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Abstract

In this paper, we propose a novel domain-specific data-

set named VegFru for fine-grained visual categorization

(FGVC). While the existing datasets for FGVC are mainly

focused on animal breeds or man-made objects with limit-

ed labelled data, VegFru is a larger dataset consisting of

vegetables and fruits which are closely associated with the

daily life of everyone. Aiming at domestic cooking and food

management, VegFru categorizes vegetables and fruits ac-

cording to their eating characteristics, and each image con-

tains at least one edible part of vegetables or fruits with the

same cooking usage. Particularly, all the images are la-

belled hierarchically. The current version covers vegetables

and fruits of 25 upper-level categories and 292 subordinate

classes. And it contains more than 160,000 images in total

and at least 200 images for each subordinate class. Accom-

panying the dataset, we also propose an effective framework

called HybridNet to exploit the label hierarchy for FGVC.

Specifically, multiple granularity features are first extracted

by dealing with the hierarchical labels separately. And then

they are fused through explicit operation, e.g., Compact Bi-

linear Pooling, to form a unified representation for the ul-

timate recognition. The experimental results on the novel

VegFru, the public FGVC-Aircraft and CUB-200-2011 in-

dicate that HybridNet achieves one of the top performance

on these datasets. The dataset and code are available at

https://github.com/ustc-vim/vegfru.

1. Introduction

In computer vision, fine-grained visual categorization

(FGVC) refers to categorizing objects into subordinate

classes, e.g., breeds of birds or dogs. Compared to gener-

ic classification [6], FGVC needs to handle more subtle

inter-class difference and larger intra-class variation of ob-

jects, thus requiring more discriminative and robust im-

age representation. Recent years have witnessed the res-

urrection of deep convolutional neural network (DCNN),

which holds state-of-the-art performance of various vi-

sual tasks [8, 25, 5]. The top-performing methods for

Figure 1. Sample images in VegFru. Top: vegetable images. Bot-

tom: fruit images. Best viewed electronically.

FGVC [9, 36, 37] are also built upon DCNN and the training

is data-hungry. However, the data with fine-grained labels

is usually insufficient, e.g., in CUB-200-2011 [28] there are

only about 30 training images for each class. And the ex-

isting datasets for FGVC are mainly focused on domains of

animal breeds, e.g., birds [28] and dogs [11], or man-made

objects, e.g., cars [13] and aircrafts [18]. As the saying

goes, hunger breeds discontent. In modern life, increasing

attention has been paid to how to go on a balanced and nu-

tritious diet. However, to the best of our knowledge, there is

still no public dataset specially designed for recognizing the

raw food materials and recommending appropriate recipes

for individuals.

In this work, aiming at domestic cooking and food

management, we introduce a novel domain-specific data-

set named VegFru, which consists of vegetables and fruits

that are closely associated with people’s diet. In VegFru,

vegetables and fruits are categorized according to their eat-

ing characteristics, e.g., different edible parts of a certain

vegetable or fruit, such as leaf and root, are classified in-

to separate subordinate classes. And the objects in each

image are the raw food materials, while the images that

contain cooked food whose raw materials are indistinguish-

able are filtered out. Currently, the dataset covers vegeta-

bles and fruits of 25 upper-level categories and 292 subor-

dinate classes1, which has taken in all species in common.

And it contains more than 160,000 images in total and at

1The upper-level category and subordinate class are respectively denot-

ed as sup-class and sub-class in the following.
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(a)           (b)          (c)            (d)

Figure 2. (a) chive (b) shallot (c) leek (d) green Chinese onion.

These images belong to different sub-classes but with subtle inter-

class difference.

(a)           (b)          (c)            (d)

Figure 3. (a) lotus root (b) lotus root (c) lotus root (d) lotus root.

These images belong to the same sub-classes but with large intra-

class variation.

least 200 images for each sub-class, which is much larger

than the previous fine-grained datasets [11, 28, 13, 18]. Par-

ticularly, besides the fine-grained annotation, the images in

VegFru are assigned hierarchical labels. And compared to

the vegetable and fruit subsets of ImageNet [6], the taxono-

my adopted by VegFru is more popular for domestic cook-

ing and food management, and the image collection strictly

serves this purpose, making each image in VegFru contain

at least one edible part of vegetables or fruits with the same

cooking usage. Some sample images are shown in Figure 1.

Our VegFru has the potential to be applied to the follow-

ing aspects, but is not limited to them:

* Fine-grained Visual Categorization (FGVC). The sub-

classes in VegFru all belong to vegetables or fruits, and

there exist subtle inter-class difference (Figure 2) and

large intra-class variation (Figure 3). So it can be con-

sidered as a fine-grained dataset of novel domain, with

more images available for each sub-class.

* Hybrid-granularity methods for FGVC. The label hi-

erarchy has proved to be helpful for image recogni-

tion [33, 30, 32, 37]. With all images labelled hier-

archically, VegFru is naturally well-suited for research

on exploiting the hybrid-granularity information, i.e.,

label hierarchy, for the challenging FGVC.

* Practical applications for domestic cooking and food

management. VegFru collects enormous vegetable and

fruit images of raw food materials and categorizes

them by the eating characteristics. It is closely related

to the daily life of everyone, and thus can promote the

applications of computer vision in the Smart Home [4],

e.g., personalized recipe recommendation.

To verify the application value of VegFru, we also pro-

pose an effective framework named HybridNet with the aim

of utilizing the hybrid-granularity information for FGVC,

which aspect VegFru is well-suited for due to the label hi-

erarchy. We take DCNN model to deal with the issue. In

practice, DCNN is trained in a top-down manner, i.e., the

training is driven by the loss generated at the highest lay-

er according to back propagation. When categorizing the

coarse-grained sup-classes, the network only needs to han-

dle generic attributes (e.g., bird outline), but subtle charac-

teristics (e.g., bird eye, foot) become necessary when dis-

tinguishing the fine-grained sub-classes. Our HybridNet

is exactly motivated by exploiting the complementarity be-

tween the coarse-grained and fine-grained features. Specif-

ically, two-stream DCNNs are first trained by feeding the

sup-class and sub-class labels separately, whose features

are then fused to form a unified representation for the ul-

timate recognition. As for the fusion method, we adopt

the advanced Compact Bilinear Pooling proposed by [7],

in which the model is currently the best for FGVC without

utilizing parts or external data. The experimental results on

VegFru, FGVC-Aircraft [18] and CUB-200-2011 [28] show

the robustness and superiority of HybridNet.

In summary, the main contributions of this work lie in

two folds: VegFru and HybridNet. Specifically, the contri-

bution of VegFru is highlighted in four aspects: novel do-

main, large scale, label hierarchy and application prospects.

And HybridNet outperforms the model in [7] and achieves

one of the top performance on the three datasets by exploit-

ing the label hierarchy.

The rest of the paper is organized as follows. In Sec-

tion 2, we introduce the construction of VegFru and perform

detailed comparison of VegFru with the vegetable and fruit

subsets of ImageNet and the existing fine-grained datasets.

HybridNet and its related works are presented in Section 3.

In Section 4, we set baselines on VegFru and experimentally

evaluate the proposed HybridNet. Finally, the whole work

is concluded in Section 5.

2. VegFru

2.1. Overview

We build the hierarchical structure of VegFru in accor-

dance with the official literatures [21, 38]. Specifically, the

vegetable hierarchy is constructed according to the Agricul-

tural Biological Taxonomy described in [21]2, which is the

most reasonable for the cooking purpose and arranges veg-

etables into root vegetable, cabbage, leafy vegetable, etc.

Consequently, we obtain 15 sup-classes vegetables with

200 sub-classes. For fruits, similarly, we adopt the Horti-

cultural Taxonomy in [38] to organize fruits into 10 sup-

2In fact, three are three taxonomies for vegetables in [21]. Besides

the Agricultural Biological Taxonomy, the Botanical Taxonomy divides

vegetables into two categories, namely monocotyledon and dicotyledon,

and the Edible Organ Taxonomy groups vegetables into five categories,

i.e., root, stem, leaf, flower, and fruit.
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Table 1. The structure of VegFru. #Sub-the number of sub-

classes included. Perennial∗-Perennial-miscellaneous vegetable.

Persimmons∗-Persimmons-jujubes fruit.

Sup-class #Sub Sup-class #Sub

Aquatic vegetable 13 Alliaceous 10

Brassia oleracea 9 Beans 15

Bud seedling 4 Cabbage 5

Green-leafy vegetable 31 Eggplant 7

Perennial∗ 13 Melon 14

Tuber vegetable 10 Mushroom 24

Wild vegetable 32 Mustard 2

Root vegetable

11 (beetroot, black salsify,

burdock root, carrot, celeriac,

green radish, kohlrabi, parsnip,

red radish, wasabi, white radish)

Total
15 sup-classes and

200 sub-classes for Veg200

Berry fruit 22 Drupe 13

Citrus fruit 13 Litchies 3

Persimmons∗ 6 Nut fruit 11

Pome 11 Other fruit 2

Collective fruit

5 (breadfruit, pineapple,

sweetsop, annona muricata,

artocarpus heterophyllus)

Cucurbites

6 (golden melon, muskmelon,

honey dew melon, papaya,

netted melon, Hami melon)

Total
10 sup-classes and

92 sub-classes for Fru92

classes and 92 sub-classes. In the current version, there are

91,117 images for vegetables and 69,614 images for fruits.

The number of images for each sub-class varies from 200

to 2000.

VegFru can be naturally divided into two subsets, i.e.,

Veg200 for vegetables and Fru92 for fruits. Table 1 shows

the structure of VegFru, where the sup-classes of Veg200

and Fru92 are listed along with the corresponding number

of sub-classes included. And the sub-classes of Root veg-

etable, Collective fruit and Cucurbites are also listed3.

2.2. VegFru Details

This section presents the details of VegFru. Specifically,

we will respectively introduce the principles for building

VegFru, process of collecting images, and dataset splits for

training and test.

2.2.1 Building Principles

Aiming at domestic cooking and food management, VegFru

is constructed according to the following principles.

3The detailed sub-classes for each sup-class are provided in the sup-

plementary material.

(a)            (b)              (c)            (d)

Figure 4. (a) soybean (b) soybean (c) soybean seed (d) soybean

seed. Although (a)-(d) all belong to the seeds of soybean (in d-

ifferent growth periods), they are cooked in disparate ways, thus

being classified into separate sub-classes.

(a)            (b)             (c)            (d)

Figure 5. (a) potato (b) watermelon (c) cucumber (d) pimen-

to. These images are dropped because the raw food materials are

almost indistinguishable.

* The objects in the images of each sub-class have the

same cooking usage. (Figure 3)

* Each image contains at least one edible part of vegeta-

bles or fruits. (Figure 1)

* The images that contain different edible parts of a cer-

tain vegetable or fruit, e.g., leaf, flower, stem, root, are

classified into separate sub-classes.

* Even for the images that contain the same edible part

of given vegetable or fruit, if the objects are different

in cooking, we also classify them into different sub-

classes. (Figure 4)

* The objects in each image should be the raw food ma-

terials. If the raw materials of cooked food can not be

made out, the images will be removed. (Figure 5)

2.2.2 Collecting Images

The above principles guide the construction of VegFru, as

well as the process of image collection, which is a really

challenging project.

The first step is to collect candidate images for each sub-

class. The images are obtained by searching on the Inter-

net, which is widely used to generate ImageNet [6] and

Microsoft COCO [16]. The sources include Google, Im-

ageNet, Flicker, Bing, Baidu, and so on. The retrieval key-

words are the synonym sets of sub-class names in both Chi-

nese and English. As a consequence, a large number of can-

didate images are collected. Specifically, over 800 images

are gathered for each sub-class.

Then, to make the dataset highly reliable, the candidate

images are further carefully processed through manual se-

lection. In practice, the images of each sub-class are filtered
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Figure 6. Sample images of hyacinth bean. Left: Two images

without edible part in ImageNet; Right: Two images with edible

part in VegFru.

(a) (b) (c) (d) (e)

Figure 7. Potatoes in the vegetable subsets of ImageNet. Left

To Right: (a) Baked potato (b) French fries (c) Home fries (d)

Mashed potato (e) Uruguay potato. Only the images of Uruguay

potato contain the raw food materials.

by ten people on the basis of the class description provided

in [21, 38] and the true positives, following the principles

described in Section 2.2.1. Only images affirmed by more

than eight are reserved. The faded, binary, blurry and dupli-

cated ones are all filtered out.

So far we have completed the construction of 25 sup-

classes and 292 sub-classes, with more than 160, 000 im-

ages totally. Figure 1 displays some sample images collect-

ed by VegFru4.

2.2.3 Dataset Splits

In VegFru, each sub-class contains at least 200 images,

which are divided into training, validation and test set (de-

noted as train, val and test set in the following). An alterna-

tive split way is to first arrange the images in each sub-class

randomly. Then the top 100 are selected for train, the fol-

lowing 50 for val, and the rest for test. Finally, a slight

adjustment is applied to the split to ensure that each set is

representative for the variability such as object numbers and

background. The image list for each set is released attached

in the dataset.

2.3. VegFru vs. ImageNet subsets

In this section, we compare VegFru with the vegetable

and fruit subsets of ImageNet from three aspects, i.e., tax-

onomy, image selection and dataset structure. Through the

comparison, the construction and usage of VegFru are fur-

ther motivated.

Taxonomy. ImageNet [6] constructs its hierarchical

structure based on WordNet [19], which organizes all the

4More sample images are provided in the supplementary material.

Table 2. VegFru vs. ImageNet subsets on dataset structure.

#Sup-the number of sup-classes. #Sub-the number of sub-classes.

Min/Max-the minimum/maximum number of images in each sub-

class. #Sub<200-the number of sub-classes that consist of less

than 200 images.

#Sup #Sub Min Max
#Sub

<200

Vegetables in ImageNet 25 175 3 1500+ 27

Vegetables in VegFru 15 200 202 1807 0

Fruits in ImageNet 75 196 0 1500+ 50

Fruits in VegFru 10 92 202 1615 0

words according to the semantics. For vegetables and fruit-

s, however, we tend to concentrate more on their eating

characteristics in daily life. Actually the taxonomy adopt-

ed by ImageNet for vegetables and fruits is quite unpopular

for domestic cooking and food management, and even con-

tains many repeated categories. For example, turnip and

radish simultaneously belong to root vegetable and crucif-

erous vegetable, and potato is grouped into root vegetable

but is also on the list of solanaceous vegetable. In fact,

according to [21], potato should be categorized into tuber

vegetable. Moreover, some vegetables which are common

in diet are not included in ImageNet, e.g., water spinach,

shepherd’s purse, basella rubra.

By contrast, in the construction of VegFru, we remove

the rare categories, e.g. woad and ottelia, while many reg-

ular categories are added, e.g., Chinese pumpkin and sug-

arcane. And some categories are grouped into finer class-

es, e.g., radish are divided into white radish, red radish and

green radish. The taxonomy adopted by VegFru specially

serves the purpose of domestic cooking and food manage-

ment in daily life.

Image Selection. All images in VegFru contain the edi-

ble part of a certain vegetable or fruit, which is not included

in lots of images in ImageNet, as shown in Figure 6. Be-

sides, some categories in ImageNet do not cover any raw

food materials. For example, Figure 7 displays the images

of five potato subordinate classes in the vegetable subsets

of ImageNet, i.e., baked potato, French fries, home fries,

mashed potato and Uruguay potato. Only Uruguay potato

belongs to the raw food materials.

Dataset Structure. Table 2 shows some statistics of

VegFru and the ImageNet subsets. In particular, there are 50

fruit sub-classes and 27 vegetable sub-classes whose num-

ber of images is less than 200 in ImageNet, while VegFru

is comprised of 292 popular sub-classes of vegetables and

fruits with more than 200 images for each sub-classes. And

the taxonomy tree, i.e., the distribution of sup-classes and

sub-classes, is reasonably reorganized for vegetables and

fruits in VegFru.
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Table 3. VegFru vs. Fine-grained Datasets. #Sup-the number of

sup-classes. #Sub-the number of sub-classes. #Image-the number

of images in total. #Train/#Val/#Test-the number of images in

train/val/test set. #Train+Val(avg)-the average number of images

in each sub-classes for model training (include train and val set).

Dataset #Sup #Sub #Image #Train #Val
#Train+

Val(avg)
#Test

Birds none 200 11788 5994 none ˜30 5794

Dogs none 120 20580 12000 none 100 8580

Cars none 196 16185 8144 none ˜42 8041

Aircrafts 70 100 10000 3334 3333 ˜67 3333

VegFru 25 292 160731 29200 14600 150 116931

Figure 8. Sample images in FGVC-Aircraft. The airplanes oc-

cupy a large fraction of the whole images. And there exists only

one airplane in each image with relatively clean background.

2.4. VegFru vs. Fine­grained Datasets

In this section we further compare VegFru with four rep-

resentative fine-gained datasets, i.e., CUB-200-2011 [28]

(Birds), Stanford Dogs [11] (Dogs), Stanford Cars [13]

(Cars) and FGVC-Aircraft [18] (Aircrafts)5, which are

widely used in previous works [35, 12, 17, 7]. The detailed

comparison is shown in Table 3. More fine-grained dataset-

s, such as Oxford Flowers [20] and Pets [23], are not listed

here out of the consideration of simplicity.

Compare to these existing datasets, the domain of Veg-

Fru is novel and more associated with people’s daily life,

which contributes to its broad application prospects. And

VegFru is larger in scale, which has up to 150 images avail-

able in each sub-classes for model training. Particularly,

all the images in VegFru are hierarchically categorized in-

to sup-classes and sub-classes, while the images in these

datasets, except FGVC-Aircraft, are only assigned with

fine-grained labels. So VegFru is well-suited for the hybrid-

granularity research on FGVC. We noticed that the previ-

ous works [30, 39] declared to annotate some fine-grained

datasets, e.g., CUB-200-2011, with extra labels to get the

label hierarchy. However, to the best of our knowledge, the

annotation is not publicly available until the submission,

and the labelling process is labor-intensive. Furthermore,

though FGVC-Aircraft is with hierarchical labels, the ob-

jects of interest, i.e., aircrafts, usually occupy a large frac-

tion of the whole images, and each image only contains one

aircraft with relatively clean background (Figure 8). In con-

5For FGVC-Aircraft, airplane variants are chosen as the labels of sub-

classes, and the 70 sup-classes in Tabel 3 is the number of airplane fami-

lies, which are the upper-level annotaions of airplane variants. Please refer

to [18] for details of this dataset.
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Figure 9. Illustration of the proposed HybridNet. Two-stream

features which deal with the hierarchical labels are first extracted

separately, and then sent through the Fusion module to train the

Fused Classifier for overall classification.

trast, the images in VegFru are with cluttered background

and vary in number and scale of the objects (Figure 1).

3. HybridNet

Accompanying the dataset, we also propose an effective

framework called HybridNet to conduct the image classifi-

cation, illustrated in Figure 9. The motivation is to exploit

the label hierarchy for FGVC, which can further verify the

application value of VegFru.

Specifically, the input images with sup-class and sub-

class labels (denoted as coarse label and fine label in Fig-

ure 9) are firstly sent into two DCNNs for separate clas-

sification. Here an end-to-end DCNN is logically divided

into two functional parts, i.e., feature extractor and image

classifier. The division can theoretically occur at any lay-

er, e.g., pool5 in VGGNet. Secondly, the features output

by each extractor, i.e., coarse features and fine features, are

sent through the Fusion module to form a unified represen-

tation, i.e., fused features. The advanced Compact Bilinear

Pooling [7] is chosen as the fusion method. Finally, the

Fused Classifier plays as the key component to aggregate

two-level features for the ultimate recognition. Actually the

Fused Classifier can handle either coarse-grained or fine-

grained categorization, and the latter one which is more

challenging is evaluated in our experiments. The training

strategy of HybridNet will be elaborated in Section 4.2.1.

The design of HybridNet comes from the following phi-

losophy. Since DCNN is trained in a top-down manner, the

coarse features and fine features tend to deal with different

aspects of the objects, with the condition of being fed with

the coarse label and fine label separately. After the Fusion,

the fused features has synthesized the hybrid-granularity in-

formation, so it is expected to be richer and more accurate

than the fine features, thus resulting in higher accuracy for

FGVC. From another perspective, the optimization of Hy-

bridNet is comprised of three tasks, i.e.,

* Categorizing sup-classes according to the coarse fea-

tures in the Coarse Classifier
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* Categorizing sub-classes according to the fine features

in the Fine Classifier

* Categorizing sub-classes according to the fused fea-

tures in the Fused Classifier.

Such multi-task optimization is beneficial to learn more dis-

criminative image representation [22, 37, 34].

In the existing literatures, there are considerable interest-

s to enhance DCNN with greater capacity for FGVC, e.g.,

leveraging parts of objects [35, 30, 9, 36], embedding dis-

tance metric learning [24, 29, 31, 37]. Since HybridNet is

motivated by exploiting the label hierarchy, here we only

focus on the related works [30, 37, 32] that make use of la-

bel hierarchy for FGVC and clarify their differences with

our work. In [30], the features of multiple granularity are

concatenated before the linear SVM, whose training is ind-

ependent from DCNN. While in HybridNet, the Compact

Bilinear Pooling are adopted as fusion method and the mod-

el is trained in an end-to-end manner. In [37], the label

hierarchy is used to construct the input triplets for jointly

optimizing both classification and similarity constraints. In

our opinions, the hybrid-granularity information is not ful-

ly utilized in this way. Our HybridNet shares similar ideas

with [32]. However, in [32], the training set is augmented

by the external data annotated with hyper-classes, while the

images in original dataset are still only with fine-grained la-

bels. In contrast, HybridNet is applied to the input images

that are annotated with hierarchical labels, e.g., VegFru, and

the multiple granularity features are separately learned and

fused through explicit operation.

Furthermore, the architecture of HybridNet is intuitive-

ly similar to the Bilinear CNN in [17], where the Bilinear

Pooling is first proposed to aggregate the two-stream DCNN

features for FGVC. Actually they differ from each other in

three aspects. Firstly and most importantly, in [17], the two-

stream DCNNs both deal with fine-grained categorization

and much efforts are taken to break the symmetry of two

networks. But in HybridNet, the two DCNNs are natural-

ly asymmetric and complementary since they are fed with

the coarse-grained and fine-grained labels separately. Sec-

ondly, the network architectures are actually dissimilar. The

Bilinear CNN is eventually implemented by a single DCNN

due to weight sharing, while HybridNet holds two DCNNs

which do not share weights. Thirdly, the training process

is quite different. Compared to single-task optimization of

the Bilinear CNN, the training of HybridNet is made up of

multiple tasks. In practice, we adopt the Compact Bilinear

Pooling [7] as fusion method, which inherits the discrimina-

tive power of the Bilinear Pooling and meanwhile reduces

the computation cost. The model in [7] is denoted as CBP-

CNN in the following.

Table 4. Baselines on VegFru. The typical CaffeNet, VGGNet

and GoogLeNet are chosen to set benchmarks on VegFru. All re-

sults are evaluated on the test set and reported in the top-1 mean

accuracy.

Dataset Category CaffeNet VGGNet GoogLeNet

Veg200
15 sup-classes 74.92% 83.81% 83.50%

200 sub-classes 67.21% 78.50% 80.17%

Fru92
10 sup-classes 79.86% 86.81% 87.54%

92 sub-classes 71.60% 79.80% 81.79%

VegFru
25 sup-classes 72.87% 82.45% 82.52%

292 sub-classes 66.40% 77.12% 79.22%

4. Experiment

In the experiments, we first set benchmarks on Veg-

Fru, and then compare HybridNet with the correspond-

ing baselines on VegFru, FGVC-Aircraft [18] and CUB-

200-2011 [28]. All the networks are implemented with

Caffe [10].

4.1. VegFru Baselines

4.1.1 Experimental Setup

The choice of features is usually treated as the most im-

portant design in image recognition, and so far DCNN is

considered to be the most competitive method for feature

extraction. To comprehensively evaluate VegFru, therefore,

we adopt the representative DCNN architectures including

CaffeNet [14], VGGNet [26], and GoogLeNet [27] (avail-

able in the Caffe Model Zoo [1]) to set benchmarks.

All the networks are pretrained on ImageNet and then

finetuned on VegFru. The images are randomly flipped be-

fore passing into the networks and no other data augmen-

tation is used. The base learning rate is set to 0.001 and

reduced by a factor of 10 when the loss plateaus. The test is

done with one center crop of the input images. Finally the

top-1 mean accuracy is taken to measure the classification

performance. It is worth mentioning that the dataset split

way follows the description in Section 2.2.3. The train set

is used for the finetuning and the evaluation is performed on

the test set. The val set is taken for error analysis here6.

4.1.2 Quantitative Results

The experiments are carried on sup-classes and sub-classes

of VegFru as well as its subsets, i.e., Veg200 and Fru92, and

the quantitative results are shown in Table 4. The three net-

works all achieve reasonable performance for the task of im-

age classification, which validates the reliability of VegFru.

However, even the best top-1 accuracy with GoogLeNet

6The top-1 mean accuracy on val set with CaffeNet, VGGNet, and

GoogLeNet is provided in the supplementary material.
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Figure 10. The top-1 accuracy of GoogLeNet on each sub-

classes of Veg200. The results are evaluated on the val set and

the lowest accuracy lies in the 67th sub-class, i.e., dandelion.

Figure 11. Sample images of dandelion

Figure 12. Left: shepherd’s purse; Right: prickly lettuce.

(79.22% on sub-classes of VegFru) is still not satisfying e-

nough for real-world applications, indicating that it is still

vital and necessary to develop more advanced models for

the recognition.

4.1.3 Error Analysis

Along with reporting the top-1 mean accuracy, we also ana-

lyze the classification performance on each sub-class. Here

GoogLeNet is taken to illustrate the proof and evaluated on

Veg200. The val set is chosen for the evaluation since it has

equal number of images for each sub-classes. The analy-

sis results are shown in Figure 10, and the lowest accuracy

(46%) lies in the sub-class of dandelion (Figure 11). We

further look into the result and find that lots of misclassified

images are predicted to be shepherd’s purse and prickly let-

tuce (Figure 12). It can be seen that the images in Figure 11

and Figure 12 are of subtle difference, and thus more robust

image representation is required to discriminate them.

4.2. HybridNet Performance

4.2.1 Implementation Details

The DCNN in HybridNet can be any existing model, e.g.,

CaffeNet, VGGNet or GoogLeNet. Here the 16-layer VG-

GNet [26] is selected to construct the HybridNet as in CBP-

CNN [7]. Specifically, the feature extractor of Hybrid-

Net is comprised of the layers of VGGNet before pool5.

And the image classifier includes the layers of compact bi-

linear pooling, signed square-root, l2-normalization, fully-

connection and softmax.

The Coarse Network and Fine Network in HybridNet

are the variants of CBP-CNN. So before introducing the

training of HybridNet, we first review the training pro-

cess of CBP-CNN, which consists of two stages denoted

as ft last layer and ft all [2]. Specifically, ft last layer is

used to train the layers after the Compact Bilinear Pooling

starting with a high learning rate (e.g., 1), and ft all means

global finetuning with a relatively low learning rate (e.g.,

0.001). The training strategy of HybridNet is illustrated

in Figure 13. Firstly, the Coarse Network and Fine Net-

work are trained in parallel by feeding the coarse label and

fine label separately (each including ft last layer and ft all

shown in Figure 13(a)(b)). Secondly, the Fused Classifier

is optimized based on the fused features with the rest fixed

(Figure 13(c)). Finally, the whole network is globally fine-

tuned (Figure 13(d)). The Coarse Classifier and Fine Clas-

sifier are removed in the global finetuning (Figure 13(d)),

since the jointly finetuning strategy does not help in this

case, which will be further discussed in Section 4.2.3. The

detailed parameters for the training and test is released with

the dataset and code.

4.2.2 Performance Comparison

The baseline of HybridNet is set by replacing the coarse

label with the fine label in Figure 9. In that condition, the

two DCNNs with the same architectures are symmetrical-

ly initialized and remain symmetric after finetuning since

the gradients for two networks are identical [17]. Thus the

model can be implemented with just a singe DCNN. So it is

natural to treat CBP-CNN as the baseline of HybridNet.

The performance comparison for HybridNet on VegFru,

FGVC-Aircraft and CUB-200-2011 is shown in Table 5,

where the results are reported in the top-1 mean accuracy.

For HybridNet, the output of Fused Classifier is taken for

the evaluation. As far as we know, CBP-CNN is the exist-

ing state-of-the-art method for FGVC without utilizing part-

s or external data. Our HybridNet outperforms CBP-CNN

by more than 1.3% on VegFru and FGVC-Aircraft, which

both contain hierarchical labels. For CUB-200-2011, extra

efforts are first taken to construct the label hierarchy ac-

cording to the taxonomy in North American Birds [3], and
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Figure 13. Training strategy of HybridNet. Inspired by the train-

ing of CBP-CNN, the training of the Fused Classifier is also di-

vided into two stages following the same denotations ((c)(d)). The

Fusion moduels in (c)(d) are omitted for simplicity. In each stage,

only the components surrounded by the red rectangle are finetuned

with the rest fixed. Best viewed electronically.

Table 5. Performance comparison for HybridNet. To keep the

experiments consistent, HybridNet is trained on the train set of

VegFru. And it is trained on the trainval set of FGVC-Aircraft [18]

and train set of CUB-200-2011 [28]. Finally, all results are evalu-

ated on the test set and reported in the top-1 mean accuracy.

Dataset
VegFru

(292 sub-classes)

Aircrafts [18]

(100 sub-classes)

CUB [28]

(200 sub-classes)

VGGNet [26] 77.12% 84.46% 72.32%

CBP-CNN [7] 82.21% 87.49% 84.91%

HybridNet (ours) 83.51% 88.84% 85.78%

then HybridNet is applied to obtain 85.78% on this dataset

which is higher than that with CBP-CNN (84.91%). The

improvement on CUB-200-2011 is less significant, which

is probably due to the small size of training set. The experi-

mental results indicate that the label hierarchy does help for

FGVC7.

4.2.3 Discussion

In the global finetuning of HybridNet (Figure 13 (d)), we

have tried to add the Coarse Classifier and Fine Classifi-

er as regulations, for the sake of making the features sepa-

rately learned by each extractor discriminative alone in the

training process [15, 5]. However, our preliminary experi-

ments indicate that this jointly finetuning strategy does not

suit for this case and instead brings performance degrada-

tion, which is probably caused by the complexity of the

Compact Bilinear Pooling for optimizing. Actually, it has

been proved in [34] that the jointly finetuning strategy does

not always work. The training strategy of HybridNet is e-

quivalent to the iterative switchable learning scheme adopt-

ed in [34], i.e., multiple tasks are optimized by turns (Fig-

ure 13 (a)-(d)). Besides, there still exists room to improve

HybridNet, e.g., the Coarse Network and Fine Network can

7We also provide the results of evaluating HybridNet on the coarse-

grained categorization in the supplementary material.

share some shallow layers as the model in [32], which has

the potential to reduce the GPU memory consumption.

5. Conclusion

In this work, we construct a domain-specific dataset,

namely VegFru, in the field of FGVC. The novelty of Veg-

Fru is that it aims at domestic cooking and food manage-

ment, and categorizes vegetables and fruits according to

their eating characteristics. In VegFru, there are at least 200

images for each subordinate class with hierarchical label-

s, and each image contains at least one edible part of veg-

etables or fruits with the same cooking usage. It is close-

ly associated with the daily life of everyone and has broad

application prospects. Besides, HybridNet is proposed ac-

companying the dataset to exploit the label hierarchy for

FGVC. In HybridNet, multiple granularity features are first

separately learned and then fused through explicit opera-

tion, i.e., Compact Bilinear Pooling, to form a unified image

representation for overall classification. The results on Veg-

Fru, FGVC-Aircraft and CUB-200-2011 demonstrate that

HybridNet achieves one of the top performance on these

datasets. We believe that our VegFru and HybridNet would

inspire more advanced research on FGVC.
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