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Abstract

Existing counting methods often adopt regression-based

approaches and cannot precisely localize the target objects,

which hinders the further analysis (e.g., high-level under-

standing and fine-grained classification). In addition, most

of prior work mainly focus on counting objects in static en-

vironments with fixed cameras. Motivated by the advent of

unmanned flying vehicles (i.e., drones), we are interested

in detecting and counting objects in such dynamic environ-

ments. We propose Layout Proposal Networks (LPNs) and

spatial kernels to simultaneously count and localize target

objects (e.g., cars) in videos recorded by the drone. Dif-

ferent from the conventional region proposal methods, we

leverage the spatial layout information (e.g., cars often park

regularly) and introduce these spatially regularized con-

straints into our network to improve the localization accu-

racy. To evaluate our counting method, we present a new

large-scale car parking lot dataset (CARPK) that contains

nearly 90,000 cars captured from different parking lots. To

the best of our knowledge, it is the first and the largest drone

view dataset that supports object counting, and provides the

bounding box annotations.

1. Introduction

With the advent of unmanned flying vehicles, new po-

tential applications emerge for unconstrained images and

videos analysis for aerial view cameras. In this work, we

address the counting problem for evaluating the number of

objects (e.g., cars) in drone-based videos. Prior methods

[10, 2, 1] for monitoring the parking lot often assume that

the locations of the monitored objects of a scene are already

known in advance and the cameras are fixed, and cast car

counting as a classification problem, which makes conven-

tional car counting methods not directly applicable in un-

constrained drone videos.
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Figure 1. We propose a Layout Proposal Network (LPN) to local-

ize and count objects in drone videos. We introduce the spatial

constraints for learning our network to improve the localization

accuracy. Detailed network structure is shown in Figure 4.

Current object counting methods often learn a regression

model that maps the high-dimensional image space into

non-negative counting numbers [30, 18]. However, these

methods can not generate precise object positions, which

limits the further investigation and applications (e.g., recog-

nition).

We observe that there exists certain layout patterns for a

group of object instances, which can be utilized to improve

the object counting accuracy. For example, cars are often

parked in a row and animals are gathered in a certain layout

(e.g., fish torus and duck swirl). In this paper, we intro-

duce a novel Layout Proposal Network (LPN) that counts

and localizes objects in drone videos (Figure 1). Different

from existing object proposal methods, we introduce a new

spatially regularized loss for learning our Layout Proposal

Network. Note that our method learns the general adjacent

relationship between object proposals and is not specific to

a certain scene.

Our spatially regularized loss is a weighting scheme that
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Table 1. Comparison of aerial view car-related datasets. In contrast to the PUCPR dataset, our dataset supports a counting task with

bounding box annotations for all cars in a single scene. Most important of all, compared to other car datasets, our CARPK is the only

dataset in drone-based scenes and also has a large enough number in order to provide sufficient training samples for deep learning models.

Dataset Sensor Multi Scenes Resolution Annotation Format Car Numbers Counting Support

OIRDS [28] satellite X low bounding box 180 X

VEDAI [20] satellite X low bounding box 2,950 X

COWC [18] aerial X low car center point 32,716 X

PUCPR [10] camera × high bounding box 192,216 ×
CARPK [ours] drone X high bounding box 89,777 X

(a) (b) (c)

(d) (e)

Figure 2. (a), (b), (c), (d), and (e) are the example scenes of OIRDS [28], VEDAI [20], COWC [18], PUCPR [10], and CARPK (ours)

dataset respectively (two images for each dataset). Comparing to (a), (b), and (c), the PUCPR dataset and the CARPK dataset have greater

number of cars in a single scene which is more appropriate for evaluating the counting task.

re-weights the importance scores for different object pro-

posals and encourages region proposals to be placed in cor-

rect locations. It can also generally be embedded in any ob-

ject detector system for object counting and detection. By

exploiting spatial layout information, we improve the aver-

age recall of state-of-the-art region proposal approaches on

a public PUCPR dataset [10] (from 59.9% to 62.5%).

For evaluating the effectiveness and reliability of our ap-

proach, we introduce a new large-scale counting dataset

CARPK (Table 1). Our dataset contains 89,777 cars, and

provides bounding box annotations for each car. Also, we

consider the sub-dataset PUCPR of PKLot [10] which is

the one that the scenes are closed to the aerial view in the

PKLot dataset. Instead of a fixed camera view from a high

story building (Figure 2) in the PUCPR dataset, our new

CARPK dataset provide the first and the largest-scale drone

view parking lot dataset in unconstrained scenes. Besides,

the PUCPR dataset can be only used in conjunction with a

classification task, which classifies the pre-cropped images

(car or not car) with given locations. Moreover, the PUCPR

dataset only annotates partial region-of-interest parking ar-

eas, and is therefore unable to support a counting task.

Since our task is to count objects in images, we also an-

notate all cars in single full-image for the partial PUCPR

dataset. The contents of our CARPK dataset are unscripted

and diverse in various scenes for 4 different parking lots.

To the best of our knowledge, our dataset is the first and

the largest drone-based dataset that can support a counting

task with manually labelled annotations for numerous cars

in full images. The main contributions of this paper are

summarized as follows:

1. To our knowledge, this is the first work that leverages

spatial layout information for object region proposal.

We improve the average recall of the state-of-the-art

region proposal methods (i.e., 59.9% [22] to 62.5%)

on a public PUCPR dataset.

2. We introduce a new large-scale car parking lot dataset

(CARPK) that contains nearly 90,000 cars in drone-

based high resolution images recorded from the di-

verse scenes of parking lots. Most important of all,

compared to other parking lot datasets, our CARPK
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dataset is the first and the largest dataset of parking

lots that can support counting1.

3. We provide in-depth analyses for different decision

choices of our region proposal method, and demon-

strate that utilizing layout information can consider-

ably reduce the proposals and improve the counting

results.

2. Related Work

2.1. Object Counting

Most contemporary counting methods can be broadly

divided into two categories. One is counting by regres-

sion method, the other is counting by detection instance

[17, 14]. Regression counters are usually a mapping of

the high-dimension image space into non-negative count-

ing numbers. Several methods [3, 6, 7, 8, 15] try to pre-

dict counts by using global regressors trained with low-level

features. However, global regression methods ignore some

constraints, such as the fact that people usually walk on the

pavement and the size of instances. There are also a number

of density regression-based methods [23, 16, 5] which can

estimate object counts by the density of a countable object

and then aggregate over that density.

Recently, a wealth of works introduce deep learning into

the crowd counting task. Instead of counting objects for

constrained scenes in the preivous works, Zhang et al. [31]

address the problem of cross-scene crowd counting task,

which is the weakness of the density estimation method

in the past. Sindagi et al. [26] incorporate global and lo-

cal contextual information for better estimating the crowd

counts. Mundhenk et al. [18] evaluate the number of cars

in a subspace of aerial imagery by extracting representa-

tions of image patches to approximate the appearance of

object groups. Zhang et al. [32] leverage FCN and LSTM

to jointly estimate the vehicle density and counts in low res-

olution videos from city cameras. However, the regression-

based methods can not generate precise object positions,

which seriously limits the further investigation and appli-

cation (e.g., high-level understanding and fine-grained clas-

sification).

2.2. Object Proposals

Recent years have seen deep networks for region propos-

als developing well. Because detecting objects at several

positions and scales during inference time requires a com-

putationally demanding classifier, the best way to solve this

problem is to look at a tiny subset of possible positions. A

number of recent works prove that deep networks-based re-

gion proposal methods have surpassed the previous works

1The images and annotations of our CARPK and PUCPR+ are available

at https://lafi.github.io/LPN/

[29, 4, 33, 9], which are based on the low-level cues, by a

large margin.

DeepMask [19], which is developed for learning seg-

mentation proposals, has, compared to Selective Search

[29], ten times fewer proposals (100 v.s. 1000) at the same

performance. The state-of-the-art object proposal method,

Region Proposal Networks (RPNs) [22], has also shown

that they just need 300 proposals and can surpass the re-

sult of 2000 proposals generated by [29]. Other works

like Multibox [27] and Deepbox [33] also have higher pro-

posal recall with fewer number of region proposals than the

previous works which are based on low-level cues. How-

ever, none of these region proposal methods have consid-

ered the spatial layout or the relation between recurring

objects. Hence, we propose a Layout Proposal Networks

(LPNs) that leverages thus structure information to achieve

higher recall while using a smaller number of proposals.

3. Dataset

Since there is a lack of large standardized public datasets

that contain numerous collections of cars in drone-based

images, it has been difficult to create an automated counting

system for deep learning models. For instance, OIRDS [28]

has merely 180 unique cars. The recent car-related dataset

VEDAI [20] has 2,950 cars, but these are still too few to uti-

lize for the deep learners. A newer dataset COWC [18] has

32,716 cars, but the resolutions of images remain low. It has

only 24 to 48 pixels per car. Besides, rather than labelling

in the format of bounding box, the annotation format is the

center pixel point of a car which can not support further in-

vestigation, such as car model retrieval, statistics of brands

of car, and exploring which kind of car most people will

drive in the local area. Moreover, all above datasets are low

resolution images and cannot provide detail informations

for learning a fine-grained deep model. The problems of

existing dataset are : 1) low resolution images which might

harm the performance of the model trained on them and 2)

less car numbers in the dataset which has the potential to

cause overfitting during training a deep model.

Because existing datasets have these aforementioned

problems, we have created a large-scale car parking lot

dataset from drone view images, which are more appropri-

ate to deep learning algorithms. It supports object count-

ing, object localizing, and further investigations by provid-

ing the annotations in terms of bounding boxes. The most

similar public dataset to ours, which also has the high res-

olution of car images, is the sub-dataset PUCPR of PKLot

[10], which provides a view from the 10th floor of a building

and therefore similar to drone view images to a certain de-

gree. However, the PUCPR dataset can be only used in con-

junction with a classification task, which classifies the pre-

cropped images (car or not car) with given locations. More-

over, this dataset has only annotated a portion of cars (100
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Figure 3. The key idea of our spatial layout scores. A predicted

position which has more nearby cars can get higher confidence

scores and has higher probability to be the position where the car

is.

certain parking spaces) from total 331 parking spaces in a

single image, making it unable to support both counting and

localizing tasks. Hence, we complete the annotations for

all cars in a single image from the partial PUCPR dataset,

called PUCPR+ dataset, which now has nearly 17,000 cars

in total. Besides the incomplete annotation problem of the

PUCPR, it has a fatal issue that their camera sensors are

fixed and set in the same place, making the image scene

of dataset completely the same – causing the deep learning

model to encounter a dataset bias problem.

For this reason, we introduce a brand new dataset

CARPK that the contents of our dataset are unscripted and

diverse in various scenes for 4 different parking lots. Our

dataset also contains approximately 90,000 cars in total with

the view of drone. It is different from the view of cam-

era from high story building in the PUCPR dataset. This

is a large-scale dataset for car counting in the scenes of di-

verse parking lots. The image set is annotated by providing

a bounding box per car. All labeled bounding boxes have

been well recorded with the top-left points and the bottom-

right points. Cars located on the edge of the image are in-

cluded as long as the marked region can be recognized and

it is sure that the instance is a car. To the best of our knowl-

edge, our dataset is the first and the largest drone view-

based parking lot dataset that can support counting with

manually labeled annotations for a great amount of cars in

a full-image. The details of dataset are listed in Table 1 and

some examples are shown in Figure 2.

4. Method

Our object counting system employs a region proposal

module which takes regularized layout structure into ac-

count. It is a deep fully convolutional network that takes an

image of arbitrary size as the input, and outputs the object-

agnostic proposals which likely contain the instance. The

entire system is a single unified framework for object count-

ing (Figure 1). By leveraging the spatial information of the

object of recurring instances, LPNs module is not only con-

cerning the possible positions but also suggesting the object

detection module which direction it should look at in the

image.

4.1. Layout Proposal Network

We observed that there exists certain layout patterns for

a group of object instances, which can be used to predict

objects that might appear adjacently in the same direction

or near the same instances. Hence, we design a novel region

proposal module that can leverage the structure layout and

gather the confidence scores from nearby objects in certain

directions (Figure 3).

We comprehensively describe the designed network

structure of LPNs (Figure 4) as follows. Similar to RPNs

[22], the network generates region proposals by sliding a

small network over the shared convolutional feature map.

It takes as input an 3 × 3 windows on last convolutional

layer for reducing the representation dimensions, and then

feeds features into two sibling 1 × 1 convolutional layers,

where one is for localization and the other is for classifying

whether the box belongs to foreground or background. The

difference is that our loss function introduces the spatially

regularized weights for the predicted boxes at each loca-

tion. With the weights from spatial information, we mini-

mize the loss of multi-task object function in networks. The

loss function we use on each image is defined as:

L({ui}, {qi}, {pi}) =
1

Nfg

∑

i

K(ci, N
∗
i ;u

∗
i ) · Lfg(ui, u

∗
i )

+ γ
1

Nbg

∑

i

Lbg(qi, q
∗
i )

+ λ
1

Nloc

∑

i

Lloc(u
∗
i , pi, g

∗
i )

(1)

where Nfg and Nbg are the normalized terms of the num-

ber matching default boxes for foreground and background.

Nloc is the same as Nfg in that it only considers the number

of foreground classes. The default box is marked u∗
i = 1 if

the default box has an Intersection-over-Union (IoU) over-

lap higher than 0.7 with the ground-truth box, or the de-

fault box which has the highest IoU overlap with a ground-

truth box; otherwise, it is marked q∗i = 0 if the IoU over-

lap is lower than 0.3. The Lfg(ui, u
∗
i ) = −log[uiu

∗
i ] and

Lbg(qi, q
∗
i ) = −log[(1 − qi)(1 − q∗i )] are the negative log-

likelihood that we want to minimize for true classes. Here,

the i is the index of predicted boxes. In front of the fore-

ground loss, K represents that we apply the spatially regu-

larized weights for re-weighting the objective score of each

predicted box. The weight is obtained by a Gaussian spatial
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Figure 4. The structure of the Layout Proposal Networks. At the loss layer, the structure weights are integrated for re-weighting the

candidates to have better structure proposals. See more details in Section 4.2.

kernel for the center position ci of predicted box. It will give

a rearranged weight according to the m neighbor ground-

truth box centers, which are near to the ci. The real neigh-

bor centers for ci are denoted as N∗
i = {c∗1, ..., c

∗
m} ∈ Sci ,

which fall inside the spatial window pixels size S on the in-

put image. We use S = 255 in this paper to obtain a larger

spatial range.

The Lloc is the localization loss, which is a robust loss

function [11]. This term is only active for foreground pre-

dicted boxes (u∗
i = 1), otherwise 0. Similar to [22], we cal-

culate the loss of offsets between the foreground predicted

box pi and the ground truth box gi with their center posi-

tion (x, y), width (w), and height (h) based on the default

box (d).

Lloc(u
∗
i , pi, g

∗
i ) =

∑

i∈fg

∑

v∈{x,y,w,h}

u∗
i smoothL1(p

v
i , g

v∗
i )

(2)

, where gv∗i (similar to pvi ) is defined as below:

gx∗i = (gxi − dxi )/d
w
i ,

gw∗
i = log(gwi /d

w
i ),

gy∗i = (gyi − dyi )/d
h
i

gh∗i = log(ghi /d
h
i )

(3)

In our experiment, we set γ and λ to be 1. Besides, in order

to handle the small objects, instead of conv5-3 layer, we se-

lect conv4-3 layer features for obtaining better tiling default

box stride on the input image and choose default box sizes

approximately four times smaller (16× 16, 40× 40, 100×
100) than the default setting (128× 128, 256× 256, 512×
512).

4.2. Spatial Pattern Score

Most of the objects of an instance exhibit a certain pat-

tern between each other. For instance, cars will align in one

direction on a parking lot and ships will hug the shore reg-

ularly. Even in biology, we can also find collective animal

behavior that makes them look into a certain layout (e.g.,

fish torus, duck swirl, and ant mill). Hence, we introduce

a method for re-weighting the region proposals in the train-

ing phase in an end-to-end manner. The proposed method

can reduce the number of proposals in the inference phase

for abating the computational cost of the counting and de-

tection processes. It is especially important on embedded

devices, such as the drone, to lower power consumption as

the battery power only can provide the drone with energy to

fly a mere 20 minutes.

For designing the pattern of layout, we apply different

direction 2D Gaussian spatial kernels K (see Eq. 1) on the

space of input images, where the center of the Gaussian ker-

nel is the predicted box position ci. We compute the confi-

dence weights over all positive predicted boxes. By incor-

porating the prior knowledge of layout from ground-truth,

we can learn the weight for each predicted box. In Eq. 4,

it illustrates that the spatial pattern score for predicted posi-

tion ci is a summation of weights by the ground truth posi-

tions which are inside the Sci . We compute the score over

the input triples (ci, N
∗
i , u

∗
i ):

K(ci, N
∗
i , u

∗
i ) =

{

∑

θ∈D

∑m

j∈N∗

i
G(j; θ) if u∗

i = 1

1 otherwise,

(4)
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in which

G(j; θ) = α · e
−(

xθ
j

2σ2
x
+

yθ
j

2σ2
y
)
, (5)

is the 2D Gaussian spatial kernel that takes different rotated

radius D = {θ1, ...θr}, where we use r = 4 ranged from 0

to π. The coordinate tuple (xj , yj) is the center position of

jth ground-truth box in Eq. 5, and the coefficient α is the

amplitude of the Gaussian function. All experiments use

α = 1.

We only give the weights for the foreground predicted

box ci where it is marked u∗
i = 1. By the means of ag-

gregating weights from ground-truth boxes N∗
i in differ-

ent direction kernels (Eq. 4), we can compute a summa-

tion of scores for taking various layout structures into ac-

count. It will give a higher probability to the object position,

which has larger weight. Namely, the more similar objects

of instances surrounding it, the more possible the predicted

boxes are the same category of instances. Therefore, the

predicted box collects the confidence from the same objects

which are nearby (Figure 3). By leveraging spatially reg-

ularized weights, we can learn a model for generating the

region proposals where the objects of instance will appear

with their own layout.

5. Experiment

In this section, we evaluate our approach on two different

datasets. The PUCPR+ dataset, made from the sub-dataset

of the public PKLot dataset [10], and the CARPK dataset

are both used to estimate the validation of our proposed

LPNs. Then, we evaluate our object counting model, which

leverages the structure information on the PUCPR+ dataset

and our CARPK dataset.

5.1. Experiment Setup

We implement our model on Caffe [13]. For fairness

in analyzing the effectiveness between different baseline

methods, we implemented all of them based on the VGG-16

networks [25] which contains 13 convolutional layers and 3

fully-connected layers. All the layer parameters of base-

lines and our proposed model are using the weights pre-

trained on ImageNet 2012 [24], followed by fine-tuning the

models on our CARPK dataset or the PUCPR+ dataset de-

pending on the experiments. We run our experiments on

the environment of Linux workstation with Intel Xeon E5-

2650 v3 2.3 GHz CPU, 128 GB memory, and one NVIDIA

Tesla K80 GPU. Our multi-task joint training scheme takes

approximately one day to converge.

5.2. Evaluation of Region Proposal Methods

For evaluating the performance of our method LPNs, we

use five-fold cross-validation on the PUCPR+ dataset to en-

sure that the same image would not appear across both train-

ing set and testing set. In order to better evaluate the recall

while estimating localization accuracy, rather than reporting

recall at particular IoU thresholds, we report the Average

Recall (AR). It is an average of recall with IoU threshold t
between 0.5 to 1, where AR = 1

t

∑t

i Recall(IoUt). As the

metric of recall at IoU of 0.5 is not predictive of detection

accuracy, proposals with high recall but at low overlap are

not effective for detection [12]. Therefore, adopting the IoU

range of the AR metric can simultaneously measure both

proposal recall and localization accuracy to better predict

the result of counting and localizing performance.

Table 2. Result on the PUCPR+ [10] dataset for average recall at

100, 300, 500, 700, and 1000 proposals with the different compo-

nents of approaches. The method in the middle column represents

the RPN training with the small default box size on conv4-3 layer.

#Proposals RPN [22] RPN+small LPN (ours)

100 3.2% 20.5% 23.1%

300 9.1% 43.2% 49.3%

500 13.9% 53.4% 57.9%

700 17.4% 57.3% 60.7%

1000 21.2% 59.9% 62.5%

We compare our proposal method LPNs against the

state-of-the-art object proposal generator RPNs [22] on the

PUCPR+ dataset with different number of the object pro-

posals. Our results are shown in Table 2. It reveals that

our proposal method LPNs, which leverages the regular-

ized layout information, can achieve higher recall and sur-

pass RPNs in the same number of proposals. The state-of-

the-art object proposal RPNs suffer from poor performance

in average recall. We refer that the factors, which affect

the performance, are upon on the inappropriate anchor size

and the resolution of convolutional layer features. Hence,

in the same manner, we apply the smaller anchor box size

on RPNs on the conv4-3 layer, which is in the same set-

ting as our approach. Table 2 shows that the RPNs utilize

the small anchor size and the higher resolution feature map

bring about a better improvement. It implies that the CNN

model is not as powerful in scale variance as we thought

when using inappropriate layers or unsuitable default box

size for prediction. This experiment also shows that the

performance of our proposed model LPNs with spatial regu-

larized constraints still outperforms the revised RPNs (e.g.,

14.1% better in 300 proposals and 8.42% better in 500 pro-

posals). Besides, we also found that our method with spatial

regularizer significantly performs better in the dense case 2.

The result indicates that the prior layout knowledge could

2We additionally divide the PUCPR+ dataset into dense and less dense

cases. Our method has 16.30% large relative improvement compared to

RPN-small in dense case, which is better than 8.27% for less dense case.

Moreover, our method localizes the bounding box more precisely, i.e., our

method achieves 64.4% recall in IoU at 0.7 which is almost 10% better

than RPN-small 54.7% for 300 proposals.
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potentially benefit the outcome by giving the correct confi-

dence score to the position of instances in images.

Table 3. Results on the CARPK dataset with different components.

#Proposals RPN [22] RPN+small LPN (ours)

100 11.4% 31.1% 34.7%

300 27.9% 46.5% 51.2%

500 34.3% 50.0% 54.5%

700 37.4% 51.8% 56.1%

1000 39.2% 53.4% 57.5%

For looking into the details of the effectiveness of our ap-

proach in region proposal, we also conduct the experiment

on our CARPK dataset. In order to ensure that the same

or the similar image scenes would not appear across both

training and testing set, which would affect the observation

of validation, we take 3 different scenes of the parking lot as

training set and the remaining one scene of the parking lot

as testing set. Table 3 reports the average recall of our meth-

ods, the state-of-the-art region proposal method RPNs, and

the revised RPNs on CARPK dataset. In the experiment

results, it comes as no surprise that by incorporating the

additional layout prior information, our LPNs model boots

both recall and localization accuracy of proposal method.

Again, this result shows that the proposals generated by our

approach are more effective and reliable.

5.3. Evaluation of Car Counting Accuracy

Since the goal of our proposed approach is to count

the number of cars from drone view scenes, we compare

our car counting system with three state-of-the-art methods

which can also achieve the car counting task. A one-look

regression-based counting method [18] which is the up-to-

date method for estimating the number of cars in density

object counting measure and two prominent object detec-

tion systems, Faster R-CNN [22] and YOLO [21], which

have remarkable success in object detection task in recent

years.

For fair comparison, all the methods are built based on a

VGG-16 network [25]. The only difference is that [18] uses

a softmax with 64 outputs as they assumed that the maxi-

mum number of cars in a scene is sufficiently small. How-

ever, the maximum number of cars in the CARPK dataset is

far more than 64. The maximum number of cars is 331 in

a single scene of the PUCPR+ dataset and 188 in a single

scene of the CARPK dataset. Hence, we follow the setting

from [18] and train the network with a different output num-

ber to make this regression-based method compatible with

the two datasets. We set the softmax to 400 outputs for the

PUCPR+ dataset and 200 outputs for the CARPK dataset

for evaluation. Last, the setting of two datasets, PUCPR+

and CARPK, are the same as the experiment of region pro-

posal phase.

We employ two metrics, Mean Absolute Error (MAE)

and Root Mean Squared Error (RMSE), for evaluating the

performance of counting methods. These two metrics have

the similar physical meaning that estimates the error be-

tween the ground-truth car numbers yi and the predicted

car numbers fi. MAE is the average absolute difference

between ground-truth quantity yi and predicted quantity

fi over all testing scenes where MAE = 1
n

∑n

i |fi −
yi|. Similar, RMSE is the square root of the average of

squared differences between ground-truth quantity and pre-

dicted quantity over all testing scenes where RMSE =
√

1
n

∑n

i (fi − yi)2. The difference of the two metrics is

that the RMSE should be more useful when large errors are

particularly undesirable. Since the errors are squared before

they are averaged, the RMSE gives a relatively high weight

to large errors. In the counting task, these metrics have good

physical meaning for representing the average counting er-

ror of cars in the scene.

Table 4. Comparison with the object detection methods and the

global regression method for car counting on the PUCPR+ dataset.

Np is the number of candidate boxes used in the object detector,

which parameterizes the region proposal method. The ”∗” in front

of the baseline methods represents that the method has been fine-

tuned on PUCPR+ dataset. The ”†” represents that the method is

revised to fit our dataset.

Method Np MAE RMSE

YOLO [21] - 156.72 200.54

Faster R-CNN [22] 400 156.76 200.59

*YOLO - 156.00 200.42

*Faster R-CNN 400 111.40 149.35

*Faster R-CNN (RPN-small) 400 39.88 47.67

†One-Look Regression [18] - 21.88 36.73

Our Car Counting CNN Model 400 22.76 34.46

We compare three methods on the PUCPR+ dataset,

where the maximum number of cars is 311 in a single scene.

Since the softmax output number of [18] is designed to be

400 for the PUCPR+ dataset, we also impartially compare

to this dense object counting method with the number of re-

gion proposals limited to 400, which is a strict condition to

our object counter. For YOLO, we select the parameter of

confidence threshold at 0.15, which gives the best perfor-

mance in our dataset.

The experimental results are shown in Table 4. The as-

terisk ”∗” in front of the YOLO and Faster R-CNN meth-

ods represents that the models have been fine-tuned on

the PUCPR+ dataset, otherwise they are fine-tuned on the

benchmark datasets (PASCAL VOC dataset and MS COCO

dataset respectively), where they also have the car cate-

gories. Our proposed method outperforms the best RMSE

on large-scale car counting, even with a very tough setting

in the number of proposals. Note that we have comparable
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Counting number: 292 cars 

Ground Truth: 299 cars 
Counting number: 114 cars 

Ground Truth: 121 cars 

Figure 5. Selected examples of car counting and localizing results on the PUCPR+ dataset (left) and the CARPK dataset (right). The

counting model uses our proposed LPN trained on a VGG-16 model and combined with an object detector (Fast R-CNN), where the

parameters setting of confidence score is 0.5 and non maximum suppression (NMS) is 0.3 for 2000 proposals.

MAE performance to the state-of-the-art car counting re-

gression method [18], but the better RMSE implies that our

method has better capability in some extreme cases. The

methods that are fine-tuned on PASCAL and MS COCO

get worse results. It reveals that the inferior outcomes are

caused by the different perspective view of the object even

when training with car category samples. The experiment

results show that by incorporating the spatially regularized

information, our Car Counting CNN model boosts the per-

formance of counting. A counting and localization example

result is shown in Figure 5 (left).

We further compare the counting methods on our chal-

lenging large-scale CARPK dataset where the maximum

number of cars is 188 in a single scene. However, differ-

ent from the PUCPR+ dataset which only has one parking

lot, our CARPK dataset provides various scenes of diverse

parking lots for cross-scene evaluation. In the setting of [18]

method, we also deign a 200 softmax output network for

the CARPK dataset. In order to fairly compare the counting

methods, we again restrict the number of proposals of ob-

ject counter which has utilized the region proposal method

with a tough number 200 3. The quantitative results of car

counting on our dataset are reported in Table 5. The ex-

periment results show that our car counting approach is re-

liably effective and has the best MAE and RMSE even in

the cross-scene estimation. An counting and localizing ex-

ample result is shown in Figure 5 (right). Still our method

can generate the feasible proposals and obtain the reason-

able counting result close to the real number of cars in the

3Our method gets better performance when using bigger number of

proposals (e.g., 8.04 and 12.06 for 1000 proposals in MAE and RMSE re-

spectively) in the PUCPR+ dataset. In the CARPK dataset, our method

also has 13.72 and 21.77 for 1000 proposals in MAE and RMSE respec-

tively.

scenes of the parking lots.

Table 5. Comparison results on the CARPK dataset. The notation

definition is similar to Table 4.

Method Np MAE RMSE

YOLO [21] - 102.89 110.02

Faster R-CNN [22] 200 103.48 110.64

*YOLO - 48.89 57.55

*Faster R-CNN 200 47.45 57.39

*Faster R-CNN (RPN-small) 200 24.32 37.62

†One-Look Regression [18] - 59.46 66.84

Our Car Counting CNN Model 200 23.80 36.79

6. Conclusions

We have created the to-date largest drone view dataset,

called CARPK. It is a challenging dataset for various scenes

of parking lots in a large-scale car counting task. Also,

in the paper, we introduced a new way for generating the

feasible region proposals, which leverage the spatial lay-

out information for an object counting task with regularized

structures. The learned deep model can specifically count

objects better with the prior knowledge of object layout pat-

terns. Our future work will involve global information, such

as context, road scene, and other objects which can help dis-

tinguish between false car-like instances and real cars.
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