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Abstract

Current methods for video description are based on

encoder-decoder sentence generation using recurrent neu-

ral networks (RNNs). Recent work has demonstrated the

advantages of integrating temporal attention mechanisms

into these models, in which the decoder network predicts

each word in the description by selectively giving more

weight to encoded features from specific time frames. Such

methods typically use two different types of features: im-

age features (from an object classification model), and mo-

tion features (from an action recognition model), combined

by naı̈ve concatenation in the model input. Because dif-

ferent feature modalities may carry task-relevant informa-

tion at different times, fusing them by naı̈ve concatena-

tion may limit the model’s ability to dynamically determine

the relevance of each type of feature to different parts of

the description. In this paper, we incorporate audio fea-

tures in addition to the image and motion features. To fuse

these three modalities, we introduce a multimodal atten-

tion model that can selectively utilize features from different

modalities for each word in the output description. Com-

bining our new multimodal attention model with standard

temporal attention outperforms state-of-the-art methods on

two standard datasets: YouTube2Text and MSR-VTT.

1. Introduction

Automatic video description, also known as video caption-

ing, refers to the automatic generation of a natural lan-

guage description, such as a sentence that summarizes an

input video. Video description has widespread applications

including video retrieval, automatic description of home

movies or online uploaded video clips, and video descrip-

tions for the visually impaired. Moreover, developing sys-

tems that can describe videos may help us to elucidate some

key components of general machine intelligence.

Recent work in video description has demonstrated the ad-
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vantages of integrating temporal attention mechanisms into

encoder-decoder neural networks, in which the decoder net-

work predicts each word in the description by selectively

giving more weight to encoded features from different times

in the video. Typically, two different types of features are

used: image features (learned from an object classification

task), and motion features (learned from an action recogni-

tion task). These are combined by naı̈ve concatenation in

the input to the video description model. Because differ-

ent feature modalities may carry task-relevant information

at different times, fusing them by naı̈ve concatenation may

limit the model’s ability to dynamically determine the rel-

evance of each type of feature to different parts of the de-

scription. In this paper, we expand the feature set to include

the audio modality, in addition to the image and motion fea-

tures.

In this work, we propose a new use of attention: to fuse in-

formation across different modalities. Here we use modality

loosely to refer to different types of features derived from

the video, such as appearance, motion, or depth, as well as

features from different sensors such as video and audio fea-

tures. Different modalities of input may be important for

selecting each word in the description. For example, the

description “A boy is standing on a hill” refers to objects

and their relations. In contrast, “A boy is jumping on a hill”

may rely on motion features to determine the action. “A boy

is listening to airplanes flying overhead” may require audio

features to recognize the airplanes, if they do not appear

in the video. Not only do the relevant modalities change

from sentence to sentence, but also from word to word, as

we move from action words that describe motion to nouns

that define object types. Attention to the appropriate modal-

ities, as a function of the context, may help with choosing

the right words for the video description. Often features

from different modalities can be complementary, in that ei-

ther can provide reliable cues at different times for some

aspect of a scene. Multimodal fusion is thus an important

longstanding strategy for robustness. However, optimally

combining information requires estimating the reliability of

each modality, which remains a challenging problem.
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A longstanding area of research addresses how to effec-

tively combine information from multiple modalities for

machine perception tasks [10]. Previous methods typically

used stream weights (e.g., [8]) or Bayesian adaptation ap-

proaches (e.g., [21]). As far as we know, our approach is the

first to fuse multimodal information using attention between

modalities in a neural network. Our method dynamically

adjusts the relative importance of each modality to generate

better descriptions. The benefits of attentional multimodal

fusion include: (1) the modalities that are most helpful to

discriminate each word in the description can dynamically

receive a stronger weight, and (2) the network can detect

interference (e.g., noise) and other sources of uncertainty in

each modality and dynamically down-weight the modalities

that are less certain. Not only does our proposed method

achieve these benefits, but it does so using a model that can

be discriminatively trained end-to-end.

In this work, we present results of video description on two

large datasets: YouTube2Text and the subset of MSR-VTT

that was still available at the time of the experiments. We

show that combining our new multimodal attention model

with temporal attention outperforms state-of-the-art meth-

ods, which are based on temporal attention alone.

2. Related Work

Sentence generation using an encoder-decoder architecture

was originally used for neural machine translation (NMT),

in which sentences in a source language are converted into

sentences in a target language [30, 5]. In this paradigm,

the encoder takes an input sentence in the source language

and maps it to a fixed-length feature vector in an embed-

ding space. The decoder uses this feature vector as input

to generate a sentence in the target language. However, the

fixed length of the feature vector limited performance, par-

ticularly on long input sentences, so [1] proposed to encode

the input sentence as a sequence of feature vectors. They

employed a recurrent neural network (RNN)-based soft at-

tention model that enables the decoder to pay attention to

features derived from specific words of the input sentence

when generating each output word. The encoder-decoder

based sequence to sequence framework has been applied not

only to machine translation but also to other application ar-

eas including speech recognition [2], image captioning [30],

and dialog management [19].

In image captioning, the input is a single image, and the

output is a natural-language description. Recent work on

RNN-based image captioning includes [20, 30]. To im-

prove performance, [33] added an attention mechanism, to

enable focusing on specific parts of the image when gener-

ating each word of the description. Encoder-decoder net-

works have also been applied to the task of video descrip-

tion [29]. In this task, the inputs to the encoder network

are video information features that may include static im-

age features extracted using convolutional neural networks

(CNNs), temporal dynamics of videos extracted using spa-

tiotemporal 3D CNNs [27], dense trajectories [31], optical

flow, and audio features [15]. From the encoder outputs,

the decoder network generates word sequences using recur-

rent neural networks (RNNs) with long short-term mem-

ory (LSTM) units [11] or gated recurrent units (GRUs) [4].

Such systems can be trained end-to-end using videos la-

beled with text descriptions.

One inherent problem in video description is that the se-

quence of video features and the sequence of words in the

description are not synchronized. In fact, the order in which

objects and actions appear over time in the video may be

different from their order in the sentence. When choosing

the right words to describe something, the features that di-

rectly correspond to that object or action are most relevant,

and other features may be a source of clutter. It may be

possible for an LSTM to learn to selectively encode dif-

ferent objects into its latent features and remember them

until they are retrieved. However, attention mechanisms

have been used to boost the network’s ability to retrieve

the relevant features from the corresponding parts of the in-

put, in applications such as machine translation [1], speech

recognition [2], image captioning [33], and dialog manage-

ment [14]. In recent work, these attention mechanisms have

been applied to video description [34, 35]. Whereas in im-

age captioning the attention is spatial (attending to specific

regions of the image), in video description the attention may

be temporal (attending to specific time frames of the video)

in addition to (or instead of) spatial.

We first described the proposed method in an arXiv pa-

per [12]. In this paper, we expand upon [4] by testing on an

additional dataset and precisely analyzing the significance

of the improvements due to our method. The approach we

describe here is not limited to the modalities of video and

audio. It could also be applied to other types of sources,

such as text for machine translation and summarization, or

to information from multiple sensors to predict user status

(e.g., driver confusion) [13]. In this work, we tested our at-

tentional multimodal fusion using MSR-VTT and precisely

analyzed significance of improvements.

2.1. Encoder­Decoder­Based Sentence Generator

One basic approach to video description is based on

sequence-to-sequence learning. The input sequence (image

sequence) is first encoded to a fixed-dimensional semantic

vector. Then the output sequence (word sequence) is gener-

ated from the semantic vector. In this case, both the encoder

and the decoder (sentence generator) are usually modeled as

Long Short-Term Memory (LSTM) networks.

Given a sequence of images, X = x1, x2, . . . , xL, each im-

age is first fed to a feature extractor, which can be a pre-

trained CNN for an image or video classification task such

4194



as GoogLeNet [18], VGG-16 [24], or C3D [27]. The se-

quence of image features, X ′ = x′

1, x
′

2, . . . , x
′

L, is obtained

by extracting the activation vector of a fully-connected layer

of the CNN for each input image.1 The sequence of feature

vectors is then fed to the LSTM encoder, and the hidden

state of the LSTM is given by

ht = LSTM(ht−1, x
′

t;λE), (1)

where LSTM(h, x;λ) represents an LSTM function of hid-

den and input vectors h and x, which is computed with pa-

rameters λ. In Eq. (1), λE denotes the encoder’s parame-

ters.

The decoder predicts the next word iteratively beginning

with the start-of-sentence token, <sos>, until it predicts the

end-of-sentence token, <eos>. Given decoder state si−1,

the decoder network λD infers the next word probability

distribution as

P (y|si−1) = softmax
(

W (λD)
s si−1 + b(λD)

s

)

, (2)

and generates the word yi that has the highest probability

according to

yi = argmax
y∈V

P (y|si−1), (3)

where V denotes the vocabulary. The decoder state is up-

dated using the LSTM network of the decoder as

si = LSTM(si−1, y
′

i;λD), (4)

where y′i is a word-embedding vector of ym, and the initial

state s0 is obtained from the final encoder state hL and y′0 =
Embed(<sos>).
In the training phase, Y = y1, . . . , yM is given as the ref-

erence. However, in the test phase, the best word sequence

needs to be found based on

Ŷ = argmax
Y ∈V ∗

P (Y |X)

= argmax
y1,...,yM∈V ∗

P (y1|s0)P (y2|s1) · · ·

P (yM |sM−1)P (<eos>|sM ). (5)

Accordingly, we use a beam search in the test phase to keep

multiple states and hypotheses with the highest cumulative

probabilities at each mth step, and select the best hypothesis

from those having reached the end-of-sentence token.

2.2. Attention­Based Sentence Generator

Another approach to video description is an attention-based

sequence generator [6], which enables the network to em-

phasize features from specific times or spatial regions de-

pending on the current context, enabling the next word to be

1In the case of C3D, multiple images are fed to the network at once to

capture dynamic features in the video.

Output word sequence 

LSTM decoder 

Input image sequence 

Feature extractor 
 (CNN) 

Attention mechanism 

x1 x2 x4 x5 x3 

y1 y2 

s1 s2 

α2,5 
α1,1 

s0 

x’1 x’2 x’3 x’4 x’5 

<eos> … <sos> 

c1 c2 

Figure 1. An encoder-decoder based sentence generator with tem-

poral attention mechanism.

predicted more accurately. Compared to the basic approach

described in Section 2.1, the attention-based generator can

exploit input features selectively according to the input and

output contexts. The efficacy of attention models has been

shown in many tasks such as machine translation [1].

Figure 1 shows an example of the attention-based sentence

generator from video, which has a temporal attention mech-

anism over the input image sequence.

The input sequence of feature vectors is obtained using one

or more feature extractors. Generally, attention-based gen-

erators employ an encoder based on a bidirectional LSTM

(BLSTM) or Gated Recurrent Units (GRU) to further con-

vert the feature vector sequence so that each vector con-

tains its contextual information. In video description tasks,

however, CNN-based features are often used directly, or one

more feed-forward layer is added to reduce the dimension-

ality.

If we use an BLSTM encoder following the feature extrac-

tion, then the activation vectors (i.e., encoder states) are ob-

tained as

ht =

[

h
(f)
t

h
(b)
t

]

, (6)

where h
(f)
t and h

(b)
t are the forward and backward hidden

activation vectors:

h
(f)
t = LSTM(h

(f)
t−1, x

′

t;λ
(f)
E ) (7)

h
(b)
t = LSTM(h

(b)
t+1, x

′

t;λ
(b)
E ). (8)

If we use a feed-forward layer, then the activation vector is

calculated as

ht = tanh(Wpx
′

t + bp), (9)

where Wp is a weight matrix and bp is a bias vector. If we

use the CNN features directly, then we assume ht = x′

t.

The attention mechanism is realized by using attention

weights to the hidden activation vectors throughout the in-
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put sequence. These weights enable the network to empha-

size features from those time steps that are most important

for predicting the next output word.

Let αi,t be an attention weight between the ith output word

and the tth input feature vector. For the ith output, the vec-

tor representing the relevant content of the input sequence

is obtained as a weighted sum of hidden unit activation vec-

tors:

ci =

L
∑

t=1

αi,tht. (10)

The decoder network is an Attention-based Recurrent Se-

quence Generator (ARSG) [1][6] that generates an output

label sequence with content vectors ci. The network also

has an LSTM decoder network, where the decoder state can

be updated in the same way as Equation (4).

Then, the output label probability is computed as

P (y|si−1, ci) = softmax
(

W (λD)
s si−1 +W (λD)

c ci + b(λD)
s

)

,

(11)

and word yi is generated according to

yi = argmax
y∈V

P (y|si−1, ci). (12)

In contrast to Equations (2) and (3) of the basic encoder-

decoder, the probability distribution is conditioned on the

content vector ci, which emphasizes specific features that

are most relant to predicting each subsequent word. One

more feed-forward layer can be inserted before the softmax

layer. In this case, the probabilities are computed as fol-

lows:

gi = tanh
(

W (λD)
s si−1 +W (λD)

c ci + b(λD)
s

)

, (13)

and

P (y|si−1, ci) = softmax(W (λD)
g gi + b(λD)

g ). (14)

The attention weights are computed in the same manner as

in [1]:

αi,t =
exp(ei,t)

∑L

τ=1 exp(ei,τ )
(15)

and

ei,t = w⊺

A tanh(WAsi−1 + VAht + bA), (16)

where WA and VA are matrices, wA and bA are vectors, and

ei,t is a scalar.

3. Attention-Based Multimodal Fusion

We propose an attention model to handle fusion of multi-

ple modalities, where each modality has its own sequence

of feature vectors. For video description, multimodal in-

puts such as image features, motion features, and audio fea-

tures are available. Furthermore, combinations of multiple

Multimodal 
Naïve fusion 

x11 x12 x1L 

yi 

gi 

si-1 si 

x’11 x’12 

yi-1 
yi+1 

x21 x22 x2L’ 

x’21 x’22 

di 

x’1L x’2L’ 

α1,i,1 
α1,i,L 

α1,i,2 

α2,i,1 α2,i,L’ 
α2,i,2 

c1,i 

WC1 WC2 

c2,i 

Figure 2. Naı̈ve Fusion of multimodal features.

x11 x12 x1L 

yi 

gi 

si-1 si 

x’11 x’12 

α1,i,1 
α1,i,L 

α1,i,2 

yi-1 yi+1 

x21 x22 x2L’ 

x’21 x’22 

α2,i,1 α2,i,L’ 

α2,i,2 

β1,i β2,i 

d1,i d2,i 

x’1L x’2L’ 

Attentional 
multimodal fusion 

c1,i 

WC1 WC2 

c2,i 

Figure 3. Our Attentional Fusion of multimodal features.

features from different feature extraction methods are often

effective to improve the accuracy of descriptions.

In [35], content vectors from VGG-16 (image features) and

C3D (spatiotemporal motion features) are combined into

one vector, which is used to predict the next word. This

is performed in the fusion layer, in which the following ac-

tivation vector is computed instead of Eq. (13):

gi = tanh
(

W (λD)
s si−1 + di + b(λD)

s

)

, (17)

where

di = W
(λD)
c1 c1,i +W

(λD)
c2 c2,i, (18)

and c1,i and c2,i are two feature vectors obtained using

different feature extractors and/or different input modal-

ities. Figure 2 illustrates this approach, which we call

Naı̈ve Fusion, in which multimodal feature vectors are com-

bined using one projection matrix Wc1 for the first modal-

ity (input sequence x11, . . . , x1L), and a different projec-

tion matrix Wc2 for the second modality (input sequence

x′

21, . . . , x2L′ ).

However, these feature vectors are combined in the sen-

tence generation step with projection matrices Wc1 and
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Wc2, which do not depend on time. Consequently, for each

modality (or each feature type), all of the feature vectors

from that modality are given the same weight during fusion,

independent of the decoder state. Note that Naı̈ve Fusion is

a type of late fusion, because the inherent difference in sam-

pling rate of the three feature streams precludes early fusion

(concatenation of input features). The Naı̈ve Fusion archi-

tecture lacks the ability to exploit multiple types of features

effectively, because it does not allow the relative weights of

each modality (of each feature type) to change based on the

context of each word in the sentence.

Our proposed method extends the attention mechanism to

multimodal fusion. We call it attentional fusion, or mul-

timodal attention. In our model, based on the current de-

coder state, the decoder network can selectively attend to

specific modalities of input (or specific feature types) to

predict the next word. Let K be the number of modalities,

i.e., the number of sequences of input feature vectors. Our

attention-based feature fusion is performed using

gi = tanh

(

W (λD)
s si−1 +

K
∑

k=1

βk,idk,i + b(λD)
s

)

, (19)

where

dk,i = W
(λD)
ck ck,i + b

(λD)
ck . (20)

The multimodal attention weights βk,i are obtained in a

similar way to the temporal attention mechanism:

βk,i =
exp(vk,i)

∑K

κ=1 exp(vκ,i)
, (21)

where

vk,i = w⊺

B tanh(WBsi−1 + VBkck,i + bBk), (22)

where WB and VBk are matrices, wB and bBk are vectors,

and vk,i is a scalar.

Figure 3 shows the architecture of our sentence generator,

including the multimodal attention mechanism. Unlike in

the Naı̈ve multimodal fusion method shown in Figure 2, in

our method (shown in Figure 3) the multimodal attention

weights can change according to the decoder state and the

feature vectors. This enables the decoder network to attend

to a different set of features and/or modalities when predict-

ing each subsequent word in the description.

4. Experiments

4.1. Datasets

We evaluated our proposed feature fusion using the

YouTube2Text [9] and MSR-VTT [32] video datasets.

YouTube2Text has 1,970 video clips with multiple natural

language descriptions. There are 80,839 sentences in total,

with about 41 annotated sentences per clip. Each sentence

on average contains about 8 words. The words contained in

all the sentences constitute a vocabulary of 13,010 unique

lexical entries. The dataset is open-domain and covers a

wide range of topics including sports, animals, and music.

Following [38], we split the dataset into a training set of

1,200 video clips, a validation set of 100 clips, and a test set

consisting of the remaining 670 clips.

MSR-VTT [32] consists of 10,000 web video clips with

41.2 hours and 200,000 clip-sentence pairs in total, cover-

ing a comprehensive list of 20 categories and a wide variety

of video content. Each clip was annotated with about 20

natural sentences. The dataset is split into training, valida-

tion, and testing sets of 65%, 5%, 30%, corresponding to

6,513, 497, and 2,990 clips respectively. However, because

the video clips are hosted on YouTube, some of the MSR-

VTT videos have been removed due to content or copy-

right issues. At the time we downloaded the videos (Febru-

ary 2017), approximately 12% were unavailable. Thus, we

trained and tested our approach using just the subset of

the MSR-VTT dataset that were available, which consist of

5,763, 419, and 2,616 clips for train, validation, and test

respectively.

4.2. Video Processing

The image data are extracted from each video clip at

24 frames per second and rescaled to 224×224-pixel im-

ages. For extracting image features, we use a VGG-16

network [24] that was pretrained on the ImageNet dataset

[17]. The hidden activation vectors of fully connected layer

fc7 are used for the image features, which produces a se-

quence of 4096-dimensional feature vectors. To model

motion and short-term spatiotemporal activity, we use the

pretrained C3D [27] (which was trained on the Sports-1M

dataset [16]). The C3D network reads sequential frames

in the video and outputs a fixed-length feature vector ev-

ery 16 frames. We extracted activation vectors from fully-

connected layer fc6-1.

4.3. Audio Processing

Unlike previous methods that use the YouTube2Text dataset

[34, 22, 35], we additionally incorporate audio features.

Since the packaged YouTube2Text dataset does not include

the audio from the YouTube videos, we extracted the audio

data via the original video URLs. Although some of the

videos were no longer available on YouTube, we were able

to collect audio data for 1,649 video clips, which is 84%

of the dataset. The 44 kHz-sampled audio data are down-

sampled to 16 kHz, and mel-frequency cepstral coefficients

(MFCCs) are extracted from each 50 ms time window with

25 ms shift. The sequence of 13-dimensional MFCC fea-

tures are then concatenated into one vector for every group

of 20 consecutive frames, resulting in a sequence of 260-

dimensional vectors. The MFCC features are normalized so
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Table 1. Evaluation results on the YouTube2Text test set. The top three rows of the upper table present results of previous state-of-the-art

methods for YouTube2Text, which use only only visual features and only temporal attention. The rest of the tables show results from our

own implementations. Naı̈ve Fusion indicates the conventional approach using temporal attention only (see Figure 2). Attentional Fusion

is our proposed Modal-attention approach (see Figure 3). The symbol (V) denotes methods that only use the visual modalities (image

features and spatiotemporal features). The symbol (AV) denotes our methods that use all three modalities (audio features as well as the two

types of video features. Our baseline method “Naı̈ve Fusion (V)” is very similar to the approach of [35]. In the second table, we evaluate

our methods on the subset of the YouTube2Text videos whose audio is not obscured by overdubbed music.

YouTube2Text Full Dataset

Modalities (feature types) Evaluation metric

Method Attention Image Spatiotemporal Audio BLEU4 METEOR CIDEr

LSTM-E [22] VGG-16 C3D 0.453 0.310 –

TA [34] Temporal GoogLeNet 3D CNN 0.419 0.296 0.517

h-RNN [35] Temporal VGG-16 C3D 0.499 0.326 0.658

Naı̈ve Fusion (V) Temporal VGG-16 C3D 0.515 0.313 0.659

Naı̈ve Fusion (AV) Temporal VGG-16 C3D MFCC 0.506 0.309 0.637

Attentional Fusion (V) Temporal & Multimodal VGG-16 C3D 0.524 0.320 0.688

Attentional Fusion (AV) Temporal & Multimodal VGG-16 C3D MFCC 0.539 0.322 0.674

YouTube2Text Subset without Overdubbed Music

Naı̈ve Fusion (V) Temporal VGG-16 C3D 0.527 0.333 0.695

Naı̈ve Fusion (AV) Temporal VGG-16 C3D MFCC 0.534 0.331 0.695

Attentional Fusion (V) Temporal & Multimodal VGG-16 C3D 0.549 0.342 0.704

Attentional Fusion (AV) Temporal & Multimodal VGG-16 C3D MFCC 0.568 0.343 0.724

Table 2. Evaluation results on MSR-VTT Subset. Approximately 12% of the MSR-VTT videos have been removed from YouTube, so we

train and test on the remaining Subset of MSR-VTT videos that we were able to download. We cannot directly compare with the results

in [32], because they used the full MSR-VTT dataset. Our Naı̈ve Fusion (V) baseline method is extremely similar to the method of [32],

so it may be viewed as our implementation of their method using the available subset of the MSR-VTT dataset.

MSR-VTT Subset

Modalities (feature types) Evaluation metric

Fusion method Attention Image Spatiotemporal Audio BLEU4 METEOR CIDEr

Naı̈ve Fusion (V) Temporal VGG-16 C3D 0.379 0.242 0.379

Naı̈ve Fusion (AV) Temporal VGG-16 C3D MFCC 0.376 0.240 0.332

Attentional Fusion (V) Temporal & Multimodal VGG-16 C3D 0.394 0.257 0.404

Attentional Fusion (AV) Temporal & Multimodal VGG-16 C3D MFCC 0.397 0.255 0.400

that the mean and variance vectors are 0 and 1 in the train-

ing set. The validation and test sets are also adjusted using

the original mean and variance vectors from the training set.

Unlike for the image features, we apply a BLSTM encoder

network for MFCC features, which is trained jointly with

the decoder network. If audio data are not available for a

video clip, then we feed in a sequence of dummy MFCC

features, which is simply a sequence of zero vectors.

4.4. Experimental Setup

The similarity between ground truth (human-generated)

and automatic video description results is evaluated using

two metrics that were motivated by machine translation,

BLEU [23] and METEOR [7], as well as a newly proposed

metric for image description, CIDEr [28]. We used the pub-

licly available evaluation script prepared for the image cap-

tioning challenge [3]. Each video in YouTube2Text has

multiple “ground-truth” descriptions, but some “ground-

truth” answers are incorrect. Since BLEU and METEOR

scores for a video do not consider frequency of words in

the ground truth, they can be strongly affected by one in-

correct ground-truth description. METEOR is even more

susceptible, since it also accepts paraphrases of incorrect

ground-truth words. In contrast, CIDEr is a voting-based

metric that is robust to errors in ground truth.

The caption generation model, i.e. the decoder network,

is trained to minimize the cross entropy criterion using the

training set. Image features are fed to the decoder network

through one projection layer of 512 units, while audio fea-

tures, i.e. MFCCs, are fed to the BLSTM encoder followed

by the decoder network. The encoder network has one pro-

jection layer of 512 units and bidirectional LSTM layers of

512 cells. The decoder network has one LSTM layer with

512 cells. Each word is embedded to a 256-dimensional

vector when it is fed to the LSTM layer. We compared the

AdaDelta optimizer [36] and RMSprop [25] to update the
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Table 3. Sample video description results on YouTube2Text. The first row of descriptions were generated by a unimodal system with only

image features (VGG-16) and temporal attention. The other model names are the same as in Table 1.

Sample Image

Unimodal (VGG-16) a monkey is running a man is slicing a potato a woman is riding a horse a man is singing

Naı̈ve Fusion (V) a dog is playing a woman is cutting an onion a girl is riding a horse a man is singing

Naı̈ve Fusion (AV) a monkey is running a woman is peeling an onion a girl is riding a horse a man is playing a guitar

Attentional Fusion (V) a monkey is pulling a dogs tail a man is slicing a potato a man is riding a horse a man is playing a guitar

Attentional Fusion (AV) a monkey is playing a woman is peeling an onion a girl is riding a horse a man is playing a violin

Discussion

Attentional Fusion (V) (i.e.,

Multimodal attention on vi-

sual features) worked best.

Our inclusion of audio fea-

tures enabled the “peeling”

action to be identified.

Attentional fusion is best.

Audio hurts performance

due to overdubbed music.

Both audio features and

multimodal attention are

needed to identify ”violin”.

parameters, which is widely used for optimizing attention

models. In this video description task, we used L2 regular-

ization for all experimental conditions and compared RM-

Sprop and AdaDelta. RMSprop outperformed AdadDelta

for all experimental conditions, so we reporte the results

using RMSprop in Tables 1 and 2. The LSTM and attention

models were implemented using Chainer [26].

5. Results and Discussion

Tables 1 and 2 show the evaluation results on the

YouTube2Text and MSR-VTT Subset datasets. On each

dataset, we compare the performance of our multimodal at-

tention model (Attentional Fusion), which integrates tem-

poral and multimodal attention mechanisms, to a naı̈ve ad-

ditive multimodal fusion (Naı̈ve Fusion). We test versions

of our system that use only visual (image and spatiotempo-

ral) features “(V)”, and versions that additionally use au-

dio features “(AV)”. Our baseline system is the “Naı̈ve

Fusion (V)” method that uses only temporal attention and

only visual features (no audio). This baseline is extremely

similar to the methods used in [35] and [32], which are the

current state-of-the-art methods on the two datasets.

The results demonstrate the effectiveness of our proposed

model. In Table 1, the proposed methods outperform the

previously published results in all but one evaluation metric

of one previous method. In both Tables 1 and 2, our pro-

posed methods outperform the “Naı̈ve Fusion (V)” base-

line, which is our implementation of the state-of-the-art

methods [35] and [32]. Furthermore, our proposed Atten-

tional Fusion model outperforms the corresponding Naı̈ve

Fusion model, both with audio features (AV) and without

audio features (V), on both datasets. These results clearly

demonstrate the benefits of our proposed multimodal atten-

tion model. Table 3 shows generated descriptions for four

example videos from the YouTube2Text data set. These and

more examples, including the original videos with sound,

are in the supplementary material.

5.1. Significance of Improvements

To understand performance improvements via the metrics,

we measured the relative improvement in performance, de-

fined as P =
(

Proposed − Baseline
)

/Baseline, where

Proposed is the score for Attentional Fusion (AV), and

Baseline refers to Naı̈ve Fusion (AV). The relative improve-

ments P for all metrics on the YouTube2Text Full Dataset

and MSR-VTT Subset are shown in part (A) of Table 4. The

use of relative scores highlights the significance of the im-

provements due to Attentional Fusion. In addition, to estab-

lish an upper bound related to human performance, we eval-

uated inter-rater reliability of the human captions in leave-

one-out fashion: we compared each reference sentence for

each video to the remaining set of reference sentences for

that video, using all three metrics. The mean of these “Hu-

man” scores are shown in part (B) of Table 4. Our scores are

quite close to this inter-rater reliability upper bound. Fur-

thermore, our model scores significantly close the gap be-

tween the baseline and this ”Human” upper bound. We can

quantify the gap in terms of the relative reduction, R, de-

fined as R = (Proposed − Baseline)/(Human − Baseline).
The relative gap reduction, R, for all metrics is shown in

part (C) of Table 4. These scores indicate that our model

makes significant progress from the baseline toward human-

level performance. Note that for BLEU4 on the MSR-VTT

Subset, both the baseline and our system are “super-human”

by this standard, so there is no gap to close. Nevertheless,

our model still outperforms the “Naı̈ve Fusion” baseline.

5.2. Impact of Audio Features

In some experiments, including audio features (AV) im-

proves performance over the corresponding visual-only (V)

case, but in other cases it does not. Including audio fea-

tures can degrade performance for some video clips because

some YouTube videos include unrelated noise that was not

in the original scene, such as overdubbed music that was

added to the video in post-production. Attentional Fusion

4199



Table 4. Significance of Improvement by Attentional Fusion (AV)

in terms of (A) Relative Improvement, P , compared to the Naı̈ve

Fusion (AV) baseline, (B) Mean of the “Human” Scores, and

(C) Relative Gap Reduction, R, compared to the “Human” Scores.

Data set BLEU4 METEOR CIDEr

(A) Relative Improvement in Performance, P

YouTube2Text Full Dataset 6.5% 4.2% 5.8%

MSR-VTT Subset 5.6% 6.3% 20.5%

(B) Mean of the “Human” Scores

YouTube2Text Full Dataset 0.56 0.42 1.19

MSR-VTT Subset 0.34 0.30 0.50

(C) Relative Gap Reduction to Human, R

YouTube2Text Full Dataset 63% 11% 7%

MSR-VTT Subset NA 27% 40%

mitigated the degradation by the audio feature. On the other

hand, the audio feature contributed to the performance for

both Naı̈ve and Attentional fusion models.

We found the negative impact of audio features on some

evaluation metrics—i.e., cases in which (AV) methods per-

form worse than their (V) counterparts in Tables 1 and 2.

We hypothesized that this degradation due to audio fea-

tures was due to overdubbed sound that was not present in

the original scene. To test this hypothesis, we performed

an experiment in which we manually removed all of the

YouTube2Text videos in which overdubbed music obscured

the sound that was captured during filming. The subsec-

tion of Table 1 titled “YouTube2Text Subset without Over-

dubbed Music” shows the results for the remaining subset of

YouTube2Text (380 videos). The results show that whereas

the Naı̈ve fusion baseline did not make good use of the au-

dio features in these videos, our proposed Attentional Fu-

sion method does, yielding a significant score improvement

over the baseline for all metrics.

5.3. Impact of Multimodal Attention

A particular advantage of the proposed multimodal atten-

tion is that we can easily inspect the attention distribu-

tions over modalities produced by the network for each

word. Table 5 shows the average attention weights used

for each modality when generating various words, sorted

in descending order by weight. The image features, which

were trained for object classification (VGG-16 ImageNet),

are strongly selected for the words that describe generic ob-

ject types. The motion features (C3D), which were trained

to identify different sports scenes, appear to be selected

when describing objects and scenes that tend to be in mo-

tion, such as sports and vehicles. The audio features, which

were not pretrained (MFCC), overall have smaller weights

and were less strongly selected. Nevertheless, the words

with the strongest audio weights appear to be action verbs

associated with sound, such as talking, singing, and driving.

Thus the overall pattern of weights is consistent with our hy-

pothesis about the role of attention to different modalities in

selecting different types of words.

Table 5. A list of words with strong average attention weights for

each modality, obtained on the the MSR-VTT Subset using our

“Attentional Fusion (AV)” multimodal attention method.

Image Motion Audio

(VGG-16) (C3D) (MFCC)

bowl 0.9701 track 0.9887 talking 0.3435

pan 0.9426 motorcycle 0.9564 shown 0.3072

recipe 0.9209 baseball 0.9378 playing 0.2599

piece 0.9136 football 0.9275 singing 0.2465

paper 0.9098 horse 0.9212 driving 0.2284

kitchen 0.8827 soccer 0.9099 working 0.2004

toy 0.8758 basketball 0.9096 walking 0.1999

folding 0.8423 tennis 0.8958 riding 0.1900

makeup 0.8326 player 0.8720 showing 0.1836

guitar 0.7723 two 0.8345 dancing 0.1832

applying 0.7691 video 0.8237 wrestling 0.1735

food 0.7547 men 0.8198 running 0.1689

making 0.7470 running 0.7680 applying 0.1664

cooking 0.7464 wrestling 0.7462 cooking 0.1646

working 0.6837 people 0.7374 making 0.1636

showing 0.6229 stroller 0.7314 characters 0.1245

computer 0.5837 game 0.7293 folding 0.1079

band 0.5791 group 0.7205 program 0.0886

cartoon 0.5728 riding 0.7133 character 0.0747

character 0.5298 girl 0.6779 something 0.0696

cat 0.5287 man 0.6761 makeup 0.0590

characters 0.4826 walking 0.6759 game 0.0525

car 0.4757 dancing 0.6703 player 0.0518

song 0.4522 stage 0.6346 tennis 0.0367

person 0.4274 table 0.6315 food 0.0313

something 0.4179 driving 0.6127 two 0.0141

woman 0.4070 dog 0.6114 men 0.0119

program 0.4025 woman 0.5905 people 0.0118

dog 0.3876 person 0.5702 stage 0.0110

table 0.3651 song 0.5463 cartoon 0.0091

6. Conclusion

We proposed a new modality-dependent attention mecha-

nism, which we call multimodal attention, for video de-

scription based on encoder-decoder sentence generation us-

ing recurrent neural networks (RNNs). In this approach,

the attention model selectively attends not just to specific

times, but to specific modalities of input such as image fea-

tures, spatiotemporal motion features, and audio features.

In addition, Attentional Fusion enables us to analyze the at-

tention weights for each word to examine how each modal-

ity contributes to each word. We evaluated our method on

the YouTube2Text and MSR-VTT datasets, achieving re-

sults that are competitive with current state-of-the-art meth-

ods that employ temporal attention models. More impor-

tantly, we demonstrate that our model incorporating multi-

modal attention as well as temporal attention outperforms

the state-of-the-art baseline models that use temporal atten-

tion alone. The attention mechanism also provides a means

for introspection in the model, in the sense that the weights

across modalities that are used in generating each word can

be used to explore what features are useful in various con-

texts. Examination of these attention weights confirms that

the focus of attention on the appropriate modality is well

aligned to the semantics of the words.
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danau, F. Bougares, H. Schwenk, and Y. Bengio.

Learning phrase representations using RNN encoder-

decoder for statistical machine translation. In Pro-

ceedings of the 2014 Conference on Empirical Meth-

ods in Natural Language Processing, EMNLP 2014,

October 25-29, 2014, Doha, Qatar, A meeting of

SIGDAT, a Special Interest Group of the ACL, pages

1724–1734, 2014.

[6] J. K. Chorowski, D. Bahdanau, D. Serdyuk, K. Cho,

and Y. Bengio. Attention-based models for speech

recognition. In C. Cortes, N. D. Lawrence, D. D.

Lee, M. Sugiyama, and R. Garnett, editors, Advances

in Neural Information Processing Systems 28, pages

577–585. Curran Associates, Inc., 2015.

[7] M. J. Denkowski and A. Lavie. Meteor universal:

Language specific translation evaluation for any tar-

get language. In Proceedings of the Ninth Workshop

on Statistical Machine Translation, WMT@ACL 2014,

June 26-27, 2014, Baltimore, Maryland, USA, pages

376–380, 2014.

[8] G. Gravier, S. Axelrod, G. Potamianos, and C. Neti.

Maximum entropy and mce based hmm stream weight

estimation for audio-visual asr. In Acoustics, Speech,

and Signal Processing (ICASSP), 2002 IEEE Interna-

tional Conference on, volume 1, pages I–853. IEEE,

2002.

[9] S. Guadarrama, N. Krishnamoorthy, G. Malkar-

nenkar, S. Venugopalan, R. Mooney, T. Darrell, and

K. Saenko. Youtube2text: Recognizing and describ-

ing arbitrary activities using semantic hierarchies and

zero-shot recognition. In Proceedings of the IEEE

International Conference on Computer Vision, pages

2712–2719, 2013.

[10] M. E. Hennecke, D. G. Stork, and K. V. Prasad.

Visionary speech: Looking ahead to practical

speechreading systems. In Speechreading by Humans

and Machines, pages 331–349. Springer, 1996.

[11] S. Hochreiter and J. Schmidhuber. Long short-term

memory. Neural Computation, 9(8):1735–1780, 1997.

[12] C. Hori, T. Hori, T. Lee, K. Sumi, J. R. Hershey, and

T. K. Marks. Attention-based multimodal fusion for

video description. CoRR, abs/1701.03126, 2017.

[13] C. Hori, S. Watanabe, T. Hori, B. A. Harsham, J. R.

Hershey, Y. Koji, Y. Fujii, and Y. Furumoto. Driver

confusion status detection using recurrent neural net-

works. In IEEE International Conference on Multi-

media and Expo, ICME 2016, Seattle, WA, USA, July

11-15, 2016, pages 1–6, 2016.

[14] T. Hori, H. Wang, C. Hori, S. Watanabe, B. Harsham,

J. L. Roux, J. Hershey, Y. Koji, Y. Jing, Z. Zhu, and

T. Aikawa. Dialog state tracking with attention-based

sequence-to-sequence learning. In 2016 IEEE Spo-

ken Language Technology Workshop, SLT 2016, San

Diego, CA, USA, December 13-16, 2016.

[15] Q. Jin, J. Liang, and X. Lin. Generating Natural Video

Descriptions via Multimodal Processing. In Inter-

speech, 2016.

[16] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Suk-

thankar, and L. Fei-Fei. Large-scale video classifica-

tion with convolutional neural networks. In Proceed-

ings of the IEEE conference on Computer Vision and

Pattern Recognition, pages 1725–1732, 2014.

[17] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Im-

agenet classification with deep convolutional neural

networks. In F. Pereira, C. J. C. Burges, L. Bottou,

and K. Q. Weinberger, editors, Advances in Neural In-

formation Processing Systems 25, pages 1097–1105.

Curran Associates, Inc., 2012.

[18] M. Lin, Q. Chen, and S. Yan. Network in network.

CoRR, abs/1312.4400, 2013.

[19] R. Lowe, N. Pow, I. Serban, and J. Pineau. The ubuntu

dialogue corpus: A large dataset for research in un-

structured multi-turn dialogue systems. In Proceed-

ings of the SIGDIAL 2015 Conference, The 16th An-

nual Meeting of the Special Interest Group on Dis-

course and Dialogue, 2-4 September 2015, Prague,

Czech Republic, pages 285–294, 2015.

[20] J. Mao, W. Xu, Y. Yang, J. Wang, and A. L. Yuille.

Deep captioning with multimodal recurrent neural net-

works (m-rnn). CoRR, abs/1412.6632, 2014.

[21] J. R. Movellan and P. Mineiro. Robust sensor fusion:

Analysis and application to audio visual speech recog-

nition. Machine Learning, 32(2):85–100, 1998.

[22] Y. Pan, T. Mei, T. Yao, H. Li, and Y. Rui. Jointly

modeling embedding and translation to bridge video

and language. CoRR, abs/1505.01861, 2015.

4201



[23] K. Papineni, S. Roukos, T. Ward, and W. Zhu. Bleu:

a method for automatic evaluation of machine transla-

tion. In Proceedings of the 40th Annual Meeting of the

Association for Computational Linguistics, July 6-12,

2002, Philadelphia, PA, USA., pages 311–318, 2002.

[24] K. Simonyan and A. Zisserman. Very deep convo-

lutional networks for large-scale image recognition.

CoRR, abs/1409.1556, 2014.

[25] T. Tieleman and G. Hinton. Lecture 6.5—RmsProp:

Divide the gradient by a running average of its recent

magnitude. COURSERA: Neural Networks for Ma-

chine Learning, 2012.

[26] S. Tokui, K. Oono, S. Hido, and J. Clayton. Chainer:

a next-generation open source framework for deep

learning. In Proceedings of Workshop on Machine

Learning Systems (LearningSys) in The Twenty-ninth

Annual Conference on Neural Information Processing

Systems (NIPS), 2015.

[27] D. Tran, L. D. Bourdev, R. Fergus, L. Torresani, and

M. Paluri. Learning spatiotemporal features with 3d

convolutional networks. In 2015 IEEE International

Conference on Computer Vision, ICCV 2015, Santi-

ago, Chile, December 7-13, 2015, pages 4489–4497,

2015.

[28] R. Vedantam, C. L. Zitnick, and D. Parikh. Cider:

Consensus-based image description evaluation. In

IEEE Conference on Computer Vision and Pattern

Recognition, CVPR 2015, Boston, MA, USA, June 7-

12, 2015, pages 4566–4575, 2015.

[29] S. Venugopalan, H. Xu, J. Donahue, M. Rohrbach,

R. J. Mooney, and K. Saenko. Translating videos

to natural language using deep recurrent neural net-

works. In NAACL HLT 2015, The 2015 Conference

of the North American Chapter of the Association for

Computational Linguistics: Human Language Tech-

nologies, Denver, Colorado, USA, May 31 - June 5,

2015, pages 1494–1504, 2015.

[30] O. Vinyals, A. Toshev, S. Bengio, and D. Erhan. Show

and tell: A neural image caption generator. In IEEE

Conference on Computer Vision and Pattern Recogni-

tion, CVPR 2015, Boston, MA, USA, June 7-12, 2015,

pages 3156–3164, 2015.
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