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Abstract

This paper presents a novel deep regression network to

extract geometric information from Light Field (LF) data.

Our network builds upon u-shaped network architectures.

Those networks involve two symmetric parts, an encoding

and a decoding part. In the first part the network en-

codes relevant information from the given input into a set

of high-level feature maps. In the second part the gener-

ated feature maps are then decoded to the desired output.

To predict reliable and robust depth information the pro-

posed network examines 3D subsets of the 4D LF called

Epipolar Plane Image (EPI) volumes. An important as-

pect of our network is the use of 3D convolutional layers,

that allow to propagate information from two spatial dimen-

sions and one directional dimension of the LF. Compared to

previous work this allows for an additional spatial regular-

ization, which reduces depth artifacts and simultaneously

maintains clear depth discontinuities. Experimental results

show that our approach allows to create high-quality recon-

struction results, which outperform current state-of-the-art

Shape from Light Field (SfLF) techniques. The main advan-

tage of the proposed approach is the ability to provide those

high-quality reconstructions at a low computation time.

1. Introduction

This paper investigates the task of reconstructing the ge-

ometry of a scene based on captured Light Field (LF) data.

The corresponding problem is referred to as Shape from

Light Field (SfLF). A LF represents a densely sampled set

of images captured from a regular grid of viewpoints lo-

cated on a common 2D plane. It should be emphasized

that the key difference to the general multi-view stereo set-

ting is the dense and regular sampling of the viewpoints.

Thus compared to a traditional 2D image a 4D LF pro-

vides two additional dimensions, that can be interpreted as

a parametrization of the 2D grid of viewpoints. This multi-

view stereo interpretation of the LF data directly shows that

a LF provides information about the geometry of the ob-
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Figure 1. Illustration of the input and output of the proposed net-

work. To the left the figure shows a RGB EPI volume, that is

fed to our network, and to the right the corresponding color-coded

disparity information is shown.

served scene. The encoded geometrical information in the

LF allows to tackle problems that are impossible to solve

based on a single 2D image of the scene. Those prob-

lems include the geometrical reconstruction of the observed

scene itself [32, 9, 13, 30, 11, 17], the generation of images

with different focus or aperture settings [16, 25], and the

digital viewpoint manipulation [25], to name but a few.

SfLF is currently a very active area of research. The LF

research field has grown from a niche topic to an established

part of today’s Computer Vision (CV) research. This devel-

opment occurred not least because there is a growing com-

mercial interest in LF technology. Nowadays LF or plenop-

tic cameras are used in industrial applications, like for in-

stance automated optical inspection [28], and LF technol-

ogy is used in consumer cameras to provide features like

digital refocusing capabilities [23]. Moreover, there is also

an increasing number of companies that are looking for

new ways to capture cinematic Virtual Reality (VR) con-

tent, where LF imaging might be a perfect solution that al-

lows to take advantage of the freedom of motion offered by

devices like Oculus Rift [26] or HTC Vive [15].

2252



In mathematical terms a 4D LF is commonly defined via

the so-called two-plane parametrization, where a ray is de-

fined by the intersection points of two parallel planes. Let

Ω ⊆ R
2 and Π ⊆ R

2 be two parallel planes (Ω 6= Π), then

the LF is defined as

L : Ω×Π → R, (p,q) 7→ L(p,q) , (1)

where p = (x, y)⊤ ∈ Ω and q = (ξ, η)⊤ ∈ Π represent

spatial and directional coordinates. Note that Ω corresponds

to the traditional image plane and Π is usually referred to as

lens or focal plane.

A LF can be visualized in many different ways. Common

visualizations are sub-aperture images and EPIs. Both rep-

resent 2D slices through the general 4D LF. The represen-

tation we work with in this paper is called EPI volume [3],

which is equivalent to an orthogonal 3D slice through the

LF. In terms of Equation (1) an EPI volume is obtained

by holding one directional coordinate constant and varying

the remaining coordinates. For instance by choosing a cer-

tain directional coordinate η we restrict the 4D LF to the

3D function

Ση : R3 → R, (x, y, ξ) 7→ L(x, y, ξ, η) , (2)

that defines the corresponding horizontal EPI volume. Sim-

ilarly one can also define vertical EPI volumes. Compare

Figure 1 for a visualization of an EPI volume. EPI volumes

nicely illustrate the linear characteristic of the LF space.

By analyzing the orientations of the individual lines in this

representation one can infer the depth of the corresponding

scene points. This correspondence between depth and ori-

entation has been leveraged in many works on SfLF.

After the huge success of deep learning in a variety of

CV applications it was only a matter of time till deep learn-

ing principles have found their application also in LF image

processing. In [12, 14] it was shown that utilizing learning-

based approaches for SfLF has a high potential to reduce

depth artifacts due to occlusions, partial visibility, and spec-

ular reflections. The advantages of data-driven approaches

are not only the capability to learn from data how to han-

dle certain artifacts, but also the facilitation for an efficient

implementation of the inference step, which results in a fast

computation time.

This work focuses on one main drawback of the deep

learning architecture proposed in [14]. We address the lack

of regularization in the disparity prediction provided by this

method. Due to the fact that the network in [14] is designed

to process a single EPI, the input information fed to the net-

work is limited to one spatial dimension. This results in

streaking artifacts in the respective direction, which can not

be reliably resolved in their proposed framework. To rem-

edy this, we propose to extend the network architecture in

[14] to predict disparity based on entire EPI volumes, i.e .

we allow the network to incorporate information from both

spatial dimension. We will show that this simple modifi-

cation allows to spatially propagate information and avoids

the unwanted streaking artifacts.

2. Related Work

SfLF is a fundamental problem in LF image processing.

However, despite a substantial amount of progress in this

field, 3D scene reconstruction from LFs still struggles with

many difficulties, especially in dealing with occlusions, tex-

tureless regions, and specular reflections.

There is a wide range of methods for SfLF. The field

can be roughly divided into methods based on EPI analysis

like e.g . [32, 9], and multi-view stereo matching based ap-

proaches like e.g . [13, 4]. The seminal work of Bolles et

al . [3] introduced so-called EPI volumes, where they an-

alyze the slopes of lines by line fitting in order to esti-

mate sparse disparity information. In [5] Criminisi et al .

exploited the high degree of regularity found in the EPIs.

They performed a so-called EPI strip rectification, i.e . a

shearing of the EPI, to estimate lines with smallest color

variation and hence dense disparity information. The first

order structure tensor was used in [32, 9] to compute the

orientation of lines in the EPIs. In [13] the authors pro-

posed a matching-term based on Active Wavefront Sam-

pling (AWS), that is used within a variational multi-view

stereo framework. Tao et al . [30] suggested to combine cor-

respondence cues with defocus cues to calculate depth. In

order to indicate the probability of occlusions Chen et al .

[4] introduced a bilateral consistency metric on the surface

camera. In [11] Heber and Pock defined a new dataterm

based on Robust Principal Component Analysis (RPCA),

that exploits the redundancy of sub-aperture views. Jeon et

al . [17] employed the phase-shift theorem to match sub-

aperture images.

While for classical stereo reconstruction for color images

deep learning approaches are gaining ground [34], SfLF

methods still mainly rely on classical variational principles,

EPI filtering, and other handcrafted solutions. The main

reason for this is the lack of high quality large-scale training

data, which is essential to train deep network architectures.

Hence only few work has been pursued on utilizing Ma-

chine Learning (ML) techniques for LF analysis [31, 18].

To the best of our knowledge there exist only two relevant

publications that apply ML techniques to SfLF. Heber and

Pock [12] proposed to apply a conventional Convolutional

Neural Network (CNN) in a sliding window fashion to pre-

dict slope orientation in the EPIs. The main motivation of

utilizing ML for SfLF is the fact that phenomena such as

occlusions, specular highlights or reflections manifest as

certain patterns on the EPI space and can be learned in a

data-driven approach. Hence learning-based approaches ba-

sically allow to handle cases that are problematic for tra-
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ditional non-learning based methods. However, because

of the redundancy in overlapping patches, the patch-based

method in [12] comes with the drawback of high computa-

tional costs. Furthermore, it also relies on an additional re-

finement step to handle textureless or uniform regions. In a

follow up work [14] the authors addressed those drawbacks

and proposed a more sophisticated network structure that

operates on entire 2D EPIs. The network achieved good re-

construction results in combination with low computational

costs. However, one downside of the method is the intro-

duction of streaking artifacts into the final reconstruction

result. In this work we tackle this problem by providing

the network with additional information from neighboring

pixels, i.e . extending the input dimension of the network by

incorporating the second spatial dimension. Hence we pro-

pose to train a network that allows to predict disparity infor-

mation based on entire EPI volumes. In this work, for the

first time, we unify ideas from 2D EPI analysis with spa-

tial matching based approaches by learning 3D filters for

disparity estimation based on EPI volumes.

3. Contribution

In this paper we make the following main contributions:

We propose a method for SfLF that builds upon the u-

shaped architecture proposed in [14]. In particular, we ex-

tend the work of [14] by introducing additional spatial reg-

ularization in terms of 3D convolutions. By doing so we

are able to eliminate the main drawback of the network pro-

posed in [14], which is the tendency to generate visually

unpleasing streaking artifacts. Hence, we transfer recent

success in predicting disparity information based on EPIs to

entire EPI volumes. More specifically, this means that the

proposed network sequentially processes 3D subvolumes of

the 4D LF instead of 2D EPIs. Compared to [14] this mod-

ification allows to propagate information from both spatial

dimensions and thus allows to avoid unwanted depth arti-

facts in the final 4D disparity field. In a fair evaluation we

will show that our learning-based method is able to outper-

form the current state of the art. It not just allows to reduce

depth artifacts in the final reconstruction, but it also allows

to maintain a low computation time.

4. Methodology

This section describes the methodology of the proposed

deep learning approach for disparity prediction based on

EPI volumes [3]. The proposed approach consists of three

main parts: (i) extending the u-shaped network structure in

[14] to perform additional spatial regularization, (ii) prepar-

ing a dataset for supervised training, and (iii) training the

network using the tensorflow framework [1].

Our data-driven approach is based on CNNs [21], that

have been successfully applied to many CV applications.

The popularity of CNNs in CV increased drastically af-

ter Krizhevsky et al . [20] efficiently applied them for large

scale image classification. Modern CNN architectures ba-

sically alternate between convolutions and Rectified Linear

Units (ReLUs) [24]. Note that convolutions only account

for short-range dependencies, i.e . that they are limited by

the size of their kernels. There are different ways to al-

low long-range dependencies without introducing unfeasi-

ble fully connected layers. The simplest solution is to make

the network deeper and with that increase the receptive field

to the desired size. Another way is to introduce pooling or

downsampling layer, but this reduces the output resolution

and hence is only one part of the solution. The second part

involves so-called unpooling or upsampling layer, that al-

low to increase the resolution again to a desired output res-

olution, see e.g . [35, 7, 22]. Networks that involve a bottle-

neck due to downsampling and upsampling operations were

first introduced to model auto-encoder. Those networks are

basically designed to learn a sparse representation of the

given data. Hence they compress the data which also re-

sults in a loss of detail when utilized for other prediction

tasks. By introducing connections that skip the downsam-

pling parts of the network it is possible to preserve the high

frequency information and simultaneously allow for long-

range dependencies, as demonstrated in e.g . [29, 6, 14].

Those skip-connections are denoted as pinhole connections

in the remainder of this paper.

The proposed network is an extension of the network

proposed in [14] and is mainly designed to remove depth

artifacts occurring in the final 4D disparity field. Due to the

fact that the network in [14] only receives input from one

spatial dimension, the result is not necessarily consistent

w.r.t. the second spatial dimension. This results in depth-

artifact in ambiguous regions, which appear as streaking ar-

tifact in the sub-aperture images of the final reconstruction.

In this work we remedy this problem. We extend the net-

work input by the second spatial dimension. In this way we

can exploit 3D convolutional layers to perform an additional

spatial regularization.

In what follows we will present details about the sug-

gested network architectures and the training procedure.

Due to the fact that our method is not based on natural

2D images, we are not able to exploit existing trained net-

works in terms of transfer learning. The proposed network

is entirely trained from scratch.

Network Architecture. The proposed network is a spe-

cial version of a Fully Convolutional Network (FCN) [22],

that has a network structure similar to an auto-encoder [2]

with additional pinhole connections. The overall network

architecture is inspired by [14] and it is designed to pre-

dict disparity based on RGB EPI volumes. Note that an EPI

volume defines a 3D subset of a 4D LF, i.e . several net-
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Figure 2. Illustration of the proposed network architecture. The overall network structure builds upon u-shaped networks. Those networks

involve two symmetric parts, an encoding and a decoding part. The encoding and decoding parts of the network are highlighted in purple

and green, respectively. To preserve high-frequency information the network also uses so-called pinhole connections, marked in blue, that

allow to skip the downsampling parts of the network.

work predictions have to be combined to obtain the final

4D disparity field. Figure 2 provides an overview of the en-

tire network structure. Contrary to [14], where the network

only operates on a single EPI, the input of the proposed net-

work is an RGB EPI volume and the output is its corre-

sponding disparity volume. Thus the proposed network ex-

tends the network in [14] by replacing all 2D operators with

their 3D counterparts. The proposed network consists of

essentially two symmetric parts, an encoding part (c.f . pur-

ple part in Figure 2) and a decoding part (c.f . green part in

Figure 2). Each part is further subdivided into different lev-

els. In the encoding and decoding part those levels are con-

nected via down and up-convolutional layers, respectively.

At each down-convolutional layer we reduce the spatial res-

olution by a factor of two, and at each up-convolutional

layer we consequently increase the resolution again by the

same factor. In Figure 2 the down and up-convolutional

layers are indicated with purple and green arrows, respec-

tively. Each level in the network consists of four convo-

lutional layer each followed by a ReLU non-linearity [24],

σ(x) = max(0,x). Note that each layer is a four dimen-

sional array of size h× w × d× c, where the first three di-

mensions correspond to the two spatial and one directional

dimensions of the LF, and c is the feature or channel dimen-

sion. The involved convolutional layers perform 3D convo-

lutions with filter kernels of size 3× 3× 3, that correspond

to the x, y, and ξ dimension of the LF. Each convolutional

layer employs max{64, 16 · 2l−1} filter, where l ∈ [4]1 de-

notes the respective level, i.e . we start with 16 feature chan-

nels in the first level of the encoding part and gradually in-

crease them towards higher levels, till we reach a maximum

number of 64 feature channels. Likewise in the decoding

part we gradually decrease the number of feature channels

at each up-convolutional layer except at the lowest one. At

1Notation: [n] := {1, . . . , n}

the very end of the network we use a convolutional layer to

map to one output channel representing the disparity infor-

mation. Note that the network does not include any pooling

layer, we make use of learned down and up-convolutional

layers instead. An important aspect of this network is the

use of so-called pinhole connections, that connect the levels

from the encoding part with the respective levels in the de-

coding part of the network. At each pinhole connection (c.f .

blue arrows in Figure 2) we concatenate the output feature

map of the encoding level with the input feature map of the

corresponding decoding level. Those pinhole connections

allow to preserve high frequency information and thus in-

crease the amount of details in the final reconstruction. Due

to the fact that this network belongs to the class of FCNs it

allows to process EPI volumes of arbitrary resolutions. The

main reason for this is the fact that the involved convolu-

tions are inherently translational invariant. Also note that

the network is trained end-to-end and does not make use of

pre- and post-processing complications.

Dataset. In order to train the proposed network a large

amount of training data is needed for supervised training.

For this purpose we leverage the synthetic LF dataset pro-

posed in [12]. This dataset provides several interesting

features that distinguishes it from other datasets, includ-

ing highly accurate ground truth depth fields, and a random

scene generator, which makes it easy to scale the dataset

as required. For our current purpose we generated 900 LFs

with a spatial resolution of 640×480 and a directional reso-

lution of 11×11. The entire dataset is split up into a training

set of 850 LFs and a test set of 50 LFs.

Data Augmentation. One way to combat overfitting on

the training data is called data augmentation [20, 8]. The

main idea is to train the model such that it gets invariant to
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Figure 3. Illustration of the used data augmentation. The figure

shows slices through the EPI volume, where the original sample is

shown at the top followed by different augmented versions.

certain predefined image deformations. This is done by ex-

tending the training set with slightly modified training sam-

ples. Although the samples generated via data augmenta-

tion are heavily correlated, they allow to increase the robust-

ness of the trained model. We perform a large amount of

data augmentation, including hue, saturation, contrast and

brightness modifications. To modify the hue and saturation

we first convert the RGB images to the HSV color space and

add offsets to the hue and saturation channels. The offsets

are randomly picked from the interval [−0.25, 0.25] for the

hue channel and from [0.3, 1.0] for the saturation channel.

After that we convert back to the RGB color space. To aug-

ment the contrast, for each channel x we compute the mean

x̄ of the pixel values and calculate the contrast manipulated

result as x̄ + (x − x̄)s, where s denotes a contrast factor

randomly picked from the interval [0.1, 1.0]. The bright-

ness is augmented by adding an offset to each channel, that

is randomly picked from [−0.1, 0.1]. Besides the changes

in pixel values we also flip the x and ξ coordinate axes ran-

domly with a probability of 0.5. Note, when flipping one of

the axes we also need to simultaneously flip and negate the

disparity values of the corresponding labels. Finally we also

add additive Gaussian noise with zeros mean and a standard

deviation of 1% of the image dynamic range. Figure 3 pro-

vides an illustration of the implemented data augmentation,

where slices through augmented EPI volumes are shown.

Network Training. In order to train the proposed net-

work we use the tensorflow framework [1], where we chose

Adam [19] to optimize the ℓ1 loss. Compared to using an

ℓ2 loss this allows to reduce the effect of blurry predictions.

For the training procedure we implemented an input

pipeline, that performs the following steps. First we load

a random LF from the training set into memory and extract

an RGB EPI volume of size 200 × 200 × 11 × 3 at a ran-

dom position. This EPI volume constitutes a single train-

ing sample, which is added to an input queue, that holds a

certain amount of samples. When removing samples from

this queue new samples are automatically reloaded. Dur-

ing training we take the first n samples from the queue

and triple them using data augmentation. We calculate the

gradient of the resulting mini-patch using back-propagation

and update the network parameters based on the selected

optimization scheme. We use 10 LFs from the test set to

monitor overfitting.

Initialization is another important part when training a

network. As suggested in [10] we initialize the weights of

the network by drawing them from a Gaussian distribution

with standard deviation
√

2/N , where N denotes the num-

ber of incoming nodes. We train the model for approxi-

mately 1000 epochs, where we use a mini-batch size of 48.

5. Experiments

We thoroughly evaluate the proposed model on the fol-

lowing datasets. For the synthetic evaluation we use the LF

dataset proposed in [12]. This dataset provides LFs, with

a spatial resolution of 640 × 480 and a directional resolu-

tion of 11 × 11, that are generated using the ray tracing

software POV-Ray [27]. The rendered LFs in this dataset

are quite challenging because of non-Lambertian surfaces

and a great number of objects that are occluding each other.

For real world evaluation we use the Stanford Light Field

Archive (SLFA) [33]. The LFs from the SLFA are captured

with a multi-camera array. They have varying spatial reso-

lutions and a fixed directional resolution of 17× 17.

We compare against top performing algorithms for SfLF

[32, 30, 11, 17, 12, 14]. Wanner and Goldluecke [32]

proposed a method based on EPI analyzes that uses the

2D structure tensor to estimate line orientations. Tao et

al . [30] suggested to combine correspondence and defo-

cus cues. Heber and Pock [11] proposed a sparse coding

method based on RPCA, that shears the 4D LF. Jeon et

al . [17] utilizes the phase shift theorem to calculate sub-

pixel displacements. In [12] Heber and Pock presented a

patch-based deep learning approach to predict depth infor-

mation for given LF data. Their network takes as input

two patches extracted from the vertical and horizontal EPIs

and predicts the orientation of the corresponding 2D hyper-

plane in the domain of the LF. After the pointwise predic-

tion they used an additional 4D higher order regularization

step to cope with untextured or uniform regions. They also

used a 4D anisotropic diffusion tensor to guide the regu-

larization and a confidence measure to gauge the reliabil-

ity of the CNN prediction. In a follow up work [14] the

approach is extended to predict entire 2D EPIs at once us-

ing u-shaped networks. This allows to get rid of the regu-

larization step needed in [12] and thus drastically reduces

the overall computation time. However, due to the fact that

they process each EPI separately, their approach introduces

streaking artifact in the sub-aperture images of the final re-

construction. To overcome this drawback the proposed net-

work predicts disparity information based on entire EPI vol-

umes. This allows to propagate information in both spatial

dimensions and thus introduces some kind of spatial regu-

larization. Compared to [14] we will show that this modifi-
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LF ground truth Wanner [32] Tao [30]

Heber [11] Jeon [17] Heber [14] proposed

LF ground truth Wanner [32] Tao [30]

Heber [11] Jeon [17] Heber [14] proposed

Figure 4. Comparison to state-of-the-art methods on the synthetic POV-Ray dataset. The figure shows the center view of the LF, the

color-coded ground truth, the results for five state-of-the-art SfLF methods [32, 30, 11, 17, 14], followed by the result of the proposed

method.
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Wanner [32] Tao [30] Heber [11] Jeon [17] Heber [12] (CNN) Heber [14] proposed

RMSE 3.91 2.33 2.50 2.49 1.87 0.80 0.83
MAE 2.94 1.06 0.79 0.75 1.13 0.35 0.34
0.5% 22.00 16.32 8.47 9.64 17.96 7.34 7.28
0.2% 35.22 28.48 13.20 16.46 31.61 14.76 14.42
Time 3min 18s 23min 4s 4min 44s 2h 12min 30s 35s 1.3s 0.8s
GPU ✓ ✗ ✓ ✗ ✓ ✓ ✓

Table 1. Quantitative results for various SfLF methods averaged over 50 synthetic LFs. The table provides the RMSE, MAE, the percentage

of pixels with a relative disparity error larger than 0.2% and 0.5%, and the computational time of the method. In each row we indicate with

green and yellow the best and second best result, respectively.

cation allows to remove depth artifacts, and simultaneously

preserves the advantages of sharp depth discontinuities and

a fast computation time.

In this section we mainly focus on a quantitative evalu-

ation based on synthetic data. Besides that we also present

some qualitative real world results. Note that for all our ex-

periments we use a horizontal slicing strategy as indicated

in Equation (2). Overall our evaluations show that the pro-

posed model is superior to the state of the art.

Synthetic Evaluation. For the synthetic evaluation we

use a test set of 50 LFs. The majority of disparity values

in this dataset are in the range [−5, 5], with a few exception

that exceed this range. Figure 4 provides a visualization of

the disparity results of the proposed method and compares

them to different state-of-the-art methods. For methods re-

lying on precomputed cost volumes, i.e . [32, 30, 17], we set

the number of labels to 200 in this experiment. Moreover

for those methods the needed disparity range is set based on

the ground truth data. When considering Figure 4 we see

that the proposed network is able to predict accurate dispar-

ity results. Overall the results of the proposed method are

on par with those obtained by the method in [14]. How-

ever, when considering the closeup views we recognize that

the proposed model is able to effectively remove unwanted

streaking artifact, that are prevalent in the results predicted

by the network proposed in [14]. Also note that the pro-

posed method is barely effected by depth discontinuities.

Table 1 provides quantitative results, that are averaged

over the 50 LFs used for testing. Note that for the method

proposed in [12] we only compare to the network prediction

and exclude the additional refinement step. The table shows

the RMSE, the MAE, and the percentage of pixels with a

relative disparity error larger than 0.2% and 0.5%. More-

over the table also provides the average computation time

for the various methods and an indication if a GPU imple-

mentation was used or not. We see that the proposed method

provides an excellent performance, and achieves the overall

best results. Overall it can improve upon the 2D method

proposed in [14]. It provides a low error rate in combination

with low computation times. Furthermore we also observe

that the proposed method is significantly better compared to

non-learning based methods. Especially in terms of compu-

tation time we observe a tremendous improvement.

Real World Evaluation. Figure 5 provides a qualitative

comparison to state-of-the-art methods based on the SLFA.

Note that we had to reduce the directional resolution of the

dataset from 17×17 to 11×11 to be able to compute results

for the methods by Jeon et al . [17] and Tao et al . [30] in a

reasonable timeframe. Moreover the number of labels for

those methods is set to 75. The results show that the pro-

posed method allows to predict excellent disparity fields,

although the model was not trained on this specific dataset.

Compared to [14] we see that the proposed model removes

the streaking artifacts. Especially in regions of depth dis-

continuities the proposed network is able to reconstruct the

scene more accurately than the competing methods. We

also indicate the computation time for each method at the

bottom right, which shows the main benefit of the learning

based approaches. Compared to the fastest non-learning

based method, the proposed method is able to reconstruct

the scene 100 times faster. Also keep in mind that the pro-

posed method at the same time calculates disparity infor-

mation for an entire EPI volume and not just for the center

view alone.

6. Conclusion

In this paper we have described a new approach for re-

covering depth information from LF data. We presented an

end-to-end system for SfLF that analyzes EPI volumes. Due

to stacked convolutional operations the proposed network

architecture provides a high efficiency. The suggested net-

work structure extends the u-shaped architecture proposed

in [14] to perform additional spatial regularization. By do-

ing so we were able to eliminate depth artifacts present in

the results produced with the method in [14].

Our experimental results show that the proposed model

is able to predict disparity fields that are significantly better
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22min 50s 6min 13s 2h 9min 42s 4s 3s

32min 45s 8min 12s 2h 55min 34s 5s 3s

31min 58s 8min 43s 2h 44min 40s 5s 3s

36min 60s 9min 40s 3h 9min 1s 5s 4s

LF Tao [30] Heber [11] Jeon [17] Heber [14] proposed

Figure 5. Qualitative comparison for LFs from the SLFA. The figure shows from left to right the center view of the LF, followed by the

results for the methods proposed by Tao et al . [30], Heber and Pock [11], Jeon et al . [17], and Heber et al . [14]. The results to the right

correspond to the proposed method.

than those produced by competing state-of-the-art methods.

The proposed approach combines the two main advantages

of the model proposed in [14], namely the low error rate

and the low inference time, with an additional spatial regu-

larization that reduces unpleasant depth artifacts.

The presented results suggest that CNNs are well suited

for SfLF. More general, applying deep learning to LF im-

age processing tasks is a promising direction of research

because the progress remaining to achieve in this area is

tremendous. In this paper we focused on SfLF, but the same

type of network architecture can also be used for a large

variety of applications in LF image processing, including

denoising, segmentation, and super-resolution. Testing the

proposed network for the above-mentioned applications is

left as future work.
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