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Abstract

We present a conceptually simple, flexible, and general

framework for object instance segmentation. Our approach

efficiently detects objects in an image while simultaneously

generating a high-quality segmentation mask for each in-

stance. The method, called Mask R-CNN, extends Faster

R-CNN by adding a branch for predicting an object mask in

parallel with the existing branch for bounding box recogni-

tion. Mask R-CNN is simple to train and adds only a small

overhead to Faster R-CNN, running at 5 fps. Moreover,

Mask R-CNN is easy to generalize to other tasks, e.g., al-

lowing us to estimate human poses in the same framework.

We show top results in all three tracks of the COCO suite of

challenges, including instance segmentation, bounding-box

object detection, and person keypoint detection. Without

tricks, Mask R-CNN outperforms all existing, single-model

entries on every task, including the COCO 2016 challenge

winners. We hope our simple and effective approach will

serve as a solid baseline and help ease future research in

instance-level recognition. Code will be made available.

1. Introduction

The vision community has rapidly improved object de-

tection and semantic segmentation results over a short pe-

riod of time. In large part, these advances have been driven

by powerful baseline systems, such as the Fast/Faster R-

CNN [9, 29] and Fully Convolutional Network (FCN) [24]

frameworks for object detection and semantic segmenta-

tion, respectively. These methods are conceptually intuitive

and offer flexibility and robustness, together with fast train-

ing and inference time. Our goal in this work is to develop a

comparably enabling framework for instance segmentation.

Instance segmentation is challenging because it requires

the correct detection of all objects in an image while also

precisely segmenting each instance. It therefore combines

elements from the classical computer vision tasks of ob-

ject detection, where the goal is to classify individual ob-

jects and localize each using a bounding box, and semantic

segmentation, where the goal is to classify each pixel into
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Figure 1. The Mask R-CNN framework for instance segmentation.

a fixed set of categories without differentiating object in-

stances.1 Given this, one might expect a complex method

is required to achieve good results. However, we show that

a surprisingly simple, flexible, and fast system can surpass

prior state-of-the-art instance segmentation results.

Our method, called Mask R-CNN, extends Faster R-CNN

[29] by adding a branch for predicting segmentation masks

on each Region of Interest (RoI), in parallel with the ex-

isting branch for classification and bounding box regres-

sion (Figure 1). The mask branch is a small FCN applied

to each RoI, predicting a segmentation mask in a pixel-to-

pixel manner. Mask R-CNN is simple to implement and

train given the Faster R-CNN framework, which facilitates

a wide range of flexible architecture designs. Additionally,

the mask branch only adds a small computational overhead,

enabling a fast system and rapid experimentation.

In principle Mask R-CNN is an intuitive extension of

Faster R-CNN, yet constructing the mask branch properly

is critical for good results. Most importantly, Faster R-CNN

was not designed for pixel-to-pixel alignment between net-

work inputs and outputs. This is most evident in how

RoIPool [14, 9], the de facto core operation for attending

to instances, performs coarse spatial quantization for fea-

ture extraction. To fix the misalignment, we propose a sim-

ple, quantization-free layer, called RoIAlign, that faithfully

preserves exact spatial locations. Despite being a seem-

1Following common terminology, we use object detection to denote

detection via bounding boxes, not masks, and semantic segmentation to

denote per-pixel classification without differentiating instances. Yet we

note that instance segmentation is both semantic and a form of detection.
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Figure 2. Mask R-CNN results on the COCO test set. These results are based on ResNet-101 [15], achieving a mask AP of 35.7 and

running at 5 fps. Masks are shown in color, and bounding box, category, and confidences are also shown.

ingly minor change, RoIAlign has a large impact: it im-

proves mask accuracy by relative 10% to 50%, showing

bigger gains under stricter localization metrics. Second, we

found it essential to decouple mask and class prediction: we

predict a binary mask for each class independently, without

competition among classes, and rely on the network’s RoI

classification branch to predict the category. In contrast,

FCNs usually perform per-pixel multi-class categorization,

which couples segmentation and classification, and based

on our experiments works poorly for instance segmentation.

Without bells and whistles, Mask R-CNN surpasses all

previous state-of-the-art single-model results on the COCO

instance segmentation task [23], including the heavily-

engineered entries from the 2016 competition winner. As

a by-product, our method also excels on the COCO object

detection task. In ablation experiments, we evaluate multi-

ple basic instantiations, which allows us to demonstrate its

robustness and analyze the effects of core factors.

Our models can run at about 200ms per frame on a GPU,

and training on COCO takes one to two days on a single

8-GPU machine. We believe the fast train and test speeds,

together with the framework’s flexibility and accuracy, will

benefit and ease future research on instance segmentation.

Finally, we showcase the generality of our framework

via the task of human pose estimation on the COCO key-

point dataset [23]. By viewing each keypoint as a one-hot

binary mask, with minimal modification Mask R-CNN can

be applied to detect instance-specific poses. Without tricks,

Mask R-CNN surpasses the winner of the 2016 COCO key-

point competition, and at the same time runs at 5 fps. Mask

R-CNN, therefore, can be seen more broadly as a flexible

framework for instance-level recognition and can be readily

extended to more complex tasks.

We will release code to facilitate future research.

2. Related Work

R-CNN: The Region-based CNN (R-CNN) approach [10]

to bounding-box object detection is to attend to a manage-

able number of candidate object regions [33, 16] and evalu-

ate convolutional networks [20, 19] independently on each

RoI. R-CNN was extended [14, 9] to allow attending to RoIs

on feature maps using RoIPool, leading to fast speed and

better accuracy. Faster R-CNN [29] advanced this stream

by learning the attention mechanism with a Region Pro-

posal Network (RPN). Faster R-CNN is flexible and robust

to many follow-up improvements (e.g., [30, 22, 17]), and is

the current leading framework in several benchmarks.

Instance Segmentation: Driven by the effectiveness of R-

CNN, many approaches to instance segmentation are based

on segment proposals. Earlier methods [10, 12, 13, 6] re-

sorted to bottom-up segments [33, 2]. DeepMask [27] and

following works [28, 5] learn to propose segment candi-

dates, which are then classified by Fast R-CNN. In these

methods, segmentation precedes recognition, which is slow

and less accurate. Likewise, Dai et al. [7] proposed a com-

plex multiple-stage cascade that predicts segment propos-

als from bounding-box proposals, followed by classifica-

tion. Instead, our method is based on parallel prediction of

masks and class labels, which is simpler and more flexible.

Most recently, Li et al. [21] combined the segment pro-

posal system in [5] and object detection system in [8] for

“fully convolutional instance segmentation” (FCIS). The

common idea in [5, 8, 21] is to predict a set of position-

sensitive output channels fully convolutionally. These

channels simultaneously address object classes, boxes, and

masks, making the system fast. But FCIS exhibits system-

atic errors on overlapping instances and creates spurious

edges (Figure 5), showing that it is challenged by the fun-

damental difficulties of segmenting instances.
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3. Mask R-CNN

Mask R-CNN is conceptually simple: Faster R-CNN has

two outputs for each candidate object, a class label and a

bounding-box offset; to this we add a third branch that out-

puts the object mask. Mask R-CNN is thus a natural and in-

tuitive idea. But the additional mask output is distinct from

the class and box outputs, requiring extraction of much finer

spatial layout of an object. Next, we introduce the key ele-

ments of Mask R-CNN, including pixel-to-pixel alignment,

which is the main missing piece of Fast/Faster R-CNN.

Faster R-CNN: We begin by briefly reviewing the Faster

R-CNN detector [29]. Faster R-CNN consists of two stages.

The first stage, called a Region Proposal Network (RPN),

proposes candidate object bounding boxes. The second

stage, which is in essence Fast R-CNN [9], extracts features

using RoIPool from each candidate box and performs clas-

sification and bounding-box regression. The features used

by both stages can be shared for faster inference. We re-

fer readers to [17] for latest, comprehensive comparisons

between Faster R-CNN and other frameworks.

Mask R-CNN: Mask R-CNN adopts the same two-stage

procedure, with an identical first stage (which is RPN). In

the second stage, in parallel to predicting the class and box

offset, Mask R-CNN also outputs a binary mask for each

RoI. This is in contrast to most recent systems, where clas-

sification depends on mask predictions (e.g. [27, 7, 21]).

Our approach follows the spirit of Fast R-CNN [9] that

applies bounding-box classification and regression in par-

allel (which turned out to largely simplify the multi-stage

pipeline of original R-CNN [10]).

Formally, during training, we define a multi-task loss on

each sampled RoI as L = Lcls + Lbox + Lmask. The clas-

sification loss Lcls and bounding-box loss Lbox are identi-

cal as those defined in [9]. The mask branch has a Km2-

dimensional output for each RoI, which encodes K binary

masks of resolution m ×m, one for each of the K classes.

To this we apply a per-pixel sigmoid, and define Lmask as

the average binary cross-entropy loss. For an RoI associated

with ground-truth class k, Lmask is only defined on the k-th

mask (other mask outputs do not contribute to the loss).

Our definition of Lmask allows the network to generate

masks for every class without competition among classes;

we rely on the dedicated classification branch to predict the

class label used to select the output mask. This decouples

mask and class prediction. This is different from common

practice when applying FCNs [24] to semantic segmenta-

tion, which typically uses a per-pixel softmax and a multino-

mial cross-entropy loss. In that case, masks across classes

compete; in our case, with a per-pixel sigmoid and a binary

loss, they do not. We show by experiments that this formu-

lation is key for good instance segmentation results.

Mask Representation: A mask encodes an input object’s

spatial layout. Thus, unlike class labels or box offsets

that are inevitably collapsed into short output vectors by

fully-connected (fc) layers, extracting the spatial structure

of masks can be addressed naturally by the pixel-to-pixel

correspondence provided by convolutions.

Specifically, we predict an m × m mask from each RoI

using an FCN [24]. This allows each layer in the mask

branch to maintain the explicit m×m object spatial layout

without collapsing it into a vector representation that lacks

spatial dimensions. Unlike previous methods that resort to

fc layers for mask prediction [27, 28, 7], our fully convolu-

tional representation requires fewer parameters, and is more

accurate as demonstrated by experiments.

This pixel-to-pixel behavior requires our RoI features,

which themselves are small feature maps, to be well aligned

to faithfully preserve the explicit per-pixel spatial corre-

spondence. This motivated us to develop the following

RoIAlign layer that plays a key role in mask prediction.

RoIAlign: RoIPool [9] is a standard operation for extract-

ing a small feature map (e.g., 7×7) from each RoI. RoIPool

first quantizes a floating-number RoI to the discrete granu-

larity of the feature map, this quantized RoI is then subdi-

vided into spatial bins which are themselves quantized, and

finally feature values covered by each bin are aggregated

(usually by max pooling). Quantization is performed, e.g.,

on a continuous coordinate x by computing [x/16], where

16 is a feature map stride and [·] is rounding; likewise, quan-

tization is performed when dividing into bins (e.g., 7×7).

These quantizations introduce misalignments between the

RoI and the extracted features. While this may not impact

classification, which is robust to small translations, it has a

large negative effect on predicting pixel-accurate masks.

To address this, we propose an RoIAlign layer that re-

moves the harsh quantization of RoIPool, properly aligning

the extracted features with the input. Our proposed change

is simple: we avoid any quantization of the RoI boundaries

or bins (i.e., we use x/16 instead of [x/16]). We use bilinear

interpolation [18] to compute the exact values of the input

features at four regularly sampled locations in each RoI bin,

and aggregate the result (using max or average).2

RoIAlign leads to large improvements as we show in

§4.2. We also compare to the RoIWarp operation proposed

in [7]. Unlike RoIAlign, RoIWarp overlooked the align-

ment issue and was implemented in [7] as quantizing RoI

just like RoIPool. So even though RoIWarp also adopts

bilinear resampling motivated by [18], it performs on par

with RoIPool as shown by experiments (more details in Ta-

ble 2c), demonstrating the crucial role of alignment.

2We sample four regular locations, so that we can evaluate either max

or average pooling. In fact, interpolating only a single value at each bin

center (without pooling) is nearly as effective. One could also sample more

than four locations per bin, which we found to give diminishing returns.
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Network Architecture: To demonstrate the generality of

our approach, we instantiate Mask R-CNN with multiple

architectures. For clarity, we differentiate between: (i) the

convolutional backbone architecture used for feature ex-

traction over an entire image, and (ii) the network head

for bounding-box recognition (classification and regression)

and mask prediction that is applied separately to each RoI.

We denote the backbone architecture using the nomen-

clature network-depth-features. We evaluate ResNet [15]

and ResNeXt [35] networks of depth 50 or 101 layers. The

original implementation of Faster R-CNN with ResNets

[15] extracted features from the final convolutional layer

of the 4-th stage, which we call C4. This backbone with

ResNet-50, for example, is denoted by ResNet-50-C4. This

is a common choice used in [15, 7, 17, 31].

We also explore another more effective backbone re-

cently proposed by Lin et al. [22], called a Feature Pyra-

mid Network (FPN). FPN uses a top-down architecture with

lateral connections to build an in-network feature pyramid

from a single-scale input. Faster R-CNN with an FPN back-

bone extracts RoI features from different levels of the fea-

ture pyramid according to their scale, but otherwise the

rest of the approach is similar to vanilla ResNet. Using a

ResNet-FPN backbone for feature extraction with Mask R-

CNN gives excellent gains in both accuracy and speed. For

further details on FPN, we refer readers to [22].

For the network head we closely follow architectures

presented in previous work to which we add a fully con-

volutional mask prediction branch. Specifically, we ex-

tend the Faster R-CNN box heads from the ResNet [15]

and FPN [22] papers. Details are shown in Figure 3. The

head on the ResNet-C4 backbone includes the 5-th stage of

ResNet (namely, the 9-layer ‘res5’ [15]), which is compute-

intensive. For FPN, the backbone already includes res5 and

thus allows for a more efficient head that uses fewer filters.

We note that our mask branches have a straightforward

structure. More complex designs have the potential to im-

prove performance but are not the focus of this work.

3.1. Implementation Details

We set hyper-parameters following existing Fast/Faster

R-CNN work [9, 29, 22]. Although these decisions were

made for object detection in original papers [9, 29, 22], we

found our instance segmentation system is robust to them.

Training: As in Fast R-CNN, an RoI is considered positive

if it has IoU with a ground-truth box of at least 0.5 and

negative otherwise. The mask loss Lmask is defined only on

positive RoIs. The mask target is the intersection between

an RoI and its associated ground-truth mask.

We adopt image-centric training [9]. Images are resized

such that their scale (shorter edge) is 800 pixels [22]. Each

mini-batch has 2 images per GPU and each image has N
sampled RoIs, with a ratio of 1:3 of positive to negatives

ave

RoI

RoI

14×14

×256

7×7

×256

14×14

×256

1024

28×28

×256

1024

mask

14×14

×256

class
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2048

RoI res5

7×7

×1024
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×2048

×4

class

box

14×14

×80

mask

28×28

×80

Faster R-CNN
w/ ResNet [15]

Faster R-CNN
w/ FPN [22]

Figure 3. Head Architecture: We extend two existing Faster R-

CNN heads [15, 22]. Left/Right panels show the heads for the

ResNet C4 and FPN backbones, from [15] and [22], respectively,

to which a mask branch is added. Numbers denote spatial resolu-

tion and channels. Arrows denote either conv, deconv, or fc layers

as can be inferred from context (conv preserves spatial dimension

while deconv increases it). All convs are 3×3, except the output

conv which is 1×1, deconvs are 2×2 with stride 2, and we use

ReLU [25] in hidden layers. Left: ‘res5’ denotes ResNet’s fifth

stage, which for simplicity we altered so that the first conv oper-

ates on a 7×7 RoI with stride 1 (instead of 14×14 / stride 2 as in

[15]). Right: ‘×4’ denotes a stack of four consecutive convs.

[9]. N is 64 for the C4 backbone (as in [9, 29]) and 512 for

FPN (as in [22]). We train on 8 GPUs (so effective mini-

batch size is 16) for 160k iterations, with a learning rate of

0.02 which is decreased by 10 at the 120k iteration. We use

a weight decay of 0.0001 and a momentum of 0.9.

The RPN anchors span 5 scales and 3 aspect ratios, fol-

lowing [22]. For convenient ablation, RPN is trained sep-

arately and does not share features with Mask R-CNN, un-

less specified. For every entry in this paper, RPN and Mask

R-CNN have the same backbones and so they are shareable.

Inference: At test time, the proposal number is 300 for the

C4 backbone (as in [29]) and 1000 for FPN (as in [22]). We

run the box prediction branch on these proposals, followed

by non-maximum suppression [11]. The mask branch is

then applied to the highest scoring 100 detection boxes. Al-

though this differs from the parallel computation used in

training, it speeds up inference and improves accuracy (due

to the use of fewer, more accurate RoIs). The mask branch

can predict K masks per RoI, but we only use the k-th mask,

where k is the predicted class by the classification branch.

The m×m floating-number mask output is then resized to

the RoI size, and binarized at a threshold of 0.5.

Note that since we only compute masks on the top 100

detection boxes, Mask R-CNN adds a small overhead to its

Faster R-CNN counterpart (e.g., ∼20% on typical models).

4. Experiments: Instance Segmentation

We perform a thorough comparison of Mask R-CNN to

the state of the art along with comprehensive ablation exper-

iments. We use the COCO dataset [23] for all experiments.

We report the standard COCO metrics including AP (aver-

aged over IoU thresholds), AP50, AP75, and APS , APM ,

APL (AP at different scales). Unless otherwise noted, AP
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Figure 4. More results of Mask R-CNN on COCO test images, using ResNet-101-FPN and running at 5 fps, with 35.7 mask AP (Table 1).

backbone AP AP50 AP75 APS APM APL

MNC [7] ResNet-101-C4 24.6 44.3 24.8 4.7 25.9 43.6

FCIS [21] +OHEM ResNet-101-C5-dilated 29.2 49.5 - 7.1 31.3 50.0

FCIS+++ [21] +OHEM ResNet-101-C5-dilated 33.6 54.5 - - - -

Mask R-CNN ResNet-101-C4 33.1 54.9 34.8 12.1 35.6 51.1

Mask R-CNN ResNet-101-FPN 35.7 58.0 37.8 15.5 38.1 52.4

Mask R-CNN ResNeXt-101-FPN 37.1 60.0 39.4 16.9 39.9 53.5

Table 1. Instance segmentation mask AP on COCO test-dev. MNC [7] and FCIS [21] are the winners of the COCO 2015 and 2016

segmentation challenges, respectively. Without bells and whistles, Mask R-CNN outperforms the more complex FCIS+++, which includes

multi-scale train/test, horizontal flip test, and OHEM [30]. All entries are single-model results.

is evaluating using mask IoU. As in previous work [3, 22],

we train using the union of 80k train images and a 35k sub-

set of val images (trainval35k), and report ablations on

the remaining 5k subset of val images (minival). We also

report results on test-dev [23], which has no disclosed

labels. Upon publication, we will upload our full results on

test-std to the public leaderboard, as recommended.

4.1. Main Results

We compare Mask R-CNN to the state-of-the-art meth-

ods in instance segmentation in Table 1. All instantia-

tions of our model outperform baseline variants of previ-

ous state-of-the-art models. This includes MNC [7] and

FCIS [21], the winners of the COCO 2015 and 2016

segmentation challenges, respectively. Without bells and

whistles, Mask R-CNN with ResNet-101-FPN backbone

outperforms FCIS+++ [21], which includes multi-scale

train/test, horizontal flip test, and online hard example min-

ing (OHEM) [30]. While outside the scope of this work, we

expect many such improvements to be applicable to ours.

Mask R-CNN outputs are visualized in Figures 2 and 4.

Mask R-CNN achieves good results even under challeng-

ing conditions. In Figure 5 we compare our Mask R-CNN

baseline and FCIS+++ [21]. FCIS+++ exhibits systematic

artifacts on overlapping instances, suggesting that it is chal-

lenged by the fundamental difficulty of instance segmenta-

tion. Mask R-CNN shows no such artifacts.

4.2. Ablation Experiments

We run a number of ablations to analyze Mask R-CNN.

Results are shown in Table 2 and discussed in detail next.

Architecture: Table 2a shows Mask R-CNN with various

backbones. It benefits from deeper networks (50 vs. 101)

and advanced designs including FPN and ResNeXt3. We

note that not all frameworks automatically benefit from

deeper or advanced networks (see benchmarking in [17]).

3We use the 64×4d variant of ResNeXt [35].
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Figure 5. FCIS+++ [21] (top) vs. Mask R-CNN (bottom, ResNet-101-FPN). FCIS exhibits systematic artifacts on overlapping objects.

net-depth-features AP AP50 AP75

ResNet-50-C4 30.3 51.2 31.5

ResNet-101-C4 32.7 54.2 34.3

ResNet-50-FPN 33.6 55.2 35.3

ResNet-101-FPN 35.4 57.3 37.5

ResNeXt-101-FPN 36.7 59.5 38.9

(a) Backbone Architecture: Better back-

bones bring expected gains: deeper networks

do better, FPN outperforms C4 features, and

ResNeXt improves on ResNet.

AP AP50 AP75

softmax 24.8 44.1 25.1

sigmoid 30.3 51.2 31.5

+5.5 +7.1 +6.4

(b) Multinomial vs. Independent Masks

(ResNet-50-C4): Decoupling via per-

class binary masks (sigmoid) gives large

gains over multinomial masks (softmax).

align? bilinear? agg. AP AP50 AP75

RoIPool [9] max 26.9 48.8 26.4

RoIWarp [7]
X max 27.2 49.2 27.1

X ave 27.1 48.9 27.1

RoIAlign
X X max 30.2 51.0 31.8

X X ave 30.3 51.2 31.5

(c) RoIAlign (ResNet-50-C4): Mask results with various RoI

layers. Our RoIAlign layer improves AP by ∼3 points and

AP75 by ∼5 points. Using proper alignment is the only factor

that contributes to the large gap between RoI layers.

AP AP50 AP75 APbb APbb
50

APbb
75

RoIPool 23.6 46.5 21.6 28.2 52.7 26.9

RoIAlign 30.9 51.8 32.1 34.0 55.3 36.4

+7.3 + 5.3 +10.5 +5.8 +2.6 +9.5

(d) RoIAlign (ResNet-50-C5, stride 32): Mask-level and box-level

AP using large-stride features. Misalignments are more severe than

with stride-16 features (Table 2c), resulting in massive accuracy gaps.

mask branch AP AP50 AP75

MLP fc: 1024→1024→80·28
2 31.5 53.7 32.8

MLP fc: 1024→1024→1024→80·28
2 31.5 54.0 32.6

FCN conv: 256→256→256→256→256→80 33.6 55.2 35.3

(e) Mask Branch (ResNet-50-FPN): Fully convolutional networks (FCN) vs.

multi-layer perceptrons (MLP, fully-connected) for mask prediction. FCNs im-

prove results as they take advantage of explicitly encoding spatial layout.

Table 2. Ablations for Mask R-CNN. We train on trainval35k, test on minival, and report mask AP unless otherwise noted.

Multinomial vs. Independent Masks: Mask R-CNN de-

couples mask and class prediction: as the existing box

branch predicts the class label, we generate a mask for each

class without competition among classes (by a per-pixel sig-

moid and a binary loss). In Table 2b, we compare this to

using a per-pixel softmax and a multinomial loss (as com-

monly used in FCN [24]). This alternative couples the tasks

of mask and class prediction, and results in a severe loss

in mask AP (5.5 points). This suggests that once the in-

stance has been classified as a whole (by the box branch),

it is sufficient to predict a binary mask without concern for

the categories, which makes the model easier to train.

Class-Specific vs. Class-Agnostic Masks: Our default in-

stantiation predicts class-specific masks, i.e., one m×m
mask per class. Interestingly, Mask R-CNN with class-

agnostic masks (i.e., predicting a single m×m output re-

gardless of class) is nearly as effective: it has 29.7 mask AP

vs. 30.3 for the class-specific counterpart on ResNet-50-C4.

This further highlights the division of labor in our approach

which largely decouples classification and segmentation.

RoIAlign: An evaluation of our proposed RoIAlign layer is

shown in Table 2c. For this experiment we use the ResNet-

50-C4 backbone, which has stride 16. RoIAlign improves

AP by about 3 points over RoIPool, with much of the gain

coming at high IoU (AP75). RoIAlign is insensitive to

max/average pool; we use average in the rest of the paper.

Additionally, we compare with RoIWarp proposed in

MNC [7] that also adopt bilinear sampling. As discussed in

§3, RoIWarp still quantizes the RoI, losing alignment with

the input. As can be seen in Table 2c, RoIWarp performs

on par with RoIPool and much worse than RoIAlign. This

highlights that proper alignment is key.

We also evaluate RoIAlign with a ResNet-50-C5 back-

bone, which has an even larger stride of 32 pixels. We use

the same head as in Figure 3 (right), as the res5 head is not

applicable. Table 2d shows that RoIAlign improves mask

AP by a massive 7.3 points, and mask AP75 by 10.5 points

(50% relative improvement). Moreover, we note that with

RoIAlign, using stride-32 C5 features (30.9 AP) is more ac-

curate than using stride-16 C4 features (30.3 AP, Table 2c).

RoIAlign largely resolves the long-standing challenge of

using large-stride features for detection and segmentation.

Finally, RoIAlign shows a gain of 1.5 mask AP and 0.5

box AP when used with FPN, which has finer multi-level

strides. For keypoint detection that requires finer alignment,

RoIAlign shows large gains even with FPN (Table 6).
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backbone APbb APbb
50

APbb
75

APbb
S

APbb
M

APbb
L

Faster R-CNN+++ [15] ResNet-101-C4 34.9 55.7 37.4 15.6 38.7 50.9

Faster R-CNN w FPN [22] ResNet-101-FPN 36.2 59.1 39.0 18.2 39.0 48.2

Faster R-CNN by G-RMI [17] Inception-ResNet-v2 [32] 34.7 55.5 36.7 13.5 38.1 52.0

Faster R-CNN w TDM [31] Inception-ResNet-v2-TDM 36.8 57.7 39.2 16.2 39.8 52.1

Faster R-CNN, RoIAlign ResNet-101-FPN 37.3 59.6 40.3 19.8 40.2 48.8

Mask R-CNN ResNet-101-FPN 38.2 60.3 41.7 20.1 41.1 50.2

Mask R-CNN ResNeXt-101-FPN 39.8 62.3 43.4 22.1 43.2 51.2

Table 3. Object detection single-model results (bounding box AP), vs. state-of-the-art on test-dev. Mask R-CNN using ResNet-101-

FPN outperforms the base variants of all previous state-of-the-art models (the mask output is ignored in these experiments). The gains of

Mask R-CNN over [22] come from using RoIAlign (+1.1 APbb), multitask training (+0.9 APbb), and ResNeXt-101 (+1.6 APbb).

Mask Branch: Segmentation is a pixel-to-pixel task and

we exploit the spatial layout of masks by using an FCN.

In Table 2e, we compare multi-layer perceptrons (MLP)

and FCNs, using a ResNet-50-FPN backbone. Using FCNs

gives a 2.1 mask AP gain over MLPs. We note that we

choose this backbone so that the conv layers of the FCN

head are not pre-trained, for a fair comparison with MLP.

4.3. Bounding Box Detection Results

We compare Mask R-CNN to the state-of-the-art COCO

bounding-box object detection in Table 3. For this result,

even though the full Mask R-CNN model is trained, only

the classification and box outputs are used at inference (the

mask output is ignored). Mask R-CNN using ResNet-101-

FPN outperforms the base variants of all previous state-of-

the-art models, including the single-model variant of G-

RMI [17], the winner of the COCO 2016 Detection Chal-

lenge. Using ResNeXt-101-FPN, Mask R-CNN further im-

proves results, with a margin of 3.0 points box AP over

the best previous single model entry from [31] (which used

Inception-ResNet-v2-TDM).

As a further comparison, we trained a version of Mask

R-CNN but without the mask branch, denoted by “Faster

R-CNN, RoIAlign” in Table 3. This model performs better

than the model presented in [22] due to RoIAlign. On the

other hand, it is 0.9 points box AP lower than Mask R-CNN.

This gap of Mask R-CNN on box detection is therefore due

solely to the benefits of multi-task training.

Lastly, we note that Mask R-CNN attains a small gap

between its mask and box AP: e.g., 2.7 points between 37.1

(mask, Table 1) and 39.8 (box, Table 3). This indicates that

our approach largely closes the gap between object detec-

tion and the more challenging instance segmentation task.

4.4. Timing

Inference: We train a ResNet-101-FPN model that shares

features between the RPN and Mask R-CNN stages, follow-

ing the 4-step training of Faster R-CNN [29]. This model

runs at 195ms per image on an Nvidia Tesla M40 GPU (plus

15ms CPU time resizing the outputs to the original resolu-

tion), and achieves statistically the same mask AP as the

unshared one. We also report that the ResNet-101-C4 vari-

ant takes ∼400ms as it has a heavier box head (Figure 3), so

we do not recommend using the C4 variant in practice.

Although Mask R-CNN is fast, we note that our design

is not optimized for speed, and better speed/accuracy trade-

offs could be achieved [17], e.g., by varying image sizes and

proposal numbers, which is beyond the scope of this paper.

Training: Mask R-CNN is also fast to train. Training with

ResNet-50-FPN on COCO trainval35k takes 32 hours

in our synchronized 8-GPU implementation (0.72s per 16-

image mini-batch), and 44 hours with ResNet-101-FPN. In

fact, fast prototyping can be completed in less than one day

when training on the train set. We hope such rapid train-

ing will remove a major hurdle in this area and encourage

more people to perform research on this challenging topic.

5. Mask R-CNN for Human Pose Estimation

Our framework can easily be extended to human pose

estimation. We model a keypoint’s location as a one-hot

mask, and adopt Mask R-CNN to predict K masks, one for

each of K keypoint types (e.g., left shoulder, right elbow).

This task helps demonstrate the flexibility of Mask R-CNN.

We note that minimal domain knowledge for human pose

is exploited by our system, as the experiments are mainly to

demonstrate the generality of the Mask R-CNN framework.

We expect that domain knowledge (e.g., modeling struc-

tures [4]) will be complementary to our simple approach,

but it is beyond the scope of this paper.

Implementation Details: We make minor modifications to

the segmentation system when adapting it for keypoints.

For each of the K keypoints of an instance, the training

target is a one-hot m×m binary mask where only a single

pixel is labeled as foreground. During training, for each vis-

ible ground-truth keypoint, we minimize the cross-entropy

loss over an m2-way softmax output (which encourages a

single point to be detected). We note that as in instance seg-

mentation, the K keypoints are still treated independently.

We adopt the ResNet-FPN variant, and the keypoint head

architecture is similar to that in Figure 3 (right). The key-

point head consists of a stack of eight 3×3 512-d conv lay-

ers, followed by a deconv layer and 2× bilinear upscaling,

producing an output resolution of 56×56. We found that
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Figure 6. Keypoint detection results on COCO test using Mask R-CNN (ResNet-50-FPN), with person segmentation masks predicted

from the same model. This model has a keypoint AP of 63.1 and runs at 5 fps.

APkp AP
kp
50

AP
kp
75

AP
kp

M
AP

kp

L

CMU-Pose+++ [4] 61.8 84.9 67.5 57.1 68.2

G-RMI [26]† 62.4 84.0 68.5 59.1 68.1

Mask R-CNN, keypoint-only 62.7 87.0 68.4 57.4 71.1

Mask R-CNN, keypoint & mask 63.1 87.3 68.7 57.8 71.4

Table 4. Keypoint detection AP on COCO test-dev. Ours

(ResNet-50-FPN) is a single model that runs at 5 fps. CMU-

Pose+++ [4] is the 2016 competition winner that uses multi-scale

testing, post-processing with CPM [34], and filtering with an ob-

ject detector, adding a cumulative ∼5 points (clarified in personal

communication). †: G-RMI was trained on COCO plus MPII [1]

(25k images), using two models (Inception-ResNet-v2 + ResNet-

101). As they use more data, this is not a direct comparison with

Mask R-CNN.

a relatively high resolution output (compared to masks) is

required for keypoint-level localization accuracy.

Models are trained on all COCO trainval35k im-

ages that contain annotated keypoints. To reduce overfit-

ting, as this training set is smaller, we train the models us-

ing image scales randomly sampled from [640, 800] pixels;

inference is on a single scale of 800 pixels. We train for 90k

iterations, starting from a learning rate of 0.02 and reducing

it by 10 at 60k and 80k iterations. We use bounding-box

non-maximum suppression with a threshold of 0.5. Other

implementations are identical as in §3.1.

Experiments on Human Pose Estimation: We evaluate

the person keypoint AP (APkp) using ResNet-50-FPN. We

have experimented with ResNet-101 and found it achieves

similar results, possibly because deeper models benefit from

more training data, but this dataset is relatively small.

Table 4 shows that our result (62.7 APkp) is 0.9 points

higher than the COCO 2016 keypoint detection winner [4]

that uses a multi-stage processing pipeline (see caption of

Table 4). Our method is considerably simpler and faster.

More importantly, we have a unified model that can si-

multaneously predict boxes, segments, and keypoints while

running at 5 fps. Adding a segment branch (for the per-

APbb
person APmask

person APkp

Faster R-CNN 52.5 - -

Mask R-CNN, mask-only 53.6 45.8 -

Mask R-CNN, keypoint-only 50.7 - 64.2

Mask R-CNN, keypoint & mask 52.0 45.1 64.7

Table 5. Multi-task learning of box, mask, and keypoint about the person

category, evaluated on minival. All entries are trained on the same data

for fair comparisons. The backbone is ResNet-50-FPN. The entry with

64.2 AP on minival has 62.7 AP on test-dev. The entry with 64.7

AP on minival has 63.1 AP on test-dev (see Table 4).

APkp AP
kp
50

AP
kp
75

AP
kp

M
AP

kp

L

RoIPool 59.8 86.2 66.7 55.1 67.4

RoIAlign 64.2 86.6 69.7 58.7 73.0

Table 6. RoIAlign vs. RoIPool for keypoint detection on minival.

son category) improves the APkp to 63.1 (Table 4) on

test-dev. More ablations of multi-task learning on

minival are in Table 5. Adding the mask branch to the

box-only (i.e., Faster R-CNN) or keypoint-only versions

consistently improves these tasks. However, adding the

keypoint branch reduces the box/mask AP slightly, suggest-

ing that while keypoint detection benefits from multitask

training, it does not in turn help the other tasks. Neverthe-

less, learning all three tasks jointly enables a unified system

to efficiently predict all outputs simultaneously (Figure 6).

We also investigate the effect of RoIAlign on keypoint

detection (Table 6). Though this ResNet-50-FPN backbone

has finer strides (e.g., 4 pixels on the finest level), RoIAlign

still shows significant improvement over RoIPool and in-

creases APkp by 4.4 points. This is because keypoint detec-

tions are more sensitive to localization accuracy. This again

indicates that alignment is essential for pixel-level localiza-

tion, including masks and keypoints.

Given the effectiveness of Mask R-CNN for extracting

object bounding boxes, masks, and keypoints, we expect it

be an effective framework for other instance-level tasks.
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