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Abstract

We propose a coarse-fine network (CFN) that exploits

multi-level supervisions for keypoint localization. Recently,

convolutional neural networks (CNNs)-based methods have

achieved great success due to the powerful hierarchical fea-

tures in CNNs. These methods typically use confidence

maps generated from ground-truth keypoint locations as su-

pervisory signals. However, while some keypoints can be

easily located with high accuracy, many of them are hard

to localize due to appearance ambiguity. Thus, using strict

supervision often fails to detect keypoints that are difficult

to locate accurately. To target this problem, we develop a

keypoint localization network composed of several coarse

detector branches, each of which is built on top of a fea-

ture layer in a CNN, and a fine detector branch built on top

of multiple feature layers. We supervise each branch by a

specified label map to explicate a certain supervision strict-

ness level. All the branches are unified principally to pro-

duce the final accurate keypoint locations. We demonstrate

the efficacy, efficiency, and generality of our method on sev-

eral benchmarks for multiple tasks including bird part lo-

calization and human body pose estimation. Especially, our

method achieves 72.2% AP on the 2016 COCO Keypoints

Challenge dataset, which is an 18% improvement over the

winning entry.

1. Introduction

Predicting a set of semantic keypoints, such as human

body joints or bird parts, is an essential component of un-

derstanding objects in images. For example, keypoints help

align objects and reveal their subtle differences that are use-

ful for handling the problems with small inter-class varia-

tions such as fine-grained categorization [51, 48, 17].

Despite dramatic progress over recent years, keypoint

prediction remains a significant challenge due to appear-

ance variations, pose changes, and occlusions. For instance,

the local appearances of bird parts may differ vastly across

species or different poses (e.g. perching, flying, and walk-

(a) (c)(b)

Figure 1: An illustration of the predicted keypoints from our

CFN architecture. The left image contains highly accurate

keypoints detected by the fine detector with strict supervi-

sion, the middle image contains keypoints from coarse de-

tectors with loose supervisions, and the right image shows

the final predictions by unifying the fine and coarse detec-

tors.

ing). Localizing keypoints on the human body must be in-

variant to appearance changes caused by factors like cloth-

ing and lighting, and robust to large layout changes of parts

due to articulations [40]. To tackle these difficulties, early

works combined handcrafted part appearance features and

with an associated spatial model to capture both local and

global information [24, 33, 31, 46].

Recently, convolutional neural networks (CNNs) [38, 36,

16] have significantly reshaped the conventional pipeline

by replacing handcrafted features and explicit spatial mod-

els with more powerful learned hierarchical representations

[40, 35, 43, 27]. The hierarchical representations in CNNs

provide us a natural way to implicitly model part appear-

ances and spatial interactions between parts. Thus, consid-

erable effort has been placed into leveraging hierarchical

features in CNNs to build a fine keypoint detector which is

expected to achieve high localization accuracy [29, 2].
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Existing CNN-based keypoint localization methods usu-

ally supervise keypoint detectors using confidence maps

generated from ground-truth keypoint locations. However,

while some keypoints can be easily located with high accu-

racy, many of them are hard to localize due to appearance

ambiguity. For example, the keypoints with distinctive ap-

pearances, such as the shoulders and head, can be easily

detected with high accuracy, while the keypoints with am-

biguous appearance due to body occlusion or low resolution

images, have much lower localization accuracies. Thus, the

keypoint detector often fails to detect ambiguous keypoints

if trained with strict supervision, that is, permitting only a

small localization error. Training with looser supervision

could help detect the ambiguous or indistinct keypoints, but

this comes at a cost to localization accuracy for those key-

points with distinctive appearances.

To address the robustness problem of keypoint localiza-

tion, we propose a coarse-fine network (CFN) that imposes

multi-level supervisions within a deep convolutional neu-

ral network (CNN) for keypoint localization. To achieve

this, we first propose a fully convolutional Inception net-

work [38] with several branches of varying depths to ob-

tain hierarchical feature representations. Then, we build a

coarse part detector on top of each branch of features and a

fine part detector which takes features from all the branches

as the input.

The constructed detectors have different localization

abilities and are complementary to each other. The shal-

lower coarse detectors can produce accurate localizations of

keypoints with distinctive appearances; however, they of-

ten fail to detect keypoints with ambiguous appearances.

The deeper branches can infer the approximate locations

of ambiguous keypoints but at the cost of reduced local-

ization accuracy for the unambiguous keypoints. Thus, we

supervise these branches of detectors using multi-level la-

bel maps with strictness levels that are set according to the

localization abilities of these branches. By supervising the

part detectors built on hierarchical features with multi-level

supervisor signals, our CFN fully explores the diversities

of part structures and the diversities of representations in

CNNs.

Finally, the keypoints produced by each CFN branch are

unified to produce the final keypoint locations. As shown

in Figure 1, the finally detected keypoints include very ac-

curate ones detected by the fine detector and approximately

accurate ones detected by the coarse detectors. The pro-

posed CFN outperforms state-of-the-art approaches by a

large margin on bird part localization and human pose esti-

mation datasets. Especially, our method is particularly ef-

fective for low resolution persons, while the existing meth-

ods perform much worse.

2. Related Works

Bird part detection Bird parts play a remarkable role

in fine-grained categorization, especially in bird species

recognition where parts have subtle differences. Early

works focused on developing handcrafted part appearance

features (e.g., HOG [7]) and spatial location models (e.g.

pictorial models [11]) to capture local and global informa-

tion, respectively. For example, the deformable part model

(DPM) [10] has been extended for bird part localization

by incorporating strong supervision or segmentation masks

[50, 4]. Liu et al. [23, 24] presented a nonparametric model

called exemplar to impose geometric constraints on the part

configuration. Another line of works utilize unlabeled data

and domain adaptation techniques [12, 13, 25] to boost the

localization accuracy for bird parts [28, 44].

More recently, convolutional neural networks (CNNs)

based methods have been widely used in this task. In-

spired by object proposals in object detection, part-based

R-CNN [49] extracts CNN features from bottom-up propos-

als and learns whole-object and part detectors with geomet-

ric constraints. Following this strategy, EdgeBox [52] and

K-nearest neighbors proposals [48] have been used to im-

prove the quality of part proposals. These methods signif-

icantly outperform conventional approaches; however, the

proposal generation and feature extraction are computation-

ally expensive. Our approach avoids proposal generation

by adopting the fully convolutional architecture which was

originally proposed for dense prediction tasks like semantic

segmentation [26].

Human pose estimation Classical approaches to artic-

ulated pose estimation adopt graphical models to explicitly

model the correlations and dependencies of the body part lo-

cations [1, 46, 39, 30, 21, 8]. These models can be classified

into tree-structured [1, 37, 39, 31], and non-tree-structured

[21, 8] models. Attempts have also been made to model

complex spatial relationships implicitly based on a sequen-

tial prediction framework which learns the inference proce-

dure directly [33, 31].

Again, the advent of deep CNNs have recently con-

tributed to significant improvements in feature representa-

tion and have significantly improved human pose estima-

tion [43, 27, 3, 32, 41, 40, 45, 5]. Toshev et al. [41] di-

rectly regressed x, y joint coordinates with a convolutional

network, while more recent work regressed images to con-

fidence maps generated from joint locations [43, 27, 3, 40].

Tompson et al. [40] jointly trained a CNN and a graphical

model, incorporating long-range spatial relations to remove

outliers on the regressed confidence maps. Papandreou et

al. [29] proposed to use fully convolutional ResNets[16] to

predict a confidence map and an offset map simultaneously

and aggregated them to obtain accurate predictions. Other

works adopted a sequential procedure that refined the pre-

dicted confidence maps successively using a series of con-
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Figure 2: The network architecture of CFN. The coarse stream learns three coarse keypoint detectors using multi-level

supervisions and while the fine stream learns a fine detector via strict supervision. Then the coarse predictions and fine

predictions are unified for final prediction at the inference stage.

volutional modules [43, 27, 3]. Cao et al. [2] proposed a

pose estimation framework which adopts both explicit spa-

tial modeling and implicit sequential predictions. In con-

trast to existing approaches, our approach models the part

appearance and spatial relationships using a single network

with several branches to capture multi-scale information,

which is more efficient because it requires no explicit graph-

ical model-style inference or sequential refinement. Also,

we generate label maps used for supervision according to

the localization capability of each branch.

3. Coarse-Fine Network

In this section, we introduce the CFN architecture and

describe the details of each component. As illustrated in

Figure 2, the proposed framework consists of shared base

convolutional layers and two streams of keypoint detec-

tors. The coarse stream consists of three coarse detector

branches, each of which only inputs features within a spe-

cific scale range induced by the Inception modules. The

main difference in these branches is the number of stacked

inception modules, leading to different receptive field sizes.

Smaller receptive fields focus more on capturing local ap-

pearances, while larger ones are more suitable for modeling

the spatial dependencies between parts. Therefore we con-

catenate feature maps from all the coarse detectors to learn a

fine detector that is expected to provide very accurate local-

izations. Finally, we learn the entire network using multi-

level label maps, each of them has a strictness level varying

with the localization ability of the corresponding detector.

3.1. Network Architecture

The proposed CFN simultaneously predicts multiple

keypoint/part locations from the input image. Our method

is inspired by the “recognition using regions” paradigm

[14], which has been widely used in general object detec-

tion [34]. However, different from object detection, no

bounding-boxes are provided for supervision in the key-

point localization task. Instead, we predefine a set of square

boxes around the ground-truth keypoint locations as “vir-

tual” bounding-boxes of these keypoints.

Stride, receptive fields, and depth. We build the detector

based on Inception-v2 [38], a deep convolutional network

architecture that has achieved impressive performance in

object recognition. In a convolutional network, the stride

and receptive field sizes increase with depth. Thus, deeper

layers encode richer contextual information to disambiguate

different parts at the cost of reduced localization accuracy.

To balance part classification and localization accuracy, we

employ the features in the Inception (4a-4c) layers to train

the three coarse detectors. The stride of the Inception (4a-

4c) layers is 16, and the corresponding receptive field sizes

are 107 × 107, 139 × 139, and 171 × 171, respectively.

Given an input image of size 224x224, the receptive-field

size in deeper layers is too large for a part and may lead to

ambiguous detections for closely positioned parts. Thus we

increase the input resolution of the network to 448 × 448
so that the receptive field sizes are appropriate to enclose

candidate part regions.

Candidate part regions. After obtaining the final incep-
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Figure 3: An illustration of how the multi-level supervisions are generated for the coarse and fine detectors. For each coarse

detector, we generate a bounding-box with the same size as the receptive fields in that branch as ground-truth, which is shown

as a dashed blue box around the keypoint. The supervision map is calculated according to overlap between the generated

ground-truth box and the regions induced by receptive fields in the final feature map. For the fine detector, we use a small

circle to enforce strict supervisions. (Note that the candidate regions are equally spaced, the unequally spaced candidate

regions shown in this figure are for better illustrations.)

tion layers (4a-4c), we can predict the supervisory label

map by 1×1 convolutions, which is equivalent to a sliding-

window search on the image grid with a large stride size.

However, it is unclear how the supervisory label should be

generated. One typical way is to place a small circle around

the ground-truth keypoint locations, but it is hard to deter-

mine the radius of this circle because either a large or small

radius will lead to inferior performance. To introduce our

multi-level supervision, we brought ideas from object de-

tection that uses overlap between candidate part regions and

ground-truth bounding-boxes. In object detection, the can-

didate object regions are obtained by generating region pro-

posals of various sizes and aspect ratios. However, keypoint

localization only aims to infer the central location of parts

and thus does not require a bounding-box that bounds the

parts tightly. Thus, we define the part regions as squared

regions enclosed by the corresponding receptive fields cen-

tered at the ground truth locations. For example, the size of

the Inception (4a) feature map is 28× 28, which means that

there are 784 candidate regions of size 107×107, which are

uniformly spaced on the input image.

Feature representation. Using regions enclosed by recep-

tive fields as candidate part regions simplifies the feature ex-

traction for part detectors. In the proposed CFN, the cross-

channel vector at a spatial position in the feature map is used

as a feature for the candidate part region associated with that

position. Also, the fine detector relies on multi-scale repre-

sentations by fusing multiple feature layers each of which

is processed by multiple filter sizes through Inception mod-

ules. Therefore, the fine detector in our network can model

the appearance of the object parts by features from a large

number of scales.

Multi-level supervisions. To fully explore the diversi-

ties of hierarchical representations in CNNs, we simulta-

neously learn all detectors using multi-level supervisions.

Each detector has its own appropriate supervision gener-

ated according to receptive field size. Specifically, we gen-

erate label maps for a detector by calculating the intersec-

tions between the candidate part regions and the “virtual”

ground truth part regions. Let Kc = {1, . . . ,K} be the

set of part classes, and D denote the number of coarse de-

tector branches. Given an output feature map in the d-th

branch with size W × H , stride s, offset padding p, and

receptive field size r, each location (w, h) in the output

feature map corresponds to a receptive field rf(w, h) cen-

tered at position (w∗, h∗) = (w, h) ∗ s − (p − 1) + r/2
in the input image. For an annotated keypoint location

(i, j) with class k ∈ Kc, we define a ground truth region

gtk(i, j) with size r × r centered at (i, j). To construct

a target response map Y d for the d-th detector branch, we

set Y d(w, h) = k if the candidate region rf(w, h) has an

Intersection-over-Union (IoU) higher than 0.5 with the “vir-

tual” ground truth region gtk(i, j) and set Y d(w, h) = 0
to classify it as the background otherwise. For the fine

detector, we generate a strict supervision map by setting

Y f (w, h) = k if ‖ (w∗, h∗) − (ik, jk) ‖2≤ λ ∗ ref lengh
and set Y f (w, h) = 0 otherwise, where λ is a control

threshold of strictness and ref lengh is the longer side of

the object bounding box. The multi-level label maps gener-

ated for the detector branches enable detection of keypoints

at various localization accuracy levels.

3.2. Learning and Inference

We build diversified part detectors using fully convolu-

tional architectures with different depths and supervisions.

For efficient inference, we simultaneously learn all the de-

tection networks with shared base convolutional layers by

minimizing a multi-task loss.

Learning. Let σd = ϕ(X,W,Φd,Φd
cls) be the last feature

maps of size W ×H × C in the d-th detector branch given

input image X , shared weights W , unshared weights Φd in

the feature layers, and unshared weights Φd
cls in the classi-
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Table 1: Comparison with methods that report per-part PCK(%) and average PCK(%) on CUB200-2011. The abbreviated

part names from left to right are: Back, Beak, Belly, Breast, Crown, Forehead, Left Eye, Left Leg, Left Wing, Nape, Right

Eye, Right Leg, Right Wing, Tail, and Throat.

α Methods Ba Bk Be Br Cr Fh Le Ll Lw Na Re Rl Rw Ta Th Mean

0.1
[51] 85.6 94.9 81.9 84.5 94.8 96.0 95.7 64.6 67.8 90.7 93.8 64.9 69.3 74.7 94.5 83.6

CFN 88.3 94.5 87.3 91.0 93.0 92.7 93.7 76.9 80.5 93.2 94.0 81.2 79.2 79.7 95.1 88.0

0.05
[51] 46.8 62.5 40.7 45.1 59.8 63.7 66.3 33.7 31.7 54.3 63.8 36.2 33.3 39.6 56.9 49.0

[47] 66.4 49.2 56.4 60.4 61.0 60.0 66.9 32.3 35.8 53.1 66.3 35.0 37.1 40.9 65.9 52.4

CFN 64.1 87.9 57.9 65.8 80.9 83.9 90.3 58.0 50.9 79.4 89.6 62.6 51.0 57.9 84.9 70.9

0.02
[51] 9.4 12.7 8.2 9.8 12.2 13.2 11.3 7.8 6.7 11.5 12.5 7.3 6.2 8.2 11.8 9.9

[47] 18.6 11.5 13.4 14.8 15.3 14.1 20.2 6.4 8.5 12.3 18.4 7.2 8.5 8.6 17.9 13.0

CFN 19.6 40.7 15.7 19.0 33.1 36.0 47.8 20.1 13.1 28.9 47.1 20.9 14.4 18.3 34.1 27.3

Table 2: Comparison of PCP(%) and over-all PCP(%) on CUB200-2011. The abbreviated part names from left to right are:

Back, Beak, Belly, Breast, Crown, Forehead, Eye, Leg, Wing, Nape, Tail, and Throat.

Methods Ba Bk Be Br Cr Fh Ey Le Wi Na Ta Th Total

[23] 62.1 49.0 69.0 67.0 72.9 58.5 55.7 40.7 71.6 70.8 40.2 70.8 59.7

[24] 64.5 61.2 71.7 70.5 76.8 72.0 70.0 45.0 74.4 79.3 46.2 80.0 66.7

[35] 74.9 51.8 81.8 77.8 77.7 67.5 61.3 52.9 81.3 76.1 59.2 78.7 69.1

CFN 82.2 57.4 81.3 80.3 75.6 63.0 62.5 70.8 70.8 81.1 59.7 73.5 72.1

fier layer, respectively. We add one more channels to model

the background class and thereby C = (|Kc|+1). We use

the multi-level label maps described in Figure 3 as super-

visions. Here, we compute the prediction score Prod(w,h,k)

at the position (w, h, k) in the last feature maps using the

softmax function.

Therefore, the loss function on a training image for each

branch is defined as bellow:

ℓ(X,W,Φd,Φd
cls, Y

d) =

−1

W ×H

W−1
∑

w=0

H−1
∑

h=0

|Kc|
∑

k=0

1{Y d
(w,h) = k}log(Prod(w,h,k)).

(1)

The loss function ℓ(X,W,Φf ,Φf
cls, Y

f ) for the fine de-

tector is defined similarly as Eqn. 1. Then we use a multi-

task loss to train all the coarse detectors and the fine detector

jointly:

£(Ω, Y ) =
D
∑

d=1

ℓ(X,W,Φd,Φd
cls, Y

d)

+ℓ(X,W,Φf ,Φf
cls, Y

f ),

(2)

where Ω = {W, {Φd,Φd
cls}

D
d=1,Φ

f
cls}, Φf = {Φd}Dd=1,

and Y = {{Y d}Dd=1, Y
f}.

Inference. For each detector in the inference stage, we first

obtain the prediction scores for all candidate regions and

then compute the prediction map Od for each part as fol-

lows:

Od(w, h, k∗) =

{

1 if argmax
k

Prod(w,h,k) = k∗

0 otherwise.
(3)

As we use loose supervision for each detector, the results

Od have multiple predicted locations for each part. Accord-

ing to the overlapping receptive field mechanisms in CNNs,

the most precise prediction is around the center of the pre-

dicted locations. Therefore, we obtain a “blur” prediction

by convolving the prediction maps with a 2D Gaussian ker-

nel G and select the location with the maximum value in the

k-th channel as the unique prediction (w∗
k, h

∗
k) for the k-th

part.

Unified detection. Our system learns four detectors si-

multaneously and unifies their outputs into the final predic-

tion. The detectors vary in their ability to detect the ob-

ject parts. The fine detector tends to output accurate and

reliable predictions since it receives stacked features from

multiple layers. However, we observe that it may miss

predictions of some occluded parts, which can be detected

by the coarse detectors. To predict a set of parts as pre-

cisely and as completely as possible, we combine the out-

puts from the coarse and fine detectors by using the strat-

egy that the former ones serve as the assistant predictors

for the latter one. Let (w∗
k, h

∗
k)

d be the kth part predic-

tion with score Prod(w∗,h∗,k) from the d-th coarse part de-
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Figure 4: Bird part detection results with occlusion,viewpoint, clustered background, and pose from the test set.

Table 3: Performance comparison between using strict su-

pervision only and using multi-level supervisions.

α Methods 4a(%) 4b(%) 4c(%) Fine(%) Unified(%)

0.1
Str-super 66.1 59.6 79.9 80.8 83.7

Multi-super 79.2 84.9 82.0 80.8 88.0

0.05
Str-super 55.6 49.1 66.6 67.4 69.3

Multi-super 60.6 59.8 52.4 67.6 71.0

0.02
Str-super 22.5 18.8 26.5 26.8 27.3

Multi-super 20.9 18.3 14.2 26.5 27.3

tector, and (w∗
k, h

∗
k)

f be the kth part prediction with score

Prof(w∗,h∗,k) from the fine part detector. Then we obtain

the unified detection using the equation bellow:

(w∗∗
k , h∗∗

k ) =

{

(w∗
k, h

∗
k)

f if Pro(w∗, h∗, k)f ≥ µ

(w∗
k, h

∗
k)

d∗

otherwise,

(4)

where d∗ = argmax
d

Prod(w∗,h∗,k), µ ∈ [0, 1] is a threshold

that controls how much the coarse and fine detectors con-

tribute to the prediction. When µ = 0, only the fine detec-

tor is used for detection, and when µ = 1, the final output

is determined by the coarse detectors.

4. Experiments

To evaluate the efficacy and generality of our method,

we study two different keypoint localization problems in-

cluding bird part detection and human pose estimation. We

compare our CFN with existing methods on three datasets

including CUB-200-2011 [42], LSP[19], and MSCOCO-

Keypoint [22].

4.1. Bird Part Localization

The CUB200-2011 [42] is a widely used dataset for bird

part localization. It contains 200 bird categories and 11, 788

images with roughly 30 training images per category. Each

image has a bounding box and 15 key-point annotations.

Here we adopt both the PCP and PCK criteria and com-

pare our results to the reported performance of the state-

of-the-art methods. We present the PCP results for each

part as well as the total PCP results in Table 2. Com-

pared to the methods that report PCP results, our method

improves the overall PCP over the second best approach by

4.3%. Notably, although previous methods show poor per-

formance of the ‘leg’ and ‘back’ part detection, our method

achieves up to 33.8% and 9.8% improvements for the two

parts over the next best method. We also report per-part

PCK and mean PCK results compared with other methods

with α ∈ {0.1, 0.05, 0.02} in Table 1. Here, a smaller α
means more strict error tolerance in the PCK metric. Our

method outperforms existing techniques at various α set-

ting. This nicely demonstrates our approach produces more

accurate predictions with a higher recall for keypoint local-

ization. Also, the most striking result is that our approach

obtains a 35% improvement over the second best method

using the strict PCK metric. Figure 4 shows some qualita-

tive results on the CUB200-2011 testing set.

In order to further understand the performance gains pro-

vided by our network structure, we also provide interme-

diate results of using strict supervision and multi-level su-

pervisions. As shown in Table 3, using multi-level super-

visions to learn the convolutional network achieves better

performance than using the strict supervision alone. This

is mainly because imposing appropriate supervision can

significantly improve the accuracy of the coarse detectors,

thereby enhance the performance of the unified detection.

Moreover, the performance gain gradually diminishes as α
decreases, because coarse detectors fail to predict very ac-

curate locations and contribute less to the final predictions.
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Table 4: Comparison of PCK (%) score at the level of 0.2 on the LSP dataset.

Methods Head Shoulder Elbow Wrist Hip Knee Ankle PCK

Carreira et al. [3] 90.5 81.8 65.8 59.8 81.6 70.6 62.0 73.1

Chen&Yuille [46] 91.8 78.2 71.8 65.5 73.3 70.2 63.4 73.4

Yang et al. [45] 90.6 78.1 73.8 68.8 74.8 69.9 58.9 73.6

Yu et al. [47] 87.2 88.2 82.4 76.3 91.4 85.8 78.7 84.3

Insafutdinov et al.[32]* 97.4 92.7 87.5 84.4 91.5 89.9 87.2 90.1

Wei et al. [43]* 97.8 92.5 87.0 83.9 91.5 90.8 89.9 90.5

Chu et al. [6]* 98.1 93.7 89.3 86.9 93.4 94.0 92.5 92.6

CFN 94.3 87.9 81.8 77.5 83.2 85.8 81.0 84.5

* Methods trained by adding MPII training set to the LSP training and LSP extended training set.

Table 5: Results on COCO keypoint on test-dev and test-standard split

Method AP AP OKS=0.50 AP OKS=.75 AP medium AP large

Test-Dev

CMU-Pose [2] 61.8 84.9 67.5 57.1 68.2

G-RMI (COCO-only) [29] 64.9 85.5 71.3 62.3 70.0

G-RMI (COCO-int) [29] 68.5 87.1 75.5 65.8 73.3

Mask R-CNN (Keypoint-only) [15] 62.7 87.0 68.4 57.4 71.1

Mask R-CNN (Keypoint & mask) [15] 63.1 87.3 68.7 57.8 71.4

RMPE [9] 61.0 82.9 68.8 57.9 66.5

CFN 72.6 86.1 69.7 78.3 64.1

Test-Std

CMU-Pose [2] 61.1 84.4 66.7 55.8 68.4

G-RMI(COCO-only) [29] 64.3 84.6 70.4 61.4 69.6

G-RMI(COCO-int) [29] 67.3 85.4 73.5 64.2 72.6

CFN 72.2 85.7 68.8 78.6 63.7

4.2. Human Pose Estimation

Leeds Sports Pose Leeds Sports Pose (LSP) [19] dataset

is a well established benchmark for human pose estimation.

The original LSP dataset contains 2,000 images with 14

joint annotations. To reduce overfitting, we combine the

first 1,000 images of the original LSP and all images from

the extended LSP dataset [20] for training.

MSCOCO-Keypoint Challenge. The MSCOCO Keypoint

dataset consists of 100k people with over 1 million total an-

notated keypoints for training and 50k people for validation.

The testing set is unreleased and includes “test-challenge,

“test-dev”, and “test-standard” three subsets, each contain-

ing about 20K images. The MSCOCO evaluation defines

the object keypoint similarity (OKS) and use AP (averaged

across all 10 OKS thresholds) as the main metric to evaluate

the keypoint performance.

Implementation. For experiments on LSP dataset, we first

estimate the center locations and rough scales according to

joint annotations or image sizes in order to resize the im-

ages into the same scale. We then crop or pad the scaled

images into 448 × 448 according to the center positions.

We also adopt the same augmentation scheme in [43] dur-

ing network training. To address the problem of multi-

person pose estimation in MSCOCO-Keypoint dataset, we

adopt the Faster R-CNN framework [34] with a pre-trained

model1 on the MSCOCO dataset to obtain person bounding

boxes. We extend the bounding boxes by 30 pixels along

both sides and crop out the person instances. We also resize

the long side of each image to 512 pixels while maintaining

its aspect ratio. We pad each resized image with zero pix-

els and form a training example of size 512 × 512. Then

we randomly crop the image into 448 × 448 as the input

of the multi-level supervised nets. We train our model for

300k iterations using SGD with a momentum of 0.9, a batch

size of 16, and an initial learning rate of 0.001 with step de-

cay 100k. We initialize network weights with a pre-trained

model on ImageNet which is available online 2.

Results on MSCOCO-Keypoint. We evaluate our method

on the MSCOCO-Keypoint dataset. Our model uses a sin-

gle person-detector and the provided training data only.

1https://github.com/rbgirshick/py-faster-rcnn
2https://github.com/lim0606/caffe-googlenet-bn
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Figure 5: Pose estimation results with occlusion, crowding, deformation, and low resolution from the COCO test set.

Quantitative results evaluated from the online server 3 are

given in Table 5. Our method achieves 72.2 AP, which is

an 18% improvement over the winning team, and also sig-

nificantly outperforms the recently proposed methods. Note

that the significant overall improvement is mainly attributed

to the improvement in the performance on medium-sized

persons (322 < area < 962). Table 5 shows that our

medium-sized result (78.3 APM ) is 12.5 higher than the

second best method [29] that uses extra data and ensem-

ble person-detector. The superior performance on medium-

sized metric (APM ) demonstrates that the proposed method

is particularly effective for the cases where the keypoint ap-

pearance is indistinct or ambiguous. Figure 5 shows some

qualitative pose estimation results on the MSCOCO testing

set. It is also worth noting that our caffe [18] implementa-

tion of CFN runs at 48 frames/sec on a TitanX GPU at the

inference stage. Our method allows for real-time human

pose estimation together with a fast person detector.

Results on LSP. We evaluate our method on the LSP

dataset using the Percentage Correct Keypoints (PCK) met-

ric with person-centric (PC) annotations. Our method

achieves 84.5% accuracy, which is slightly better than the

3https://competitions.codalab.org/competitions/12061

state-of-the-art method [47] without adding MPII training

data. The improvement is not significant possibly because

most persons in the LSP dataset are large enough to have

distinctive keypoint appearance while our method is more

advantageous for medium-sized persons.

5. Conclusion

In this paper, we have proposed a coase-fine convolu-

tional network for keypoint localization on birds and hu-

mans. Our method fully explores hierarchical representa-

tions in CNNs by constructing a series of part detectors

which are trained using multi-level supervisions. The multi-

level supervisions supervise each network branch according

to the localization ability of the detectors built from differ-

ent feature layers in a CNN. The outputs of all the part de-

tectors are principally unified to deliver promising perfor-

mance for both bird part localization and human pose esti-

mation.

Acknowledgements

The work is partially supported by Australian Research
Council Projects FL-170100117, DP-140102164, and LP-
150100671.

3035



References

[1] M. Andriluka, S. Roth, and B. Schiele. Pictorial structures

revisited: People detection and articulated pose estimation.

In CVPR, 2009. 2

[2] Z. Cao, T. Simon, S.-E. Wei, and Y. Sheikh. Realtime multi-

person 2d pose estimation using part affinity fields. In CVPR,

2017. 1, 3, 7

[3] J. Carreira, P. Agrawal, K. Fragkiadaki, and J. Malik. Hu-

man pose estimation with iterative error feedback. In CVPR,

2016. 2, 3, 7

[4] Y. Chai, V. Lempitsky, and A. Zisserman. Symbiotic seg-

mentation and part localization for fine-grained categoriza-

tion. In ICCV, 2013. 2

[5] X. Chu, W. Ouyang, H. Li, and X. Wang. Structured feature

learning for pose estimation. In CVPR, 2016. 2

[6] X. Chu, W. Yang, W. Ouyang, C. Ma, A. L. Yuille, and

X. Wang. Multi-context attention for human pose estima-

tion. CVPR, 2017. 7

[7] N. Dalal and B. Triggs. Histograms of oriented gradients for

human detection. In CVPR, 2005. 2

[8] M. Dantone, J. Gall, C. Leistner, and L. Van Gool. Human

pose estimation using body parts dependent joint regressors.

In CVPR, 2013. 2

[9] H. Fang, S. Xie, and C. Lu. Rmpe: Regional multi-person

pose estimation. CVPR, 2017. 7

[10] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ra-

manan. Object detection with discriminatively trained part-

based models. TPAMI, 32(9):1627–1645, 2010. 2

[11] P. F. Felzenszwalb and D. P. Huttenlocher. Pictorial struc-

tures for object recognition. IJCV, 61(1):55–79, 2005. 2

[12] Y. Ganin and V. Lempitsky. Unsupervised domain adap-

tation by backpropagation. In International Conference on

Machine Learning, pages 1180–1189, 2015. 2

[13] M. Gong, K. Zhang, T. Liu, D. Tao, C. Glymour, and

B. Schlkopf. Domain adaptation with conditional transfer-

able components. In ICML, pages 2839–2848, 2016. 2

[14] C. Gu, J. J. Lim, P. Arbeláez, and J. Malik. Recognition
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