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Abstract

Markov Random Fields are widely used to model light-

field stereo matching problems. However, most previous ap-

proaches used fixed parameters and did not adapt to light-

field statistics. Instead, they explored explicit vision cues to

provide local adaptability and thus enhanced depth qual-

ity. But such additional assumptions could end up confining

their applicability, e.g. algorithms designed for dense light

fields are not suitable for sparse ones.

In this paper, we develop an empirical Bayesian

framework—Robust Pseudo Random Field—to explore in-

trinsic statistical cues for broad applicability. Based on

pseudo-likelihood, it applies soft expectation-maximization

(EM) for good model fitting and hard EM for robust depth

estimation. We introduce novel pixel difference models

to enable such adaptability and robustness simultaneously.

We also devise an algorithm to employ this framework on

dense, sparse, and even denoised light fields. Experimental

results show that it estimates scene-dependent parameters

robustly and converges quickly. In terms of depth accuracy

and computation speed, it also outperforms state-of-the-art

algorithms constantly.

1. Introduction

Light-field stereo matching is an effective way to infer

depth maps from color images. It is based on two proper-

ties: photo-consistency across views and depth continuity

between pixels. They are often formulated by Markov Ran-

dom Fields (MRFs) [2], a statistical graph model, for global

optimization: the former as data energy and the latter as

smoothness energy.

However, most previous approaches applied global op-

timization heuristically, not statistically. For example, the

energy functions were not inferred from statistics but, in-

stead, devised based on practical experience. They were

often given in robust clipping forms (with constant param-

eters), such as truncated linear [25] and negative Gaussian

[14], to preserve correct depth edges. Recent work has fur-

ther explored advanced vision cues, such as depth consis-

(a) Input light field (b) ICCV’15 [21] (c) Soft-EM MRF

(d) RPRF (e) RPRF on 3×3 (f) RPRF on 3× 3

(This work) views denoised views

Figure 1. Robust Pseudo Random Fields (RPRFs). (a) A chal-

lenging light field StillLife (9×9 views) in HCI dataset [23]. (b)-(f)

The depth maps produced by (b) Wang et al. [21], (c) MRF using

conventional soft-EM energy, (d) RPRF using robust hard-EM en-

ergy, (e) RPRF on a more sparse 3×3 light field, and (f) RPRF

on a distorted 3×3 light field which is first corrupted by Gaussian

noise (σ = 10) and then denoised by BM3D [4].

tency [22], line segments [25], and occlusion in angular

patches [21], to achieve better depth quality. But these ad-

ditional cues also narrow applicable scope correspondingly.

For example, features for dense light fields ([22, 21]) may

not work for sparse ones. Also, image denoising which is

commonly used in low-light conditions could invalidate tex-

tural cues ([25]). In this paper, we aim to construct MRFs

in a statistical way to infer robust energy functions for good

depth accuracy and estimate scene-dependent parameters

for broad applicability.

MRF parameter estimation via maximum likelihood is

usually intractable because the normalization factor for

unity is hard to calculate. Instead, pseudo-likelihood [1]

is a classical approximation by exploring local dependence.

One global MRF (likelihood) can be separated into lots of

local neighborhoods (pseudo-likelihood) to collect statistics

and perform distribution fitting. Nevertheless, this approach

has a major issue for stereo matching: empirical distribu-
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tions usually do not have robust clipping forms. Therefore,

good distribution fitting will result in non-robust energy and

thus over-smooth depth (Fig. 1(c)). On the other hand,

keeping robust energy will lead to inaccurate fitting results.

Contributions. In this paper, we address this issue by

developing a novel framework—Robust Pseudo Random

Field (RPRF). Inspired by [7], we model pixel differences

by scale mixtures with soft-edge hidden priors. For param-

eter estimation, we apply soft expectation-maximization

(EM) by marginalizing out the hidden priors to achieve

good pseudo-likelihood fitting. For MRF formulation, we

employ hard EM by maximizing energy with respect to the

priors to derive robust energy functions. Based on the pro-

posed RPRF (Section 3), we devise an empirical Bayesian

algorithm for light-field stereo matching in Section 4. It is,

to our best knowledge, the first work of MRF parameter es-

timation for a single light field.

Extensive experimental results in Section 5 will show

that this work has good statistical adaptability and produces

great depth maps for not only dense light fields but also

sparse and denoised ones. The scene-dependent parame-

ters can also be estimated robustly with fast convergence.

Finally, we demonstrate better depth accuracy and faster

computation speed than previous work [22, 25, 21].

2. Related Work

Pseudo-likelihood. It assumes that local neighborhoods

give independent observations; therefore, we can estimate

parameters by maximizing the pseudo-likelihood that ag-

gregates all the local observations. This approach has been

widely used to learn MRF parameters for many different

applications from training datasets [13, 16]. The reader is

referred to [2] for further details. In this paper, we estimate

parameters from a single light field.

Single-scene parameter estimation. Previous work for

similar purposes focused on stereo image pairs and used the

conventional framework: identical likelihood functions for

distribution fitting and MRF inference. Zhang et al. [26]

aimed to build robust energy functions and achieved that

by performing soft EM on linear mixture models. How-

ever, the modeled distributions do not fit the histograms of

pixel difference well. Also, it takes six iterations to con-

verge between parameters and depth maps. In contrast, Liu

et al. [15] and Su et al. [17] introduced advanced models to

fit natural images, but the inferred depth maps do not have

good accuracy. In this paper, we develop a new framework

with quick convergence in which separate likelihood func-

tions are used: soft-EM ones for good model fitting and

hard-EM ones for robust energy functions.

Soft and Hard EM. They are conventional approaches

for maximum likelihood estimation with unobserved data

and usually used for different purposes. For example, the

EM algorithm (soft EM) for clustering minimizes likeli-

hood and the K-means (hard EM) optimizes data distortion

[10]. For neighborhood filters, Huang [7] proposed a neigh-

borhood noise model (NNM) to estimate parameters. The

NNM fits heavy-tailed empirical distributions by soft EM

and reasons robust range-weighted filters by hard EM. In

this paper, we apply this approach to infer RPRFs for ro-

bust light-field stereo matching. We employ a similar model

for the data energy with a new kernel function and propose

a novel model for the smoothness energy to include depth

labels.

Light-field stereo matching. Light fields possess lots

of information for depth estimation, and previous work ex-

plored different vision cues for specific applications. Some

approaches employed features for dense light fields, such

as depth consistency [22], reliable data terms [11], bilat-

eral consistency [3], phase shift [8], and occlusion in angu-

lar patches [21]. Some others focused on clean physical or

textural cues, such as explicit occlusion [12], 3D line seg-

ments [25], defocus [19], sparse presentation [9], and con-

volutional networks [6]. In contrast, some targeted noisy

light fields and applied noise-resistant cues, such as focal

stack [14] and adaptive refocus response [24]. In this paper,

we get back to fundamentals in MRF inference and explore

intrinsic statistical cues for wide application scope.

3. RPRF Modeling

For a given light field, we estimate the disparity (inverse

depth) map for the center view in which each pixel p has

a k-channel color signal zp and an unknown disparity label

lp. The disparity map D = {lp} is derived by optimizing

the global MRF energy

∑

p





∑

v∈V

Ed
pv(lp) + λ

∑

q∈N4(p)

Es
pq(lp, lq)



 . (1)

The view-wise data energy Ed
pv measures photo-

consistency by color difference between zp and the

corresponding signal yvp(lp) in a surrounding view v for

the disparity lp. The edge-wise smoothness energy Es
pq

evaluates depth continuity by color-conditioned disparity

difference between a pixel pair p and q in 4-connected

neighborhood N4. Finally, the weight parameter λ
determines their ratio of contribution to the global energy.

We reason and infer the MRF in (1) by constructing

pseudo-likelihood for pixel differences of each pixel p from

its view-wise and spatial neighborhoods as shown in Fig.

2. In the following, we will introduce the view-wise pixel

difference model for the data energy first and then the novel

spatial model for the smoothness energy.

3.1. Pixel difference model for data energy

Let Xd be a random vector for the view-wise color dif-

ference xd , zp − yvp(lp). Its empirical distribution is
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Figure 2. Pseudo-likelihood modeling for RPRFs. For the view-

wise neighborhood, color difference xd is modeled by a scale mix-

ture with a soft-edge hidden variable wvp. For the spatial neigh-

borhood, color difference xs and disparity difference h are formu-

lated by different scale mixtures with an identical hidden upq .

usually heavy-tailed, and we employ a model similar to the

NNM for good model fitting. We introduce a scale random

variable W to model color edges using soft decisions and

formulate Xd in a Gaussian scale mixture (GSM):

Xd|W = w ∼ N
(

0,
σ2
d

w
Ik

)

, (2)

fW (w) =
1

Nd
w− k

2 eαdG(w), w ∈ [ǫd, 1], (3)

where σd is a scale parameter for Xd, αd and ǫd are shape

parameters for W , and Nd is the normalization factor for

unity. The hidden prior function G(w) controls the distri-

bution of W and will be shown its direct link to the energy

function. Note that the σd here represents only distribution

scaling, not for the noise intensity in the NNM.

Parameter estimation by soft EM Given an estimated

disparity map D̃ = {l̃p}, we can use the corresponding sig-

nals from surrounding views {yvp(l̃p)} to update the pa-

rameter set for data energy θd = (σd, αd, ǫd)
T . Consider

a sufficient statistic td ,‖ xd ‖2. By marginalizing out the

hidden W from the joint distribution fTd,W , we can have its

soft-EM energy:

Esoft
Td

(td;θd) = − log

∫ 1

ǫd

fTd,W (td, w;θd)dw. (4)

Note that it is a non-analytic function and requires numeri-

cal integrals for evaluation. The updated parameter θ̂d can

be derived by model fitting or, equivalently, global energy

optimization using empirical observations:

θ̂d = argmin
θd

∑

t̃d

Esoft
Td

(t̃d;θd), (5)

where t̃d =‖ zp − yvp(l̃p) ‖2. Then the parameter set θd

can be estimated by iterative updates until converged.

Type
Energy

E(x)
Kernel

K(x)
Hidden Prior

G(w)

Reciprocal − 1
x+1

1
(x+1)2 2

√
w − w

Gaussian −e−x e−x w(1− logw)

Table 1. Examples of robust hard-EM energy functions. We

adopt the Reciprocal energy as detailed in Section 3.3.

Robust data energy by hard EM Define an energy func-

tion E(x) related to the prior G(w) by

E(x) , min
w

(wx−G(w)) , x ≥ 0. (6)

Then we can construct the hard-EM energy for color differ-

ence Xd, given a parameter set θd, by maximizing the joint

distribution fXd,W with respect to the hidden W (select the

best guess of w):

Ehard
Xd

(xd) = − log max
w

fXd,W (xd, w) (7)

= αdE

(‖ xd ‖22
2αdσ2

d

)

+ C, (8)

where C is a constant offset and will be discarded be-

cause only the energy difference matters for MRF inference.

Therefore, we have the view-wise data energy in (1) as

Ed
pv(lp) = Ehard

Xd
(zp − yvp(lp)). (9)

For exploring the relationship between E(x) and G(w),
we define a kernel function K(x) by

K(x) , (G′)
−1

(x). (10)

Then it can be shown using integration by parts that K(x)
is exactly the derivative of E(x). As a result, the three core

functions are directly connected by

E′ = K = (G′)
−1

. (11)

Table 1 shows two examples, Reciprocal and Gaussian, for

a robust energy function E(x).

3.2. Pixel difference model for smoothness energy

Let H be a random variable for the spatial disparity dif-

ference h , |lp − lq|, Xs be a random vector for the corre-

sponding color difference xs , zp − zq , and U be a soft-

edge scale random variable. We propose a scale mixture of

generalized Gaussian distributions for fH|U to fit the thick-

tailed distribution of H . Along with a GSM for Xs, we

construct the following joint model:

fH|U (h|u) =
2

γ( 1
β
+ 1)δ

u
1

β e−u(h
δ
)β , (12)

Xs|U = u ∼ N
(

0,
σ2
s

u
Ik

)

, (13)

fU (u) =
1

Ns
u−( k

2
+ 1

β
)eαsG(u), u ∈ [ǫs, 1], (14)
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where δ and β are the scale and shape parameters for H ,

and the β is fixed to 1.5 in this paper. The σs, αs, ǫs and Ns

serve the same purposes as the σd, αd, ǫd and Nd separately.

The disparity difference H shares the same edge prior U
with the color difference Xs for inferring color-conditioned

MRF. Also, the additional factor u− 1

β in fU (u), compared

to fW (w), is devised to cancel out the u
1

β in fH|U (h|u) for

the joint distribution fXs,H,U . Thus the hard-EM smooth-

ness energy can have a simple form similar to the case of

the data energy (8).

Parameter estimation by soft EM Consider the parame-

ter set θs = (δ, σs, αs, ǫs)
T . We update it using the empiri-

cal t̃s for a sufficient statistic ts ,‖ xs ‖2 and also the em-

pirical disparity difference h̃ from a given disparity map D̃.

However, using their soft-EM joint energy, which marginal-

izes out U for fTs,H,U , will induce a computation issue: it

needs to evaluate the non-analytic energy for every pair of

t̃s and h̃. Instead, we derive the updated θ̂s by using their

marginal energy to speed up the process:

θ̂s = argmin
θs





∑

t̃s

Esoft
Ts

(t̃s;θs) +
∑

h̃

Esoft
H (h̃;θs)



 .

(15)

Robust smoothness energy by hard EM Similarly to

(7)-(8), we maximize the joint distribution fXs,H,U with re-

spect to the hidden U and have the hard-EM energy for pixel

differences xs and h as follows:

Ehard
Xs,H

(xs, h) = αsE

(‖ xs ‖22
2αsσ2

s

+
hβ

αsδβ

)

. (16)

At last, we have the edge-wise smoothness energy in (1):

Es
pq(lp, lq) = Ehard

Xs,H
(zp − zq, |lp − lq|), (17)

which constitutes a conditional random field.

3.3. On selection of energy function E(x)

The proposed models can fit light fields of different char-

acteristics and track their heavy tails well as shown in Fig.

3(a)-(b). The Reciprocal type in Table 1 can provide better

fitting accuracy than the conventional Gaussian one, espe-

cially for spatial difference ‖ xs ‖2. Therefore, we adopt

it for the stereo matching algorithm in this paper. In ad-

dition, Fig. 3(c)-(d) show the corresponding energy func-

tions. The soft-EM ones are close to the empirical ones due

to the model fitting; however, they induce bad depth edges

as shown in Fig. 1(c). In contrast, the hard-EM ones have

similar values for small color difference but saturate quickly

as robust metrics for large difference. As a result, the depth

edges can be well preserved as Fig. 1(d) shows.

4. Implementation for Stereo Matching

Parameter estimation Given an disparity map, we esti-

mate the parameters θd and θs for data and smoothness

energy from the corresponding view-wise and spatial pixel

differences. For the θd, we applied the EM+ fitting method

designed for NNM in [7] to our soft-EM update formulation

(5). Small changes were made for the model difference. For

the θs updated by (15), we modified the method to include

the disparity difference with its additional parameter δ and

statistics h̃.

Belief propagation Given the global MRF energy (1), we

use belief propagation (BP) [5] to solve the disparity map it-

eratively. We adopted the BP-M approach in [18] for its effi-

cient message propagation. We stop the BP-M if the global

energy is not decreased by more than 1%, and around four

iterations on average are performed in our experiments.

Energy approximation We use the linear-time algorithm

in [5] for fast message updating. To achieve this, we ap-

proximated the Reciprocal smoothness energy (16) by the

truncated linear function with the least squared error:

Ehard
Xs,H

≃ αs min

(

0.3726

δα
1

β
s b

1

β
+1

h,
1

b

)

+ const, (18)

where b = 1 +
‖xs‖

2

2

2αsσ2
s

which can be calculated in advance

for each pixel pair p and q before running BP-M.

Adaptive selection for λ The parameters αd and αs sta-

tistically determine the dynamic ranges of the data and

smoothness energy. We further use the heuristic parameter

λ to weight importance between them for different condi-

tions. For example, denoised light fields relies on smooth-

ness energy more than normal ones, so we assign larger val-

ues to λ for them. Also, we set the values proportional to the

numbers of surrounding views, |V|. But they are lower trun-

cated because the data energy using few views becomes un-

reliable. Lastly, we use two categories, λweak and λstrong,

for scene-adaptive assignment as listed in Table 2.

Entropy-based scene adaptability There are two typical

scenarios as shown in Fig. 4: one needs a small λ, as Still-

Life, to minimize depth errors, and the other prefers a large

λ, as Medieval. We found that the cross entropy H(h̃, h) be-

tween the empirical and modeled disparity differences is a

good indicator for them. A small reduction of H(h̃, h) for λ
from zero to a large value means the data energy outweighs

the smoothness one, so a weak λ is preferred. On the con-

trary, a significant reduction encourages a strong λ. Based

on this observation, we use the reduction ratio to adaptively

assign λweak and λstrong.
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(a) Model fitting of

td =‖ xd ‖2

(b) Model fitting of

ts =‖ xs ‖2

(c) Data energy vs.

‖ xd ‖2

(d) Smoothness energy vs.

‖ xs ‖2 (h = 0)
Figure 3. Modeling fitting and robust energy. The top row is for the light field StillLife and the bottom for Medieval. Ground-truth

disparity maps are used to generate empirical distributions. (a)-(b) Distribution fitting results using the Reciprocal and Gaussian types for

(a) view-wise color difference ‖ xd ‖2 and (b) spatial difference ‖ xs ‖2 with their Kullback-Leibler divergence (KLD) shown at the

corners. (c)-(d) Corresponding energy functions of the Reciprocal type for (c) data energy and (d) smoothness energy.
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Figure 4. Depth estimation quality vs. λ. Depth error is repre-

sented by mean squared error (MSE) in disparity. Cross entropy

measures the distance between the distributions of the empirical

disparity difference h̃ and the modeled h. Their values are both

normalized with respect to the case of λ = 0 for comparison.

Stereo matching algorithm At first, we initialize a dis-

parity map Dini using MRF inference with default param-

eters: λini = 300, θ
ini
d = (

√

2/3, 6, 0.1), and θ
ini
s =

(0.05,
√

8/3, 9, 0.1). Then we update parameters and esti-

mate depth iteratively. In each iteration, we use the λstrong

in Table 2 to infer the disparity map first. If the cross en-

tropy H(h̃, h) is reduced by less than a ratio r, 50% in this

paper, compared to the case of λ = 0, we will switch to the

weak scenario and use λweak for inference instead.

4.1. Parameter estimation

5. Experiments

We perform extensive experiments on three datasets for

objective evaluation: HCI Blender [23] and Berkeley [21]

are synthetic, and HCI Gantry [23] contains real pictures.

They are all dense light fields of 9×9 views, and we sub-

sample them to produce sparse 5×5 and 3×3 test cases. We

also generate denoised light fields by adding Gaussian noise

and then performing BM3D [4]. For comparing objective

Condition λweak λstrong

Normal max(|V|/4, 4) max(3|V|, 24)
Denoised max(|V|/2, 6) max(3|V|, 48)

Table 2. Adaptive selection of λ. Two operating conditions are

considered: normal and denoised light fields. Two scene-adaptive

categories, λweak and λ
strong, are further defined.

quality across view types, we calculate mean squared errors

(MSE) in disparity all with respect to the baselines of 9×9

light fields. The values are then multiplied by 100 to keep

significant figures and denoted by DMSE.

We will also show results for light fields captured by

Lytro ILLUM for demonstrating generalization capability.

Light-field RAW data from EPFL dataset [20] and our own

pictures are processed using Lytro Power Tools Beta. Our

software and more results are available online1.

Robustness to initial conditions Different initial param-

eters lead to different initialized disparity maps Dini. For

example, a large value of λini prefers the smoothness en-

ergy and gives an over-smooth Dini. Note that an ideal Dini

is the ground-truth depth itself. In this work, different Dini

can generate similar MRF parameters as shown in Fig. 5.

Such robustness can be explained by the corresponding em-

pirical distributions in Fig. 6. They differ mainly in distri-

bution tails but behave similarly for small pixel difference;

therefore, the inferred hard-EM energy functions are also

similar. Note that the difference of the tails results in the

variation of ǫd and ǫs, but these two parameters do not af-

fect the hard-EM energy and thus the MRF inference.

1http://www.ee.nthu.edu.tw/chaotsung/rprf

15

http://www.ee.nthu.edu.tw/chaotsung/rprf


Initial condition Ground-truth depth Data energy preferred Smoothness preferred Default in this work

(λ;σd, αd; δ, σs, αs) (0.5; 0.6, 25.0; 0.05 ,1.4, 4.0) (600.0; 0.7, 4.0; 0.05 ,2.0, 10.0) (300.0; 0.8, 6.0; 0.05 ,1.6, 9.0)

Initialized disparity

map Dini

DMSE=2.47 DMSE=19.69 DMSE=4.76

(Updated parameters) (2.0; 1.1, 4.6; 0.02 ,1.9, 7.0) (2.0; 1.2, 5.0; 0.04 ,1.8, 7.2) (2.0; 1.3, 4.6; 0.05 ,2.1, 7.6) (2.0; 1.3, 4.9; 0.05 ,2.1, 7.6)

Updated disparity

map D̃ (m=1)

DMSE=1.21 DMSE=1.21 DMSE=1.21 DMSE=1.22

Figure 5. Robust update for parameters and depth. Four initial disparity maps Dini for the 3×3 case of StillLife are used for comparison.

One uses ground-truth depth (ideal). The others are initialized by different parameter sets: one is noisy by weighting data energy more

(λ=0.5), one is over-smooth by weighting smoothness term more (λ=600), and the last one is moderate using the default setting (λ=300).

The updated parameters for MRF energy are all similar in one iteration, and the accordingly estimated disparity maps show little difference.

Quick convergence The robustness to initialized dispar-

ity maps also results in the quick convergence of parameter-

depth update iterations. Fig. 7 shows the accuracy of the

parameters estimated by the default initial condition com-

pared to the ideal one. All MRF parameters can be well

estimated and converged in one iteration except δ. But such

inaccuracy of δ only affects depth quality slightly, e.g. the

second iteration increases its accuracy but only improves

the DMSE by 0.2% on average. Therefore, we set the de-

fault iteration number to one.

Parameter variation Consider the two bandwidth pa-

rameters of MRF inference: αdσ
2
d (data) and αsσ

2
s (smooth-

ness). Over 9x9 light fields, their value ranges are [2.2,

8.2] and [10.0, 63.5], respectively. They distribute more

uniformly than a normal distribution, and their excess kur-

tosis are -0.9 and -0.7. For denoised light fields (σ=10),

the data bandwidth becomes 4.7x larger and the smooth-

ness one 0.4x smaller. All these variations can be estimated

well by this work.

5.1. Depth estimation

We compare our results (RPRF) with the globally con-

sistent depth labeling (GCDL) [22], line-assisted graph cut

(LAGC) [25], phase-shift cost volume (PSCV) [8], and

occlusion-aware depth estimation (OADE) [21]. We use the

codes provided by the authors.

Dense and sparse light fields Table 3 details the depth

estimation errors for dense 9×9 test cases, and our work

has better performance. Fig. 8 further compares the results
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Figure 6. Empirical distributions. They are collected using the

initialized disparity maps in Fig. 5. Note that the distributions of

t̃s are not related to disparity maps and are all the same.
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Figure 7. Parameter estimation accuracy. Accuracy is measured

by relative absolute difference, and cumulative distribution func-

tions (CDFs) derived from all test cases for HCI Blender dataset.

from dense to sparse light fields. The GCDL and OADE fail

in sparse cases, while the LAGC becomes worse in denser

ones. In contrast, PSCV and our work have constant quality

over these view types. We demonstrate that sparse views

can generate depth maps as great as dense ones do if robust

energy from clean images is used. Fig. 9 shows an example

for subjective evaluation.

16



Figure 8. Depth estimation error vs. Light-field view type. The average errors are represented in DMSE (log scale).

Ground truth GCDL LAGC PSCV OADE RPRF

9×9

3×3

Figure 9. Estimated depth maps for LivingRoom. This work infers good depth edges in both 9×9 and 3×3 test cases, especially around

the chair arm and the lamps. GCDL and OADE fail in the 3×3 case, and LAGC and PSCV produce over-smooth depth.

Table 3. Depth errors in DMSE for dense 9×9 light fields.

Denoised light fields Applying the RPRF to the light

fields denoised by BM3D produces better depth than di-

rectly applying to the noisy ones. It can even outperform

the algorithms designed for noisy light fields in [14, 24] as

shown in Table 4. The results regarding denoising condi-

tions are summarized in Fig. 10. In these cases, fewer views

will decrease depth quality owing to the less reliable energy.

Real scenes Fig. 11 shows results for light fields captured

by Lytro ILLUM. Our work constantly produces similarly

good depth maps using only 3×3 views compared to Lytro

software that uses raw light fields. Other algorithms also

perform well but occasionally cause obvious artifacts.

Execution time We implement parameter estimation in

MATLAB and the other parts in C++. For one light field,

the parameter estimation and BP-M take about 7 and 10

seconds respectively on average. The remaining computa-

tion is mostly contributed by computing data energy. The

run times are summarized in Table 5. Our work runs much

faster for its simple but efficient MRF formulation.

6. Discussion and Limitation

Occlusion handling. Instead of explicit handling as

[21], we show great depth quality can be achieved by im-

plicit modeling with the soft-edge prior w. A value toward

zero represents more likely occlusion. In this case, hard-EM

energy will saturate data cost, which equivalently separates

the occlusion pixel in a soft way. Therefore, the fact that

hard-EM energy is better than soft-EM one also confirms

the necessity of occlusion formulation.

Scene statistics. Consider a scene has two regions of

different statistics, e.g. tablecloth and fruits in StillLife. In
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Figure 10. Depth estimation error vs. Denoising conditions. The cases with too large DMSE are omitted for clarity.

Center view Lytro (Raw) LAGC (3×3) PSCV (3×3) OADE (5×5) RPRF (3×3)

Figure 11. Estimated depth maps for real scenes. The first two light fields are from EPFL dataset, and the last two captured by us.

Table 4. Depth errors in DMSE for noisy light fields. The num-

bers reported by Lin et al. [14] and Williem et al. [24] are used.

Table 5. Average run time in seconds per light field. GCDL ran

on a GPU, GeForce GT 630, and others on a 3.4 GHz CPU.

this case, our model will capture mixed statistics, and the

result could be sub-optimal. In this viewpoint, a possible

extension of this work is to segment a scene into different

regions and then learn parameters separately.

Hyper-parameter λ. It cannot be explained by RPRF

and thus requires heuristic estimation. We found that depth

quality is not sensitive to its small variation, so we applied

an entropy-based heuristic for coarse-level adaptability. A

possible extension of this work is to devise a more delicate

heuristic to improve accuracy.

7. Conclusion

In this paper, we propose an empirical Bayesian

framework—RPRF—to provide statistical adaptability and

good depth quality for light-field stereo matching. Two

scale mixtures with soft-edge priors are introduced to model

the data and smoothness energy. We estimate scene-

dependent parameters by pseudo-likelihood fitting via soft

EM and infer depth maps using robust energy functions via

hard EM. Accordingly, we build a stereo matching algo-

rithm with efficient implementation. The effectiveness is

demonstrated by experimental results on dense, sparse, and

denoised light fields. It outperforms state-of-the-art algo-

rithms in terms of depth accuracy and computation speed.

We also believe that this framework can be extended in

many possible ways to achieve better depth quality.
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