
Delving into Salient Object Subitizing and Detection

Shengfeng He1 Jianbo Jiao2 Xiaodan Zhang2,3 Guoqiang Han1 Rynson W.H. Lau2

1South China University of Technology, China
2City University of Hong Kong, Hong Kong

3University of Chinese Academy of Sciences, China

Abstract

Subitizing (i.e., instant judgement on the number) and

detection of salient objects are human inborn abilities.

These two tasks influence each other in the human visual

system. In this paper, we delve into the complementarity

of these two tasks. We propose a multi-task deep neural

network with weight prediction for salient object detection,

where the parameters of an adaptive weight layer are dy-

namically determined by an auxiliary subitizing network.

The numerical representation of salient objects is there-

fore embedded into the spatial representation. The pro-

posed joint network can be trained end-to-end using back-

propagation. Experiments show the proposed multi-task

network outperforms existing multi-task architectures, and

the auxiliary subitizing network provides strong guidance

to salient object detection by reducing false positives and

producing coherent saliency maps. Moreover, the proposed

method is an unconstrained method able to handle images

with/without salient objects. Finally, we show state-of-the-

art performance on different salient object datasets.

1. Introduction

The human visual system has an excellent ability in

rapidly locating visually distinct objects in a scene, known

as visual attention. On the other hand, a human can ac-

curately enumerate up to four objects at a glance without

counting. This rapid enumeration of a small number of

items is referred to as subitizing [13]. These two human in-

born abilities can influence each other in an either serial or

parallel form within the human visual system [26, 25], and

evidences show that numerical and spatial representations

are intrinsically interconnected in our brain [11]. These

abilities are frequently involved in our daily life for prompt

decision making in basic tasks like searching, navigation,

and choice making.

However, these biologically-correlated abilities have not

been jointly explored in computer vision. Traditional meth-

ods focus solely on detecting salient objects. While achiev-

ing good results, they suffer from two main problems. First,

(a) Input (b) w/o subitizing (c) w/ subitizing (d) GT

Figure 1: Our method augments salient object detection

with subitizing. Subitizing provides strong guidance to ac-

curately detect salient objects from complex background.

most methods assume the presence of salient objects, and

fail if this is not the case. Second, background distraction

is usually the main source of detection errors, leading to ex-

cessive detected regions or incorrect connections between

objects (see Fig. 1b). These two problems are in fact rele-

vant to the subitizing task. Subitizing knowledge can help

predict the existence of dominant objects. Meanwhile, it

can also constrain the number of object-like regions to be

detected in the saliency map. Although Zhang et al. [36, 38]

propose to predict the number of salient objects, they only

use it to filter images without salient objects. No interac-

tions are considered between the number and the detection

of salient objects.

In this paper, we aim to explore the interaction between

numerical and spatial representations in the salient object

detection task. To this end, we propose a multi-task deep

convolution neural network (CNN) with an adaptive weight

layer. While this CNN is trained for salient object detection,

the weights of its adaptive weight layer are dynamically de-

termined by an auxiliary subitizing network, allowing the

layer to encode subitizing knowledge. In this way, a sin-

gle deep CNN architecture has a dynamical representation

space, and it is able to deal with various input contextual

information by dynamically predicting weight in the adap-

tive weight layer. The proposed network is supervised by

two different tasks jointly, and it can be trained end-to-end
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using back-propagation.

The main contributions of this work are as follows:

• We explore different multi-task networks adapted for

integrating multiple sources of knowledge. In particu-

lar, we explore how different levels of shared informa-

tion affect saliency detection performance.

• We design a deep network to detect salient objects with

the guidance of subitizing, by introducing an adaptive

weight layer. This layer integrates two different tasks

by adaptively assigning weights according to the pre-

dicted number of salient objects.

• We achieve state-of-the-art performance on all four

datasets. Specifically, the proposed method outper-

forms existing methods on an unconstrained salient ob-

ject dataset.

To the best of our knowledge, our work is the first to ex-

plore the interaction between numerical and spatial repre-

sentations in a deep model.

2. Related Work

Salient object detection methods can be roughly classi-

fied into two categories, hand-crafted and learning based

models. As the proposed method belongs to the learning

based category, we focus our discussion on relevant deep

learning works. A comprehensive literature review can be

found in [2].

In recent years, CNNs have been shown to be very ef-

fective on various visual recognition tasks, such as image

classification [14], semantic segmentation [8] and object de-

tection [9]). We are beginning to see some salient object

detection works in these two years. In [10], He et al. apply

the region-based model to learn the superpixel-wise feature

representation, which reduces the computational cost sig-

nificantly and considers global context information. How-

ever, representing a superpixel with the mean color is not

informative enough. It is also difficult to fully recover the

spatial structure of the image with superpixels.

On the other hand, some methods propose to incorporate

both local and global contextual information using CNNs to

detect saliency. Wang et al. [30] first apply a CNN to extract

local patch features to obtain intermediate saliency results,

and another CNN to globally integrate the initial saliency

map with object proposals. Zhao et al. [39] train a two-

stream network, one for the local context of the centered

region and the other for the global context. A simple fully

connected layer is used to combine the two streams. Li et

al. [17] use a pre-trained CNN as a feature extractor. They

concatenate the features obtained from patches of three dif-

ferent scales and feed them to two fully connected layers.

These methods, however, apply CNN in a sliding window

fashion, resulting in a high computational cost.

To address the high computational cost, the fully con-

volutional network (FCN) [21] and deconvolution net-

work [23] are used to generate a saliency map in an end-

to-end framework. As they obtain the final result through

upsampling from a very coarse prediction, they cannot guar-

antee accurate segmentation of the saliency map. Differ-

ent approaches have been proposed to address this problem.

Li et al. [18] combine the FCN with a segment-wise net-

work using fully connected CRF to obtain a spatial coherent

saliency map. Some latest methods [15, 31] aim to refine

the resulting saliency map using recurrent networks. Kuen

et al. [15] use recurrent attentional networks to selectively

refine the object boundaries, while Wang et al. [31] incor-

porate recurrent refinement and background priors. How-

ever, the added recurrent network may increase the training

and testing times. In this paper, we delve into this prob-

lem with subitizing guidance and propose three refinement

approaches without the recurrent mechanism.

Weight prediction in CNN has been explored in [16]

and [24] for zero-shot learning and visual question answer-

ing, respectively. Lei et al. [16] predict a binary classifier

for unseen categories based on the given textual description.

Noh et al. [24] propose to predict the weights of a fully-

connected layer based on the given question in question an-

swering. However, these methods try to predict the weights

of the fully-connected layer, which leads to the weight ex-

plosion problem. Although a hash trick is applied in [24]

to alleviate this problem, performance loss is inevitable. In

contrast, we introduce weight prediction in a fully convo-

lutional framework, where the weights can be directly pre-

dicted by another network without significantly increasing

the number of parameters. We also show that the adaptive

weight layer can be trained in a multi-task network. Finally,

our work explores the augmentation of one task by another,

which leads to better embedding performance.

3. Multi-task Sharing Networks

Given an image, we aim to detect salient objects with

the aid of subitizing. An intuitive solution is to jointly

train two tasks in a multi-task framework. Here, we explore

three multi-task architectures for salient object detection, as

shown in Fig. 2.

Cascaded Network: This type of network constructs the

layers of two tasks sequentially. The layers of the first task

are shared with the second task, while the second task per-

forms prediction with additional layers. This network in-

volves multiple losses. The loss from the second task guides

the entire network, while the loss from the first task only su-

pervises the first half of the layers. The cascaded network

passes the knowledge in a sequential fashion. However, due

to its cascaded architecture, the gradient from the second

task may be attenuated in the first half of the layers. In ad-

dition, the resolution of the second half of the layers may
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(a) Cascaded Network (b) Concatenated Network (c) Shared Network

Figure 2: Multi-task sharing architectures. (a) The cascaded network combines the two tasks in a serial form, where the

output features of task 1 are the input of task 2. (b) The concatenated network simply concatenates the output features of two

sub-networks for the two tasks. (c) The shared network involves multiple losses during training, and different sharing levels

can be achieved by adjusting the number of shared layers.

become too small to retain spatial information, limiting the

network to specific tasks.

Concatenated Network: The most straightforward way

to integrate multiple sources of knowledge is to concatenate

the learned features. The sub-network for each task is typi-

cally pre-trained on its own dataset. Once properly trained,

these two tasks produce feature maps individually, and con-

catenated together to form a hyper feature. This hyper fea-

ture is then fed to a decision network for the final prediction.

The main drawback of this type of network is that both sub-

networks are trained individually, and the network can only

supervised by one of the tasks. The joint training principle

cannot be applied in this type of network.

Shared Network: This architecture might be the most

commonly used multi-task architecture, due to its easy-to-

adjust characteristics and can be trained jointly with multi-

ple losses. Two tasks are constructed in a parallel form with

several shared convolution layers. The number of shared

layers may range from one layer (i.e., only the last layer is

shared) to all layers (i.e., no parallel layers), depending on

applications. This network can be supervised by different

forms of losses, to achieve optimal results for both tasks.

Sharing of multi-task knowledge is a common prop-

erty across these three architectures. However, how much

knowledge should be shared remain a question. Using the

shared network as an example, there are no principle ways

to tell how many shared layers should be set to obtain an

optimal multi-task training. To investigate this question, we

perform an empirical study using the shared network, by

exhaustively tuning the number of shared layers, to find out

how shared knowledge affects salient object subitizing and

detection performances. We start from sharing no knowl-

edge between two tasks (i.e., two independent networks),

which is set as the baseline for the other shared networks.

We have a total of five convolution layers, and thus there are

five shared network variants. For the subitizing task, the last

convolution layer connects with a fully connected layer and

then outputs the number of salient objects. For the salient

object detection task, the shared network is followed by an

Task Conv5 Conv4-5 Conv3-5 Conv2-5 Conv1-5

Detection (MAE) -0.53 -0.35 +0.42 +0.31 -0.43

Subitizing (mAP) +4.17 +5.52 -3.56 -1.32 -0.62

Table 1: Empirical results on the MSO dataset [36], with

different numbers of shared layers in the shared network.

The values indicate the performance differences between

the shared networks and the two independent baselines (i.e.,

with no shared knowledge). ConvX-Y means that the two

tasks share parameters between the X-th and the Y-th con-

volution layers. As these results do not show a consistent

behavior, knowledge sharing may not be the best policy for

multi-task learning.

upsampling network similar to FCN [21].

Table 1 shows the empirical results on the MSO

dataset [36]. The values indicate the performance differ-

ences between the shared networks and the two indepen-

dent baselines. While sharing the 3rd to 5th convolution

layers produces the best performance for salient object de-

tection, sharing the 4th to 5th convolution layers produces

the best performance for subitizing. These results reveal a

key issue – the performance gain by sharing knowledge is

unpredictable, and the influence of different sharing levels

depends on the task. A similar observation is also found in

the cascaded and concatenated networks. Since enumerat-

ing all the possibilities is cumbersome in practice, instead

of knowledge sharing, we propose to address the multi-task

problem by enriching the representation space of the salient

object detection task with dynamic weight assignment.

4. Proposed Network Architecture

This section presents the proposed network architecture

and the overall method for salient object detection.

4.1. Overview

The proposed network is a multi-task deep neural net-

work, containing three main components: the salient ob-

ject detection network, subitizing network, and an adap-

1061



Figure 3: The architecture of the proposed method. The upper part is the salient object detection network, and the bottom part

is the subitizing network. An adaptive weight layer is added in the middle of the salient object detection network, where its

weights are dynamically determined by the subitizing network, to encode numerical representation into spatial representation.

Two refinement approaches are also illustrated: feature-based deconvolution with skipped layers and hierarchical supervision.

tive weight layer. Fig. 3 shows the architecture of the pro-

posed network. The salient object detection network is con-

structed based on the convolution-deconvolution pipeline.

The convolution stage serves as a feature extractor that

transforms the input image into a rich feature representa-

tion, while the deconvolution stage serves as a shape gener-

ator to segment salient objects based on the extracted fea-

tures. An adaptive weight layer is added between these two

stages. It is a convolution layer whose weights are dynam-

ically determined by the auxiliary subitizing network. The

subitizing network is trained to predict the number of salient

objects and the weights for the adaptive weight layer. The

final output is a probability map that indicates how likely

each pixel belongs to the salient objects. We discuss these

components in more detail in the following subsections.

4.2. Deep Neural Network with Weight Prediction

Given an input image I , the salient object detection net-

work produces a saliency map m from a set of weights θ.

The salient object detection is posed as a regression prob-

lem, and the saliency value of each pixel (x, y) in m can be

described as:

mx,y = p(S|R(I, x, y); θ), (1)

where R(I, x, y) corresponds to the receptive field of loca-

tion (x, y) in m. Once the network is trained, θ is fixed and

used to detect salient objects for any input images. How-

ever, this set of weights cannot be generalized to all types

of input images. This is similar to the denosing problem,

where a general denoiser may not perform as well as one

that is trained specifically on the noise level of the input im-

ages [3]. An intuitive solution to address this generalization

problem is to train a task-specific network. However, this

requires training numerous networks for different tasks. In

addition, this prior information (e.g., noise level) is usually

unknown in practice. In contrast, we solve this problem

through adaptive weight prediction:

mx,y = p(S|R(I, x, y); θ, θa(n)), (2)

where θa(n) is the adaptive weights determined according

to the predicted number of salient objects, n, of the input

image. In this way, detecting salient objects is not only

dependent on the static weights θ, but also the adaptive

weights θa(n). In addition, the static weights θ are also

trained to interact with the prior information provided by the

adaptive weights θa(n). These adaptive weights can be con-

sidered as numerical representation of the salient objects.

4.2.1 Predicting Weights with Subitizing

To encode the number of salient objects into the adaptive

weights, we implement the numerical feature embedding in

a convolution layer. We denote the input feature map of this
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convolution layer as fs. Its corresponding output is then:

fo = Wa(n)fs + b, (3)

where b is the bias, and Wa(n) is the adaptive weight ma-

trix. In this way, the introduced adaptive weight matrix pa-

rameterizes this convolution layer as a function of the pre-

dicted number of salient objects.

In order to obtain the numerical features of an input im-

age, we apply another network for subitizing. The output

features fn of the subitizing network is directly used as

the adaptive weight matrix for salient object detection. The

subitizing network can therefore be viewed as a weight pre-

diction network to encode numerical representation into the

detection network. Eq. 3 can then be rewritten as:

fo = fnfs + b. (4)

4.2.2 Back-propagation

The adaptive weight layer can be trained end-to-end using

back-propagation. The derivatives of the input and output

features in the adaptive weight layer can be computed using

standard back-propagation. The derivative of the predicted

weights with loss function ℓ is computed as:

∂ℓ

∂fn
= fs

∂ℓ

∂fo
. (5)

4.3. Salient Object Detection Network

As mentioned earlier, we design the salient object de-

tection network based on the convolution-deconvolution

pipeline, and these two stages are connected by the adaptive

weight layer. The convolution stage is based on the VGG-16

net [27] (with the last classification layer removed), while

the deconvolution stage has a mirrored architecture of the

convolution stage. This network is first pre-trained for se-

mantic segmentation on the Pascal 2012 dataset [7] without

the adaptive weight layer. This convolution-deconvolution

pipeline, however, suffers from coarse prediction. We lever-

age two refinement approaches, skipped features [6] and hi-

erarchical supervision [33], to obtain pixel-level accurate

saliency map. The hierarchical supervision guides all the

deconvolution layers with the ground truth, and these layers

produce the side-output saliency maps. These side-outputs

are then fused using a convolution layer to obtain the fi-

nal result. We further adopt the post-processing techniques

in [28] and [31] to obtain compact and boundary-preserved

object regions.

4.4. Salient Object Subitizing Network

A human is only able to identify up to 4 salient objects at

a glance, effortlessly and consistently. In our work, salient

object subitizing is treated as a classification task, and there

are five categories in total, representing 0, 1, 2, 3, and 4+

salient objects existed in the image. Similar to the salient

object detection network, the subitizing network is based on

the VGG-16 net [27]. We modify the size of the input image

and the number of filters of the last convolution layer, so that

the output feature map can adapt to the size of the weight

matrix in the adaptive weight layer. Specifically, the depths

of the input and output features of the adaptive weight layer

are both 512, and the kernel size is 1 × 1. As a result, the

size of the weight matrix is 1× 1×512×512. Accordingly,

we modify the input resolution of the first convolution layer

in the subitizing network to 256 × 256, so that the output

resolution of the final convolution layer can be 16 × 16.

The number of filters is set to 1024 in the final convolution

layer. Thus, the output feature has a size of 16×16×1024.

This feature is then reshaped to have the same size as the

weight matrix.

In addition to connecting to the adaptive weight layer,

the last convolution layer is also connected to a fully con-

nected layer followed by a classification layer to predict the

existence and the number of salient objects. In other words,

the subitizing network is trained by multi-task losses. Be-

fore integrating to the salient object detection network, the

subitizing network is first pre-trained solely for the subitiz-

ing task on the SOS dataset [36].

4.5. Training the Network

The proposed network is trained end-to-end using back-

propagation. However, multiple losses are involved in the

network, making the training process non-trivial. For the

hierarchical supervision, lower layers get mixed gradients

if we activate all the hierarchical losses. We leverage a loss

weight schedule to overcome this problem. The network is

first trained with a loss weight of 1 for the lowest decon-

volution layer, and 0 for all the others. During training, the

weights of other layers are progressively increased while the

lower supervisions are gradually deactivated. In this way,

the network begins with learning the coarse representation,

leading to a coarse-to-fine learning process.

The two tasks of the subitizing network (i.e., predicting

the weights of a layer and predicting the number of salient

objects) are inherently different. As such, the pre-trained

subitizing knowledge may not be perfectly suitable for the

adaptive weight layer. During fine-tuning, we have found

that biasing towards the loss from the adaptive weight layer

(loss weights of 0.7 vs. 0.3) shows better adaptation in the

weight prediction module.

Due to the significant distribution change in the adap-

tive weight layer with respect to different input images, it

is not easy to train an optimized model. Since batch nor-

malization [12] helps generalize the distributions between

layers, we apply it to the adaptive weight layer to allevi-

ate this problem. This strategy is also employed in every
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convolution and deconvolution layers to prevent the train-

ing process from reaching a poor local minima.

5. Experiments

The proposed method is implemented using MatCon-

vnet [29] and tested on a PC with an i7 3.4GHz CPU, an

Nvidia Titan X Pascal GPU, and 32GB RAM. The proposed

network takes about 0.1s and the post-processing step takes

about 2s to process an image of 500 × 400. We train our

model on the training set of the SOS dataset [36], which

is the only dataset that contains both the number of salient

objects and their bounding box labels. It contains 6,900 im-

ages selected from four datasets: MS COCO [20], Pascal

VOC 2007 [7], ImageNet [5], and SUN [32]. To accurately

learn the object boundaries, we segment all the salient ob-

jects from the bounding boxes using the available ground

truth segmentations from MS COCO [20] and Pascal VOC

2007 [7]. For those images that are not selected from these

two datasets, we keep the original bounding boxes for train-

ing. Some data augmentation approaches like cropping,

shifting, and flipping are used during training. Our model

takes 4 - 5 days for the training to converge.

5.1. Datasets and Evaluation Metrics

As the proposed method is an unconstrained method, it

is able to handle images without dominant objects. We

evaluate the proposed method on the MSO dataset [36],

which is the test set of the SOS dataset [36] for salient ob-

ject detection. When comparing with the state-of-the-art

methods, we further evaluate the proposed method on DUT-

OMRON [35], Pascal-S [19], and SOD [22]. The MSO [36]

and DUT-OMRON [35] datasets provide only the bound-

ing box ground truth, while the others contain labelled seg-

mentations. Although MSRA10K [4] is the largest dataset

for salient object detection, most of the deep learning based

models are trained on this dataset or its subset. Therefore,

this dataset is not suitable for evaluation.

We compare the proposed method to nine state-of-the-art

methods: LEGS [30], MDF [17], DCL [18], RFCN [31],

MAP [38], HS [34], GMR [35], MB+ [37], and MST [28].

The first five are deep learning based methods, and the

others used hand-crafted features. Among them, only

MAP [38] is an unconstrained method. As MAP outputs

salient object bounding boxes, we binarize the outputs into

saliency maps for evaluation.

Three metrics are used to measure the detection perfor-

mance: precision-recall (PR), F-measure, and mean abso-

lute error (MAE). The PR curve is computed by threshold-

ing the predicted saliency map into a set of binary masks,

and these masks are compared against the ground truth. The

F-measure is defined as:

Fβ =
(1 + β2) · precision · recall

β2 · precision+ recall
, (6)

Metric Ours Independent Cascaded Concatenated Shared

F-Measure 0.794 0.721 0.753 0.767 0.770

MAE 0.114 0.143 0.132 0.125 0.124

Table 2: Comparison with different baselines on the Pascal-

S dataset [19]. The proposed method outperforms the inde-

pendent network (no sharing) and the three multi-task shar-

ing networks.

Method
Full Backgd. only Sal. Object only

Adap. Prec. MAE MAE Adap. Prec. MAE

Ours 0.654 0.187 0.061 0.846 0.235

MAP [38] 0.370 0.119 0.068 0.511 0.139

Table 3: Unconstrained salient object detection evaluation

on the MSO dataset [36]. The proposed method outper-

forms MAP [38] not only on images with salient objects,

but also on background images.

where β2 is set to 0.3 to emphasize on precision [1]. An

image dependent adaptive threshold [1] is used to compute

F-measure, and is set to twice the mean value of the saliency

map. The precision with adaptive threshold is also used in

the evaluation on the unconstrained dataset (Section 5.2).

MAE measures the average pixel-wise error, reflecting the

negative saliency assignments.

5.2. Comparison with Baselines

Before comparing with the state-of-the-art methods, we

first compare the proposed method with different baseline

networks. Four baselines are used, one of them is the inde-

pendent network (no sharing), the others are the cascaded,

concatenated, and shared networks. In the experiments, all

these baseline networks compared are trained with the same

amount of data (i.e., same number of epoches), using the

same refinement and post-processing approaches. All the

networks are trained on the SOS dataset [36], and tested on

the Pascal-S dataset [19].

Evaluation on Subitizing Embedding. The first eval-

uation is to examine the effectiveness of subitizing embed-

ding. Table 2 shows the comparison. We can see that in-

tegrating subitizing is effective in salient object detection,

contributing to an overall F-measure improvement of about

10% and producing 20% less error. This implies that the

numerical representation provides strong guidance in spa-

tial representation, helping rectify the final prediction.

Comparison with Multi-task Sharing. Table 2 also

shows the comparison with the multi-task sharing networks.

We can see that all the networks are effective in improv-

ing the detection performance, which shows that subitizing

information is useful to the detection task. The cascaded

network is not as prominent as the other multi-task sharing

networks, as it is too deep to be properly trained. We add

multiple losses to the concatenated network, and it can be

considered as the closest architecture to ours. This setting
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Figure 4: Comparison of precision-recall curves on three datasets. The proposed method consistently outperforms existing

methods across all the datasets.

Dataset Metric LEGS [30] MDF [17] DCL [18] RFCN [31] HS [34] GMR [35] MB+ [37] MST [28] Ours

DUT-OMRON
F-measure 0.608 0.612 0.577 0.661 0.499 0.552 0.583 0.569 0.665

MAE 0.242 0.224 0.282 0.213 0.305 0.284 0.267 0.246 0.198

Pascal-S
F-measure 0.704 0.70 0.718 0.778 0.534 0.591 0.614 0.624 0.794

MAE 0.159 0.149 0.127 0.121 0.265 0.234 0.230 0.189 0.114

SOD
F-measure 0.627 0.656 0.613 0.718 0.469 0.538 0.543 0.565 0.688

MAE 0.172 0.152 0.223 0.130 0.2667 0.233 0.239 0.187 0.123

Table 4: Comparison of F-measure (larger is better) and MAE (smaller is better) on three datasets. The best results are in red,

while the second best are in blue.

is better than the cascaded network. The shared network

achieves the best result among the multi-task sharing net-

works, due to its multi-loss supervision and also because

we have selected the best architecture from Table 1. The

proposed method outperforms all these knowledge sharing

networks. The main reason is that the proposed adaptive

weight layer dynamically enriches the representation space

of the salient object detection network, parameters will be

generated according to the input context.

5.3. Comparison with State­of­the­art Methods

Evaluation on the Unconstrained Dataset. As an un-

constrained method, we first compare the proposed method

with MAP [38] on the MSO dataset [36]. Beside the full

MSO dataset, we further report the performance on back-

ground images only and on images with salient objects,

to better verify the performance of subitizing embedding.

As background images do not contain any positive samples

(i.e., precision is always zero), F-measure is not valid and

MAE is the best metric to measure the detection error. Ta-

ble 3 shows the adaptive precision and MAE. We can see

that even though MSO is more suitable for MAP (as the out-

put of MAP and the ground truth are both bounding boxes),

the proposed method achieves much better performance in

terms of precision. (Our MAE is higher only because of the

difference between our pixel-level segmentation and bound-

ing box ground truth). Specifically, the proposed method

performs better on background image identification. The

main reason is that MAP does not involve the interaction

between the subitizing and detection tasks.

Evaluation on the Traditional Datasets. We then com-

Method 0 1 2 3 4+

Ours 96.3% 98.0% 96.5% 97.3% 84.1%

MSO [36] 89.1% 93.3% 92.6% 93.4% 79.0%

Fine-tuned VGG 85.4% 90.5% 89.2% 90.1% 75.9%

Table 5: Subitizing task comparison. The proposed method

augmented subitizing strategy achieves the best results on

the scenarios with different numbers of salient objects.

pare with the other state-of-the-art methods on three general

datasets. Fig. 4 and Table 4 show the quantitative compar-

ison, and Fig. 5 shows the qualitative comparison. We can

see that the proposed method consistently outperforms ex-

isting methods on all datasets on the PR curves, F-measure,

and MAE. Compared to the other deep learning based meth-

ods, we embed subitizing knowledge in salient object de-

tection and thus achieve better performance. As shown in

Fig. 5, the proposed method consistently produces compact

saliency maps that are closest to the ground truth. Note that

in Fig. 5, the unconstrained method MAP [38] may misde-

tect the non-existence of salient objects.

5.4. Application: Detection Augmenting Subitizing

As mentioned earlier salient object detection and subitiz-

ing are mutually involved in the human visual system.

Hence, we are interested to find out if salient object detec-

tion may provide effective guidance to subitizing. To this

end, we simply swap the objectives of the two networks.

While salient object detection is used for weight prediction,

subitizing produces our final prediction. Note that we do

not need to change the network architecture. We just swap

the adaptive weight layer in the detection network with the
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(a) Input (b) LEGS (c) MDF (d) DCL (e) RFCN (f) MAP (g) HS (h) GMR (i) MB+ (j) MST (k) Ours (l) GT

Figure 5: Qualitative comparison of the state-of-the-art methods. (b) - (f) are deep learning based methods, while the others

use hand-crafted features. The proposed method produces saliency maps closest to the ground truth.

(a) Input (b) GT (c) Ours

Figure 6: Failure cases. The subitizing guidance may some-

times disagree with the ground truth saliency maps on the

number of salient objects.

convolution layer in the subitizing network. Table 5 shows

the average precision scores. We can see that the proposed

method outperforms MSO and a fine-tuned VGG network

on the scenarios with different numbers of salient objects.

This shows that while subitizing can help improve the per-

formance of saliency object detection, saliency object de-

tection can also help improve the performance of subitizing.

5.5. Failure Cases

Although detecting salient objects with subitizing guid-

ance achieves good performances, the subitizing prediction

may not necessarily agree with the ground truth on the num-

ber of salient objects. Fig. 6 shows two failure examples. As

the subitizing network produces different numbers of salient

objects from those of the ground truth, the salient object net-

work outputs different saliency maps.

6. Conclusion

In this paper, we have explored the interactions between

numerical and spatial representations in salient object de-

tection. In particular, we delve into the problem of multi-

task sharing networks, revealing that their performances are

unpredictable and require enumerating all possible architec-

tures to obtain the best one. To address the multi-task prob-

lem from a different point of view, we propose a multi-task

deep neural network to detect salient objects with the aug-

mentation of subitizing using dynamic weight prediction.

Extensive experiments demonstrate that subitizing knowl-

edge provides strong guidance to salient object detection,

and the proposed method achieves state-of-the-art perfor-

mance on four datasets.
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