

The annotations of MSRA-TD500 are at line level which

casts great influence on optimizing regression task. Lack-
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ing of line level annotation and sufficient bi-lingual training

data, we did not use the training set and instead, we utilize

the generalization of our model trained on English word-

level data.

ICDAR2013 Focused Scene Text. This dataset lays more

emphasis on horizontal scene texts. It contains 229 training

images and 233 test images which are well captured and

clear. The evaluation protocol is introduced in [12].

4.2. Implementation Details

The network is optimized by stochastic gradient descent

(SGD) with back-propagation and the max iteration is 2 ×
105. We adopt the “multistep” strategy in Caffe [9] to adjust

learning rate. For the first 3×104 iterations the learning rate

is fixed to be 10-2 and after that it is reduced to 10-3 until

the 105th iteration. For the rest 105 iterations, the learning

rate keeps 10-4. Apart from adjusting learning rate, the hard

sample ratio mentioned in Sec.3.2 is increased from 0.2 to

0.7 at the 3× 104th iteration. Weight decay is 4× 10-4 and

momentum is 0.9. All layers except in regression task are

initialized by “xavier” [4] and the rest layers are initialized

to a constant value zero for stable convergence.

The model is optimized on training datasets from IC-

DAR2013 and ICDAR2015. The whole experiments are

conducted on Caffe and run on a workstation with 2.9GHz

12-core CPU, 256G RAM, GTX Titan X and Ubuntu 64-bit

OS.

4.3. Experimental Results

ICDAR2015 Incidental Scene Text. The results shown in

Tab.1 indicate that the proposed method outperforms pre-

vious approaches by a large margin in both precision and

recall. To demonstrate the effectiveness of Recalled NMS,

we list the result adopting traditional NMS as the post pro-

cessing. From Tab.1 we can see the Recalled NMS give a

higher precision mainly because of filtering quadrilaterals

between text lines.

We also list the detection result running on the original

image size, which demonstrate the necessity of testing on

multiple scales. The precision value on single scale does

not drop indicating the effectiveness by treating text in a

proper scale range as positive samples.

Note that the method in [15] which ranks second is in-

direct regression based multi-oriented text detection and it

also treats text detection as object detection. The large mar-

gin between our method and this method demonstrates our

analysis on the deficiency of indirect regression and supe-

riority of direct regression for multi-oriented text detection.

Some examples of our detection results are shown in Fig.7.

MSRA-TD500. The results of our method on this dataset

are shown in Tab.2, with comparisons to other represen-

tative results of state-of-the art methods. It is shown that

our method could reach the state-of-the-art performance. It

Table 1. Comparison of methods on ICDAR2015 Incidental Scene

Text dataset. R-NMS is short for Recalled NMS and T-NMS is

short for traditional NMS. SS is short for single scale.

Algorithm Precision Recall F-measure

Proposed (R-NMS) 0.82 0.80 0.81

Proposed (T-NMS) 0.81 0.80 0.80

Liu et al. [15] 0.73 0.68 0.71

Proposed (SS) 0.82 0.62 0.70

Tian et al. [21] 0.74 0.52 0.61

Zhang et al. [26] 0.71 0.43 0.54

StradVision2 [11] 0.77 0.37 0.50

StradVision1 [11] 0.53 0.46 0.50

NJU-Text [11] 0.70 0.36 0.47

AJOU [11] 0.47 0.47 0.47

HUST MCLAB [11] 0.44 0.38 0.41

Table 2. Comparison of methods on MSRA-TD500 dataset.

Algorithm Precision Recall F-measure

Proposed 0.77 0.70 0.74

Zhang et al. [26] 0.83 0.67 0.74

Yin et al. [24] 0.81 0.63 0.71

Kang et al. [10] 0.71 0.62 0.66

Yao et al. [23] 0.63 0.63 0.60

Table 3. Comparison of methods on ICDAR2013 Focused Scene

Text dataset.

Algorithm Precision Recall F-measure Time

Proposed 0.92 0.81 0.86 0.9s

Liao et al. [13] 0.88 0.83 0.85 0.73s

Zhang et al. [26] 0.88 0.78 0.83 2.1s

He et al. [6] 0.93 0.73 0.82 –

Tian et al. [20] 0.85 0.76 0.80 1.4s

should be noted that we did not adopt the provided training

set or any other Chinese text data. Since our method could

only detect text in word level, we implement line group-

ing method based on heuristic rules in post processing. Our

model shows strong compatibility for both English and Chi-

nese, however, we still fail to detect Chinese text lines that

have wide character spaces or complex background. Part of

our detection results are shown in Fig.8.

ICDAR2013 Focused Scene Text. The detection results of

our method on the ICDAR2013 dataset are shown in Tab.3.

The performance of our method is also the new state-of-

the-art. Apart from the precision, recall and F-measure, we

also list the time cost of our method for per image. From

the Tab.3 we can see our method is also competitively fast

in running speed. Failed cases are mainly caused by single

character text and the inability to enclose letters at either

end. Part of our detection results are shown in Fig.9.
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Figure 7. Detection examples of our model on ICDAR2015 Incidental Scene Text benchmark.

(a) (b)

(c) (d)

Figure 8. Detection examples of our model on MSRA-TD500. (a)-

(b) Chinese text can also be detected due to the model generaliza-

tion. (c)-(d) Some failure cases for complicated background or

wide character space. False and miss detected texts are enclosed

by red lines.

4.4. Rationality of High Performance

The proposed method is intrinsically able to detect texts

of arbitrary orientation, and able to partition words auto-

matically. The tremendous improvements in both precision

and recall for incidental text is mainly attributed to three

aspects.

First, direct regression based detection structure avoids

to generate proper proposals for irregular shaped multi-

oriented texts and thus is more straightforward and effective

for multi-oriented scene text detection.

Second, the restriction of positive text size guarantees the

robustness of feature representation learned by deep con-

volutional neural networks. Features for small texts could

fade a lot after the first down-sampling operations, and

large texts would lose much context information causing

(a) (b) (c)

(d) (e)

Figure 9. Detection examples of our model on ICDAR2013. (a)-

(c) word level detection for cluttered scenes. (d)-(e) Some failure

cases for single character text and losing characters at either end.

False and miss detected texts are enclosed by red lines.

the CNN could only see some simple strokes of the large

texts. Texts within a proper scale range could contain both

text textures and enough semantic context making the CNN

learn more robust scene text features. Moreover, the classi-

fication task which is able to distinguish text and non-text

regions providing a solid foundation for regression task.

Third, the end-to-end optimization mechanism to local-

ize text is much more robust than rule based methods. Pre-

vious methods treating line grouping and word partition as

post processing are prone to lose much useful information

and rely on thresholds chosen, but integrating localization

into the network for end-to-end training could well solve

the mentioned issues above.
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4.5. Comparison to Other Scene Text Detection Sys­
tems

Here we list and compare with some recent high perfor-

mance scene text detection methods for better understand-

ing on the superiority of our method. The listed methods

are arranged by the time they are proposed.

TextFlow. TextFlow [20] is designed for horizontal scene

text detection by extracting character candidates firstly and

then group characters into text lines. Its main contribution

is to reduce the traditional multi-module system into fewer

steps. Due to the more integrated pipeline, it could reach

competitive performance for horizontal text detection. We

take benefits of its intuition and design a simpler process to

detect text words/lines directly without extracting character

candidates or line grouping.

SymmetryText. SymmetryText [25] might be the first work

that treats scene text detection as object detection. It pro-

poses symmetric feature and uses it to generate text line

proposals directly. However, the symmetric feature is not

robust for cluttered scenes or adaptive to multi-oriented text.

In our work, we skip the text line proposal generation step

and adopt the deep convolutional feature which is more ro-

bust and representative.

FCNText. FCNText [26] adopts the FCN [16] for object

segmentation to segment the text region by a coarse-to-fine

process. The employment of deep convolutional features

ensures accurate localization of text regions. To output the

bounding box for each text word/line, FCNText resorts to

some heuristic rules to combine characters into groups. In

our work, we abandon the character-to-line procedure to get

a more straightforward system and less parameters for tun-

ing.

FCRN. FCRN [5] is modified from YOLO for scene text

detection. Both FCRN and YOLO perform bounding box

regression much like direct regression, however, they actu-

ally adopt a compromise strategy between direct and indi-

rect regression for they use multiple non-predefined candi-

date boxes for direct regression, and hopes candidate boxes

behave like anchors in [19] after well optimized. Another

important difference between FCRN and our method is that

both FCRN and YOLO regard the centroid region as posi-

tive, while we regard regions around the text center line as

positive. Our definition of positive/text region seems more

proper since text features are alike along the text center line.

CTPN. CTPN [21] can be deemed as an upgraded

character-to-line scene text detection pipeline. It first adopts

the RPN in Faster-RCNN to detect text slices rather than

characters within the text regions and then group these

slices into text bounding boxes. The text slices could be

more easily integrated into an end-to-end training system

than characters and more robust to represent part of the text

regions. In our work, we follow a different way by detecting

the whole texts rather than part of the texts.

TextBoxes & DeepText. TextBoxes [13] and DeepText

[27] are based on SSD and Faster-RCNN respectively. They

both take advantages from the high performance object de-

tection systems and treat text word/line as a kind of generic

object. Moreover, they both set anchors to have more va-

rieties and can only detect horizontal scene texts. In our

work, we perform the regression by a direct way and can

tackle with multi-oriented text detection.

DMPN. DMPN [15] is an indirect regression based method

and it also treats text detection as object detection. Unlike

TextBoxes or DeepText, it introduces a multi-oriented an-

chor strategy to find the best matched proposal in paral-

lelogram form to the arbitrary quadrilateral boundaries of

multi-oriented texts. However, as [15] itself refers, DMPN

relies on the man-made shape of anchors which may not be

the optimal design and this fits well with our analysis on the

drawbacks of indirect regression. The large margin of per-

formance between DMPN and our method on ICDAR2015

Incidental Text benchmark also verify the significance of

our work.

5. Conclusion

In this paper, we first partition existing object detec-

tion methods into direct and indirect regression, and an-

alyze the pros and cons of both methods for irregular

shaped object detection. Then we propose a novel direct

regression based method for multi-oriented scene text de-

tection. Our detection framework is straightforward and

effective with only one-step post processing. Moreover

it performs particularly well for incidental text detection.

On the ICDAR2015 Incidental Scene Text benchmark, we

have achieved a new state-of-the-art performance and out-

performed previous methods by a large margin. Apart from

this, we also analyze the reasons of the high performance

and compare our method to other recent scene text detection

systems. Future work will focus on more robust and faster

detection structure, as well as more theoretical research on

regression task.
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