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Figure 1. Results of our symmetric optical flow approach given two consecutive images from the KITTI benchmark [12]. Our method

jointly predicts forward and backward optical flow (overlaid on top row, from left to right, color coding of the benchmark) as well as

corresponding occlusion maps for each view (overlaid on bottom row).

Abstract

Optical flow estimation is one of the most studied prob-

lems in computer vision, yet recent benchmark datasets con-

tinue to reveal problem areas of today’s approaches. Oc-

clusions have remained one of the key challenges. In this

paper, we propose a symmetric optical flow method to ad-

dress the well-known chicken-and-egg relation between op-

tical flow and occlusions. In contrast to many state-of-

the-art methods that consider occlusions as outliers, pos-

sibly filtered out during post-processing, we highlight the

importance of joint occlusion reasoning in the optimiza-

tion and show how to utilize occlusion as an important cue

for estimating optical flow. The key feature of our model

is to fully exploit the symmetry properties that character-

ize optical flow and occlusions in the two consecutive im-

ages. Specifically through utilizing forward-backward con-

sistency and occlusion-disocclusion symmetry in the energy,

our model jointly estimates optical flow in both forward and

backward direction, as well as consistent occlusion maps in

both views. We demonstrate significant performance bene-

fits on standard benchmarks, especially from the occlusion-

disocclusion symmetry. On the challenging KITTI dataset

we report the most accurate two-frame results to date.

1. Introduction

Optical flow estimation has been studied intensely for

several decades. Yet, recent optical flow benchmark

datasets [8, 12] reveal challenges that current methods are

still struggling to handle. Besides complex large motion and

severe illumination changes, occlusions continue to pose a

key challenge. Proper occlusion handling, especially in the

presence of large motion, is becoming one of the critical

factors to a method’s success in challenging scenes.

Occlusion estimation is a well-known chicken-and-egg

problem that optical flow has been entangled with for a long

time [1, 22, 30, 35]. Accurate knowledge of occluded areas

is crucial for reliable optical flow estimation in order to pre-

vent non-occluded areas from being adversely affected by

occluded pixels. Yet, occlusion is a consequence of motion.

Estimating accurate optical flow, conversely, is required for

localizing occlusions reliably. We thus posit that their mu-

tual dependency necessitates taking a joint approach and ar-

gue that this has not been done to the extent possible.

The majority of recent work instead addresses this chal-

lenging joint problem indirectly by considering occlusions

as outliers of low-level correspondence estimation, e.g.

[3, 9, 13, 17, 51]. Such approaches aim to mitigate the ef-

fects of occlusion by exploiting that occluded pixels gener-
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ally violate the underlying model assumptions as there are

no corresponding pixels in the other frame. Using a robust,

truncated penalty in the data term naturally reduces the ef-

fects of the high data cost from occlusions, but also more

generally from outlier pixels that violate brightness con-

stancy [9, 29, 51]. Checking the forward-backward motion

consistency in a subsequent post-processing step and extra-

polating flow into inconsistent regions also helps resolving

the motion mismatch in the occluded area [9, 11, 17, 29].

These simple procedures have been shown to diminish the

influence of occlusions in practice.

Such strategies, however, still cannot completely free

optical flow estimation from the ill effects of occlusion.

Using a truncated data term leaves the possibility that oc-

cluded pixels can be incorrectly matched to other pixels for

which the data cost is lower than the truncation constant.

Additionally, when extrapolating flow in post-processing,

false-positive matches may remain even after the forward-

backward consistency check and can cause erroneous es-

timates to be propagated across a local region [31]. We

thus argue that only the accurate localization of occluded

regions, formulated as a joint estimation together with the

flow, can fundamentally resolve this intertwined problem.

In this paper, we address the chicken-and-egg problem

of optical flow and occlusion map estimation and propose a

joint energy formulation and optimization method. Our ap-

proach directly utilizes their relationship and allows them to

leverage each other through estimating forward and back-

ward flow as well as occlusion maps for both directions all

together. We exploit two key symmetry properties of the op-

tical flow field and the occlusion map within the two con-

secutive images: forward-backward flow consistency and

occlusion-disocclusion symmetry. These symmetry proper-

ties not only couple optical flow with occlusion, but also

allow to exploit the geometric and temporal information in

the two consecutive images to a greater extent.

The key contributions of our paper are as follows. To

the best of our knowledge, we are the first to exploit

the occlusion-disocclusion symmetry in joint optical flow

and occlusion estimation and show its significant accuracy

gains. Second, we demonstrate how this joint, symmetric

treatment combined with a piecewise rigid formulation al-

lows estimating optical flow without post-processing. Our

experimental results demonstrate state-of-the-art accuracy

on public benchmark datasets, where we improve the results

especially in occluded areas. For the challenging KITTI

dataset we report the most accurate results among two-

frame methods to date, outperforming the latest approaches

based on high-capacity deep networks [2, 10, 13, 19]. The

fact that we are able to do so without employing learning

demonstrates the significant benefits of our joint, symmet-

ric flow and occlusion formulation.

2. Related Work

We can categorize occlusion handling approaches in op-

tical flow roughly into two families of solutions.

Occlusions as outliers. As discussed above, the chicken-

and-egg problem of flow and occlusion estimation becomes

much simpler if occlusions are treated as outliers that vio-

late the basic optical flow assumptions (e.g., brightness con-

stancy and/or forward-backward flow consistency assump-

tions). A number of recent algorithms [3, 9, 11, 13, 17, 25,

29] follow a common strategy for outlier filtering. Based on

a robust, truncated data term, they (i) separately estimate

forward and backward flow with an asymmetric method,

(ii) conduct a bi-directional consistency check, and (iii) in-

terpolate flows into the outlier pixels in a post-processing

stage, c.f . Fig. 2a. With the aid of highly capable interpo-

lation methods [26, 31], this pipeline has been regarded as

a well-justified practice. However, occasional failures dur-

ing post-processing are inevitable and irreversible, and thus

constitute a fundamental limitation.

In contrast, our symmetric approach explicitly integrates

occlusions into the objective in order to exploit them as an

important cue for the flow itself. Also, as shown in Fig. 2b,

our integrative approach simultaneously estimates flow in

both directions and thus encourages bi-directional consis-

tency of the flow as part of the formulation, which naturally

makes any post-processing unnecessary.

Occlusions in a joint objective. An outlier is a failure

of flow estimation, but an occlusion is a consequence of

motion, and can conversely be used as additional evidence

for estimating optical flow. Distinguishing between the two

opens new possibilities. A number of previous works con-

sider occlusion explicitly in the formulation, but received

less attention. We aim to bring them back into focus, re-

visit their ideas, and highlight the importance of jointly han-

dling occlusions as a feature complementary to other recent

trends, including the use of deep learning for appearance

matching [2, 10, 13, 19].

All methods in this category begin with including an

occlusion variable in their objective. Yet, they differ in

the particular characteristics of occlusion utilized and how

these are formulated. One basic way to characterize oc-

clusion stems from the observation that brightness con-

stancy mostly does not hold in occlusion areas due to the

non-existence of corresponding pixels. Several approaches

[18, 36, 41, 47] adopt a constant penalty (or truncated cost)

in the data term so that it can (i) naturally lead to oc-

cluded pixels taking the constant penalty rather than a po-

tentially higher matching cost, and (ii) explicitly exclude

their matching cost from the objective (e.g., as visualized in

Fig. (6) of [36]). However, this property alone is not suf-

ficient [47] as it is impossible to discriminate between oc-

cluded pixels and pixels with strong illumination changes,
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Figure 2. (a) A conventional asymmetric approach that requires post-processing. (b) Our integrative, symmetric approach.

which both violate the assumption.

Introducing a forward-backward consistency constraint

into the objective function is another useful strategy. Its

benefit is that pixels are forced to be either visible and sat-

isfy the bi-directional flow consistency, or are identified as

occlusions [20]. This condition provides an additional cue

for joint estimation. Yet, one should not forget that oc-

clusion is a consequence of two different motions causing

one pixel to geometrically occlude another. Layered opti-

cal flow models [36, 37] or 3D scene flow methods [42]

can explicitly model the local depth relationship between

layers and estimate occlusions simultaneously. Similarly,

one can calculate overlapping areas between two triangular

patches and detect occlusions by comparing the photomet-

ric cost [21]. Calculating the divergence of the motion field

[5] or finding unique configurations of corresponding pixels

[22, 41] can be alternative approaches.

Similar to ours, Alvarez et al. [1] exploit symmetry prop-

erties for jointly estimating optical flow and occlusion, ex-

cept that their method does not utilize the occlusion and dis-

occlusion symmetry. Interestingly, the most closely related

work by Sun et al. [38] is from the stereo matching litera-

ture, except that forward-backward consistency is not used.

Though all these previous approaches successfully argue

the effectiveness of their underlying models, each one omits

at least one property that could be utilized. In contrast,

our model exploits the relations and symmetry properties

between optical flow and occlusion jointly and more com-

pletely, leading to significant benefits in accuracy.

3. Joint, Symmetric Approach

From two consecutive images, we jointly estimate opti-

cal flow maps in both directions and corresponding occlu-

sion maps by fully exploiting their symmetries. The sym-

metry properties (i) couple the two different problem do-

mains, (ii) better utilize the available image evidence, and

(iii) lead to a well-balanced solution during optimization.

The first symmetry we consider is bi-directional motion

consistency, i.e. motions of corresponding pixels that are

visible in both views should be the inverse of one another.

Unlike most previous work, we integrate this consistency in

the energy, which not only leads to better estimates of both

forward and backward flow through iterative optimization,

but also obviates conventional post-processing.

Occlusion-disocclusion symmetry is the second property

we consider, which geometrically explains how occlusions

arise from differing motions of dynamic entities. As illus-

trated in the third and fourth column of Fig. 3, occlusions

and disocclusions demonstrate a symmetry relationship, i.e.

occlusions in the forward direction correspond to disocclu-

sions in the backward direction and vice versa.

3.1. Piecewise rigid optical flow model

Our optical flow model is based on a piecewise rigid rep-

resentation, which has recently been found to allow the ef-

fective regularization of 8-DoF or 9-DoF rigid motion of

entities in images, yet still represent both diverse and gen-

eral motions [15, 18, 28, 44, 51]. We first decompose an

image into a set of superpixels [53] as shown in Fig. 3, and

estimate the 8-DoF homography motion H of each super-

pixel. Each superpixel represents a possible surface in the

scene, and the homography represents a locally rigid motion

of the surface. Using this model also facilitates formulating

the occlusion-disocclusion symmetry property in a compre-

hensive way, which will be explained below.

3.2. Joint energy with symmetries

Given the two consecutive images It and It+1 with their

superpixel representations, our model jointly estimates (i)
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Figure 3. Conceptual explanation of our approach: (top to bottom) first frame It, second frame It+1; (left to right) forward/backward flow

maps overlaid on each source image, raw superpixel images, warping results given homography motions H, and occlusion maps.

the forward motion Hf (i.e., It → It+1) and the backward

motion Hb (i.e., It+1 → It) of each superpixel, and (ii)

the per-pixel occlusion maps ot and ot+1 for each view. We

formulate this through the energy

E(Hf ,Hb, ot, ot+1) = ED(H
f ,Hb, ot, ot+1)

+λPEP(H
f ,Hb, ot, ot+1)

+λCEC(H
f ,Hb, ot, ot+1)

+λSES(o
t, ot+1),

(1)

which consists of a data term ED, a pairwise term EP, a

forward-backward consistency term EC, and an occlusion-

disocclusion symmetry term ES.

3.2.1 Data term

The data term accumulates photometric differences across

all pixels in both views given the 8-DoF homography mo-

tions of superpixels H and the per-pixel occlusion masks op
in both views:

ED(H
f ,Hb, ot, ot+1) =

∑

p∈It

Df
p
+

∑

p∈It+1

Db
p

(2a)

with

Df
p
= ot

p
ρfD

(

p,Hf
sp

)

+ ot
p
λocc (2b)

Db
p
= ot+1

p ρbD
(

p,Hb
sp

)

+ ot+1
p

λocc. (2c)

For a non-occluded pixel p (i.e., op = (1 − op) = 1),

the function ρD(p,Hsp) measures the truncated photomet-

ric error between pixel p and its corresponding pixel Hspp

in the other frame. Hsp is the homography motion of su-

perpixel sp at pixel position p. We use a weighted sum

of a gradient constancy term and a ternary transform [34],

which is known to be robust under illumination changes

[14, 43, 44]. When the corresponding location Hspp falls

outside the image boundary, ρD(·, ·) outputs the truncation

constant τD.

More specifically, we use a continuous version of the

ternary transform, which can improve localization [43]

compared to the conventional discrete setting. Furthermore,

when calculating the ternary value in the other frame, we

transform 7 × 7 patches from the reference frame to the

other using the given homography Hsp , and calculate the

ternary transform based on the transformed patches. Using

this strategy yields a more comprehensive data cost that is

invariant to local shape deformation caused by the motion.

We observe this to increase the flow accuracy; see supple-

mentary material for details and a quantitative analysis.

For occluded pixels (i.e., op = 1), the constant penalty

λocc is applied so that we can avoid trivial cases in which

all pixels are occluded or move outside the image bound-

ary. We set λocc < τD so that pixels whose corresponding

location is outside of the image boundary can be naturally

inferred as occluded pixels during the optimization.

3.2.2 Pairwise term

The pairwise term penalizes the motion differences and oc-

clusion status differences in an 8-neighborhood N(p):

EP(H
f ,Hb, ot, ot+1) =

∑

p∈It

P f
p
+

∑

p∈It+1

P b
p

(3a)

with

P f
p
=

∑

q∈N(p)

(

φ(Hf
sp
,Hf

sq
, p̄) + λO

[

ot
p
6= ot

q

]

)

(3b)

P b
p
=

∑

q∈N(p)

(

φ(Hb
sp
,Hb

sq
, p̄)+λO

[

ot+1

p
6= ot+1

q

]

)

, (3c)

where λO is a weight for the pairwise occlusion cost and

[·] denotes the Iverson bracket. φ(Hsp ,Hsq , p̄) measures
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the difference of two motions induced by the homographies

Hsp and Hsq at neighboring pixels p and q, evaluated in

the middle between the pixels p̄ = p+q

2 . This function

distinguishes three different types of pairwise relationships

[18, 49, 50] in order to effectively express geometric rela-

tions that two neighboring superpixels can have (e.g., co-

planar, hinge, others) in terms of their homography motion:

φ(Hsp ,Hsq , p̄) = wp,q ·min(φco, φh, τP) (4a)

with

φco =
1

|sp ∪ sq|

∑

pi∈sp∪sq

‖Hsppi −Hsqpi‖ (4b)

φh = ‖Hsp p̄−Hsq p̄‖+ λh, (4c)

where τP is a truncation constant and λh a constant bias. The

intensity-adaptive weight wp,q = exp(−|I(p)−I(q)|/σw)
controls the strength of the pairwise term depending on the

intensity difference between two neighboring pixels.

The co-planar potential φco calculates the average differ-

ence of the homography motions for all pixels within the

union of the two superpixels, as they are on the same plane

by assumption. The hinge potential φh penalizes the motion

difference only for the middle pixel and applies a constant

bias λh. For handling the remaining cases such as occlusion

or disocclusion, the truncation constant τP is used. Note that

the pairwise cost only becomes effective between neighbor-

ing pixels that belong to two different superpixels. The cost

between neighboring pixels in the same superpixel is natu-

rally zero, because the two pixels have the same associated

homography motion.

The pairwise occlusion term simply encourages the spa-

tial smoothness of the occlusion states by penalizing their

differences between neighboring pixels. If neighboring pix-

els have differing occlusion states, the term incurs the con-

stant penalty λO.

3.2.3 Forward-backward consistency term

Unlike conventional optical flow algorithms, our model ex-

plicitly integrates forward-backward consistency into the

objective function [20]:

EC(H
f ,Hb, ot, ot+1) =

∑

p∈It

Cf
p
+

∑

p∈It+1

Cb
p

(5a)

with

Cf
p
= ot

p
ot+1
p′ ρC

(

‖p−Hb
s
p′
Hf

sp
p‖

)

(5b)

Cb
p
= ot+1

p ot
p′′ρC

(

‖p−Hf
s
p′′

Hb
sp
p‖

)

, (5c)

where p′ = Hf
sp
p and p′′ = Hb

sp
p. The consistency term

penalizes the Euclidean distance between the position of

pixel p and the back-projected position of the correspond-

ing pixel in the other frame, as illustrated in the first column

of Fig. 3. Thus, the term encourages the homography ma-

trices from the two corresponding points to be under an in-

verse relationship, providing a soft constraint on motions in

the opposite view, which improves the estimation as shown

below. The function ρC(·) truncates its input at τC to be

robust to possible outliers of flow or occlusion.

The term takes into account all pixels in both views, but

applies the penalty only if the pixel p and its correspond-

ing pixel p′ or p′′ in the respective other frame are not oc-

cluded. This condition enforces pixels to be either occluded

or their motion to satisfy the bi-directional symmetry prop-

erty. The condition may lead to a trivial solution in which all

pixels are marked as becoming occluded such that no penal-

ties arise from this term. However, the constant penalty λocc

in the data term, c.f . Eq. (2b) and Eq. (2c), prevents the solu-

tion from falling into this trivial case and balances between

visible pixels and occlusions.

3.2.4 Occlusion-disocclusion symmetry term

The occlusion-disocclusion symmetry term plays the most

important role in our model, and allows flow and occlusions

to mutually leverage one another. Specifically, the term pe-

nalizes cases in which the occlusion-disocclusion symmetry

relationship does not hold in both views:

ES(o
t, ot+1) =

∑

p∈It

ot
p
⊙N t

p
+

∑

p∈It+1

ot+1
p

⊙N t+1
p

(6a)

with

N t
p
=

∣

∣

∣

{

p | p = Hb
s
p′
p′, ∀p′ ∈ It+1

}∣

∣

∣
(6b)

N t+1
p

=
∣

∣

∣

{

p | p = Hf
s
p′
p′, ∀p′ ∈ It

}∣

∣

∣
. (6c)

The XNOR operation (e.g., 0 ⊙ 0 = 1 and 1 ⊙ 0 = 0)

ensures that if a pixel p is being occluded in one frame, then

there cannot be any pixels in the other frame whose motion

maps to p. We explicitly detect disocclusion in each view,

representing it with the variables N t
p

and N t+1
p

, respec-

tively. N t
p

denotes the number of pixels that are mapped

to p in It when warping pixels in It+1 to It given their

corresponding motion Hb
s. N t+1

p
is defined analogously

by warping pixels from It to It+1 given the set of per-

superpixel homography motions Hf
s . If no pixel is mapped

to p in It+1 (i.e., N t+1
p

= 0), the pixel p is being disoc-

cluded, as visualized in the third column of Fig. 3. By defin-

ing disocclusions solely as a result of the motion, their cor-

responding variables do not need to be optimized directly,

but are indirectly determined by the motion Hb
s and Hf

s .

In previous studies [22, 41], similar concepts have been

introduced in different forms by encouraging unique corre-

spondences between pixels visible in both views. Instead,
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Algorithm 1: Optimization

initialize optical flow and occlusion maps

for n = 1 to max-iteration do
// estimate forward flow

H
f = argmin

H̃f E(H̃f ,Hb, ot, ot+1)
// estimate occlusion map at time t+ 1
update N t+1

ot+1 = argminõt+1 E(Hf ,Hb, ot, õt+1)
// estimate backward flow

H
b = argmin

H̃b E(Hf , H̃b, ot, ot+1)
// estimate occlusion map at time t

update N t

ot = argminõt E(Hf ,Hb, õt, ot+1)
end

we model symmetry between occlusions and disocclusions

while allowing multiple pixels to be mapped to a single lo-

cation (i.e., Np may be greater than 1), which is important

when objects in the scene change their apparent size. More-

over, we perform spatial regularization of occlusion states,

c.f . Eqs. (3b) and (3c).

3.3. Optimization

We jointly optimize the two different sets of variables –

homography motions (i.e., Hf and Hb) and occlusion maps

(i.e., ot and ot+1) – using a block coordinate descent algo-

rithm, which optimizes the variables alternatingly. As de-

scribed in Algorithm 1, we first estimate the forward flow

Hf . Then, we update N t+1 from forward flow Hf and esti-

mate the occlusion map ot+1. The remaining variables Hb,

N t, and ot are updated in turn in a similar manner.

3.3.1 Optimizing Hf and Hb

Due to the difficulty of optimizing the continuous variables

(e.g., stemming from the nonlinearity of the data term), we

instead solve a discrete multi-label optimization problem

that collects a number of candidate homography motions

as proposal sets and then chooses the most suitable motion

for each superpixel using fusion moves or α-expansion with

QPBO [24, 32, 39, 44]. For an efficient optimization, we

sequentially run expansion moves locally on subgraphs of

superpixels (e.g., a set of neighboring 30 superpixels with

70% overlap between each other)1 and then globally on all

the superpixels as described in Algorithm 2. This strategy

follows the similar approach in [40], which defines sub-

graphs on multiple scales and optimizes them sequentially.

We found that this combined local and global optimiza-

tion strategy yields a faster convergence while avoiding lo-

cal minima, especially for the planar surface representation

with homography-parameterized motions as used here.

1See supplementary material for an analysis of this design choice.

Algorithm 2: Optimizing Hf

INPUT: a current solution of Hf

// local expansion move

for each local region Ri do

{Hf
s} ← propagation({Hf

s | s ∈ Ri})
{Hf

s} ← randomization({Hf
s | s ∈ Ri})

end

// global expansion move

H
f ← propagation(Hf )

The local expansion moves on subgraphs of superpixels

[40] consist of two steps, propagation and randomization,

which spatially propagate homography motions and locally

refine them. The global expansion moves only conduct

the propagation step that spatially propagates the locally-

refined motions into a broader area.

In each propagation and randomization step in Algo-

rithm 2, we run expansion moves on the set of input su-

perpixels with each collected set of homography motions.

The propagation and randomization step only differ in how

they collect the proposal sets.

propagation:

• Randomly sampling np homography motions from the

input set.

• Randomly sampling np homography motions from the

corresponding superpixels in the opposite view and

taking the inverse motion.

randomization:

• Randomly sampling np homography motions from the

input set and adding perturbations.

• Sampling np homography motions by randomly sam-

pling nr point correspondence pairs and re-estimating

the corresponding homography motion.

We set np = 6 and nr = 20 for the local expansion moves

and np = 50 for the global expansion moves.

3.3.2 Optimizing ot and ot+1

Optimizing the occlusion maps is relatively simple. For in-

stance, once N t is updated from the backward flow Hb, the

binary occlusion map ot can be estimated via graph-cuts

[6, 7, 23] while holding all other variables fixed. The pair-

wise occlusion term in Eqs. (3b) and (3c) is submodular,

thus making standard graph-cuts applicable.

4. Experiments

We evaluate the accuracy of our algorithm on the KITTI

Optical Flow 2015 benchmark [12] and on the MPI Sin-

tel Flow Dataset [8], both qualitatively and quantitatively.

Additionally, we analyze the importance of our symmetric
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Non-occluded pixels All pixels

Method Fl-bg Fl-fg Fl-all Fl-bg Fl-fg Fl-all

Ours (MirrorFlow) 6.24 % 12.95 % 7.46 % 8.93 % 17.07 % 10.29 %

FlowNet2 [19] 7.24 % 5.60 % 6.94 % 10.75 % 8.75 % 10.41 %

SDF [2] 5.75 % 18.38 % 8.04 % 8.61 % 23.01 % 11.01 %

MR-Flow [46] 6.86 % 17.91 % 8.86 % 10.13 % 22.51 % 12.19 %

DCFlow [48] 8.04 % 19.84 % 10.18 % 13.10 % 23.70 % 14.86 %

SOF [33] 8.11 % 18.16 % 9.93 % 14.63 % 22.83 % 15.99 %

DiscreteFlow [29] 9.96 % 17.03 % 11.25 % 21.53 % 21.76 % 21.57 %

Table 1. KITTI Optical Flow 2015: Comparison to top-

performing optical flow algorithms in the benchmark in terms of

percentages of pixels with an incorrect flow estimate (at the default

threshold of 3 pixels). The best and the second best results are in

bold and underlined, respectively.

approach by turning each term off and evaluating how sig-

nificantly it affects the accuracy. For faster convergence, we

use DiscreteFlow [29] to initialize our estimation as well

as to derive proposals. We automatically tune the param-

eters (weights λP, λC, λS, λO, truncation thresholds τD, τP,

τC, and biases λocc, λh) using Bayesian optimization [27]

on the training portion of each benchmark.

4.1. KITTI Optical Flow 2015

On the KITTI Optical Flow 2015 benchmark, our Mir-

rorFlow algorithm outperforms all two-frame optical flow

methods at the time of writing, demonstrating the lowest

percentage of flow outliers (Fl-all). Table 1 gives detailed

numbers, Fig. 4 shows qualitative results. Leveraging our

symmetry terms and motion representation based on piece-

wise homographies, our method also demonstrates the sec-

ond best results for handling flow on dynamic foreground

objects (Fl-fg) and handling background motion (Fl-bg).

For evaluating the accuracy especially in occluded areas,

we cannot directly rely on the KITTI accuracy indicators,

as the number of occluded pixels and non-occluded pixels

in the testing dataset are unknown. However, by looking at

the gap of outlier percentages between all pixels and non-

occluded pixels, we can infer that our symmetric method

is among the most accurate (probably the most accurate)

method in occluded areas (see supplementary material for a

more detailed discussion).

One important remark is that our method does not use

any learned feature descriptors or semantic information un-

like other top-performing algorithms [2, 19, 33, 46, 48].

Even without them, our method significantly outperforms

the baseline method [29], which is the next best method

not relying on learned descriptors or semantics, and is also

used for initialization. We significantly reduce the number

of incorrect pixels by more than 50% by virtue of our joint,

symmetric formulation. We believe that our method still has

room for substantial further improvement by exploiting se-

mantic information or using learned feature descriptors; we

leave this for future work.

Final pass Clean pass

EPE EPE EPE EPE EPE EPE

Method all nocc. occ. all nocc. occ.

DCFlow [48] 5.119 2.283 28.228 3.537 1.103 23.394

FlowFieldsCNN [4] 5.363 2.303 30.313 3.778 0.996 26.469

MR-Flow [46] 5.376 2.818 26.235 2.527 0.954 15.365

S2F-IF [52] 5.417 2.549 28.795 3.500 0.988 23.986

RicFlow [16] 5.620 2.765 28.907 3.550 1.264 22.220

GlobalPatchCollider [45] 6.040 2.938 31.309 4.134 1.432 26.179

Ours (MirrorFlow) 6.071 3.186 29.567 3.316 1.338 19.470

DiscreteFlow [29] 6.077 2.937 31.685 3.567 1.108 23.626

Table 2. MPI Sintel Flow Dataset: Accuracy in terms of the aver-

age end-point error (EPE). Leading algorithms on Final or Clean.

Our model performs the second best in the Clean pass.

4.2. MPI Sintel Flow Dataset

While we focus on the KITTI dataset with its challeng-

ing scenes in the context of autonomous driving, we also

evaluate our approach on the MPI Sintel Flow Dataset [8],

where approaches based on piecewise rigidity are known to

be somewhat disadvantaged. Nevertheless, our method still

performs rather competitively, achieving the second place

in the Clean pass and the 13th place in the Final pass, both

at the time of writing. Table 2 gives detailed accuracy num-

bers. Fig. 5 shows qualitative results using the color code

of the Sintel dataset, where we observe rather accurate es-

timates of occluded regions. The main reason why our

method is not as accurate as on the KITTI benchmark is

that our planar-rigid motion assumption is not as appropri-

ate for the Sintel Dataset, where the majority of motions

are non-rigid and most surfaces are non-planar. Despite of

this limitation, our method demonstrates leading results es-

pecially on occluded pixels in the Clean pass, which once

again confirms the key benefits of our joint flow and occlu-

sion estimation pipeline. Note that while we do not con-

sider this here, the key ideas behind our joint, symmetric

approach are not limited to piecewise rigid representations.

4.3. Importance of symmetries

We conduct an ablation study to emphasize the contribu-

tion of our symmetric formulation and to demonstrate how

much each symmetry property contributes to the flow esti-

mation accuracy. As a baseline, we first consider an asym-

metric version of our model, which only relies on the data

term and the pairwise term (Asymm). Then, we extend it

to the symmetric case by estimating flow bi-directionally

through enabling the forward-backward consistency term

(Symm+c) and the occlusion-disocclusion symmetry term

(Symm+s) separately. The full model has both these terms

enabled (Symm+cs). We conduct this ablation study on the

KITTI Optical Flow 2015 training set.

As shown in Table 3, the occlusion-disocclusion sym-

metry term has the most significant contribution to the ac-

curacy of flow estimation. The error decreases substantially
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Figure 4. Qualitative results on KITTI 2015: (left to right) ground truth flow, forward flow, backward flow, occlusion map overlayed on

the current frame and the next frame, respectively. Note that the ground truth flow map on KITTI is sparse, and some objects are masked.

Figure 5. Qualitative results on Sintel: (left to right) ground truth flow, forward flow, backward flow, ground truth occlusion, occlusion

maps, overlayed on the current frame and the next frame, respectively. Note the high agreement between true and estimated occlusions.

Non-occluded pixels All pixels

Method Fl-bg Fl-fg Fl-all Fl-bg Fl-fg Fl-all

Symm+cs 6.52 % 11.72 % 7.41 % 9.26 % 13.94 % 9.98 %

Symm+s 6.73 % 11.90 % 7.62 % 9.49 % 14.04 % 10.19 %

Symm+c 10.41 % 18.17 % 11.74 % 13.72 % 20.40 % 14.74 %

Asymm 8.39 % 14.97 % 9.51 % 11.82 % 17.41 % 12.68 %

Table 3. Ablation study for each term on KITTI 2015 training:

The forward-backward consistency term (c) and the occlusion-

disocclusion symmetry term (s) both play important roles in our

symmetric model. Their combination (cs) shows the best results.

by about 20%. This observation follows one of our moti-

vations that the accurate localization of occluded areas con-

tributes to estimating flow more accurately. The forward-

backward consistency term boosts the quality of the results

further, but only when the symmetry term is turned on. This

is because the forward-backward consistency relies on ac-

curate estimates of the occlusion regions, which are only

available when the occlusion-disocclusion symmetry is con-

sidered as well. When both terms are active we achieve the

best accuracy, which highlights the benefit of our full sym-

metric pipeline.

5. Conclusion & Future Work

We have proposed a symmetric optical flow method that

jointly estimates optical flow in both directions and occlu-

sion maps for each view by exploiting the symmetry prop-

erties that they possess in the two consecutive images. We

exploit both forward-backward consistency of the flow as

well as occlusion-disocclusion symmetry, and formulate a

piecewise rigid model. Our results on widely-used pub-

lic optical flow benchmarks clearly demonstrate that our

joint, symmetric approach yields significant improvements

in flow estimation accuracy, especially in occluded areas.

For the challenging KITTI benchmark, we report leading

results even without employing any semantic knowledge or

learning of appearance descriptors. We believe that a super-

pixel refinement, employing non-rigidity on top of our rigid

motion model, or utilizing learned appearance descriptors

will lead to further improvements in the future.
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termining occlusions from space and time image reconstruc-

tions. In CVPR, pages 1382–1391, 2016.
[31] J. Revaud, P. Weinzaepfel, Z. Harchaoui, and C. Schmid.

EpicFlow: Edge-preserving interpolation of correspon-

dences for optical flow. In ICCV, pages 1164–1172, 2015.
[32] C. Rother, V. Kolmogorov, V. Lempitsky, and M. Szum-

mer. Optimizing binary MRFs via extended roof duality. In

CVPR, pages 1–8, 2007.
[33] L. Sevilla-Lara, D. Sun, V. Jampani, and M. J. Black. Optical

flow with semantic segmentation and localized layers. In

CVPR, pages 3889–3898, 2016.
[34] F. Stein. Efficient computation of optical flow using the cen-

sus transform. In DAGM, pages 79–86, 2004.
[35] C. Strecha, R. Fransens, and L. Van Gool. A probabilistic

approach to large displacement optical flow and occlusion

detection. In Statistical Methods in Video Processing, pages

71–82. 2004.
[36] D. Sun, C. Liu, and H. Pfister. Local layering for joint motion

estimation and occlusion detection. In CVPR, pages 1098–

1105, 2014.
[37] D. Sun, E. B. Sudderth, and M. J. Black. Layered image

motion with explicit occlusions, temporal consistency, and

depth ordering. In NIPS*2010, pages 2226–2234.
[38] J. Sun, Y. Li, S. B. Kang, and H.-Y. Shum. Symmetric stereo

matching for occlusion handling. In CVPR, pages 399–406,

2005.
[39] T. Taniai, Y. Matsushita, and T. Naemura. Graph cut based

continuous stereo matching using locally shared labels. In

CVPR, pages 1613–1620, 2014.

320



[40] T. Taniai, Y. Matsushita, Y. Sato, and T. Naemura. Contin-

uous stereo matching using local expansion moves. CoRR,

abs/1603.08328, 2016.
[41] M. Unger, M. Werlberger, T. Pock, and H. Bischof. Joint

motion estimation and segmentation of complex scenes with

label costs and occlusion modeling. In CVPR, pages 1878–

1885, 2012.
[42] C. Vogel, S. Roth, and K. Schindler. View-consistent 3D

scene flow estimation over multiple frames. In ECCV, vol-

ume 4, pages 263–278, 2014.
[43] C. Vogel, K. Schindler, and S. Roth. An evaluation of data

costs for optical flow. In GCPR, pages 343–353, 2013.
[44] C. Vogel, K. Schindler, and S. Roth. Piecewise rigid scene

flow. In ICCV, pages 1377–1384, 2013.
[45] S. Wang, S. R. Fanello, C. Rhemann, S. Izadi, and P. Kohli.

The global patch collider. In CVPR, pages 127–135, 2016.
[46] J. Wulff, L. Sevilla-Lara, and M. J. Black. Optical flow in

mostly rigid scenes. In CVPR, 2017.
[47] J. Xiao, H. Cheng, H. Sawhney, C. Rao, and M. Isnardi. Bi-

lateral filtering-based optical flow estimation with occlusion

detection. In ECCV, pages 211–224, 2006.
[48] J. Xu, R. Ranftl, and V. Koltun. Accurate optical flow via

direct cost volume processing. In CVPR, 2017.
[49] K. Yamaguchi, D. McAllester, and R. Urtasun. Robust

monocular epipolar flow estimation. In CVPR, pages 1862–

1869, 2013.
[50] K. Yamaguchi, D. McAllester, and R. Urtasun. Efficient joint

segmentation, occlusion labeling, stereo and flow estimation.

In ECCV, volume 5, pages 756–771. 2014.
[51] J. Yang and H. Li. Dense, accurate optical flow estimation

with piecewise parametric model. In CVPR, pages 1019–

1027, 2015.
[52] Y. Yang and S. Soatto. S2F: Slow-to-fast interpolator flow.

In CVPR, 2017.
[53] J. Yao, M. Boben, S. Fidler, and R. Urtasun. Real-time

coarse-to-fine topologically preserving segmentation. In

CVPR, pages 2947–2955, 2015.

321


