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1Technicolor, Rennes, France 2INRIA Rennes, France 3Amazon, Seattle, WA

We introduce SUBIC, a supervised structured binary code (concatenation of one-hot blocks). It is produced by a novel

supervised deep convolutional network and is well adapted to efficient visual search, including category retrieval for which

it outperforms the state-of-the-art supervised deep binary hashing techniques.

Abstract

For large-scale visual search, highly compressed yet

meaningful representations of images are essential. Struc-

tured vector quantizers based on product quantization and

its variants are usually employed to achieve such compres-

sion while minimizing the loss of accuracy. Yet, unlike bi-

nary hashing schemes, these unsupervised methods have

not yet benefited from the supervision, end-to-end learn-

ing and novel architectures ushered in by the deep learn-

ing revolution. We hence propose herein a novel method to

make deep convolutional neural networks produce super-

vised, compact, structured binary codes for visual search.

Our method makes use of a novel block-softmax non-

linearity and of batch-based entropy losses that together

induce structure in the learned encodings. We show that

our method outperforms state-of-the-art compact represen-

tations based on deep hashing or structured quantization

in single and cross-domain category retrieval, instance re-

trieval and classification. We make our code and models

publicly available online.

1. Introduction

Deep convolutional neural networks (CNNs) have

proven to be versatile image representation tools with great

generalization power, a quality that has rendered them indis-

pensable in image search. A given network trained on the

ImageNet dataset [16], for example, can achieve excellent

performance when transferred to a variety of other datasets

[20, 30], or even to other visual search tasks [41]. This

quality of transferability is important in large-scale image

search, where the time or resources to compile annotations

in order to train a new network for every new dataset or task

are not available.

A second desirable property of image representations

for large-scale visual search is that of being compact yet

functional. A paramount example of such a representa-

tion is provided by image indexing schemes, such as Prod-

uct Quantization (PQ) [24] and others, that rely on vec-

tor quantization with structured, unsupervised codebooks

[2, 12, 47]. PQ can be seen as mapping a feature vector

into a binary vector consisting of a concatenation of one-

hot encoded codeword indices. One can directly compare

an uncompressed query feature with these binary vectors by

means of an inner product between the binary vectors and a

real-valued mapping of the query feature vector.

It is not surprising that, with the dawn of the deep learn-

ing revolution, many recent research efforts have been di-

rected towards supervised learning of deep networks that

produce compact and functional binary features [15, 17, 31,

32, 33, 45, 46, 48]. One commonality between these ap-

proaches – which we refer to collectively as deep hash-

ing methods – is their reliance on element-wise binariza-

tion mechanisms consisting of either sigmoid/tanh non-

linearities [15, 31, 32, 33, 45, 46, 48] or element-wise bina-

rizing penalties such as [15, 17]. Indeed, to our knowledge,

ours is the first approach to impose a structure on the learned

binary representation: We employ two entropy-based losses
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to induce a one-hot block structure in the produced binary

feature vectors, while favoring statistical uniformity in the

support of the active bits of each block. The resulting struc-

tured binary code has the same structure as a PQ-encoded

feature vector.

Imposing structure on the support of the binary represen-

tation has two main motivations: First, structuring allows a

better exploitation of the binary representation’s support to

encode semantic information, as exemplified by approaches

that learn to encode face parts [5], visual attributes [36] and

text topics [26] in the support of the representation under

weak supervision. We promote this desirable property by

means of an entropy-based loss that encourages uniformity

in the position of the active bits – a property that would not

be achievable using a simple softmax non-linearity. Note

that, as a related added benefit, the structuring makes it pos-

sible to use a binary representation of larger size without

incurring extra storage. Second, the structuring helps in reg-

ularizing the architecture, further contributing to increased

performance relative to other, non-structured approaches.

While all previously existing deep hashing methods in-

deed produce very compact, functional representations,

they have not been tested for transferability. The main task

addressed in all these works is that of category retrieval

wherein a given test example is used to rank all the test

images in all classes. Yet all deep hashing approaches em-

ploy a single-domain approach wherein the test classes and

training classes are the same. It has been established exper-

imentally [42] that excellent performance can be achieved

in this test by simply assigning to each stored database im-

age, the class label produced by a classifier trained on the

corresponding training set. Hence, it is also important to

test for cross-domain category retrieval, wherein the archi-

tecture learned on a given set of training classes is tested on

a new, disjoint set of test classes. We present experiments

of both types in this work, outperforming several baselines

in the cross-domain test and recent deep hashing methods

in the single-domain test.

The contributions of the present work can be summa-

rized as follows:

• We introduce a simple, trainable, CNN layer that en-

codes images into structured binary codes that we coin

SUBIC. While all other approaches to supervised bi-

nary encoding use element-wise binarizing operations

and losses, ours are block-based.

• We define two block-wise losses based on code en-

tropy that can be combined with a standard classifi-

cation loss to train CNNs with a SUBIC layer.

• We demonstrate that the proposed binary features out-

perform the state-of-the art in single-domain category

retrieval, two competitive baselines in cross-domain

category retrieval and image classification, and state-

of-the art unsupervised quantizers in image retrieval.

• Our approach enables asymmetric search with a search

complexity comparable to that of deep hashing.

2. Related work

We discuss here the forms of vector quantization and bi-

nary hashing that are the most important for efficient visual

search with compact codes, and we explain how our ap-

proach relates to them.

Unsupervised structured quantization. Vector quanti-

zation (VQ), e.g. with unsupervised k-means, is a classic

technique to index multi-dimensional data collections in a

compact way while allowing efficient (approximate) search.

Structured versions of VQ, e.g. product, additive or com-

posite [2, 18, 19, 23, 24, 28, 38, 47], have established im-

pressive indexing systems for large scale image collections.

Coupled with single or multiple index inverted file systems

[1, 25], these VQ techniques currently offer state-of-the-art

performance for very large-scale high-dimensional nearest-

neighbor search (relative to the Euclidean distance in input

feature space) and instance image search based on visual

similarity. All these unsupervised quantization techniques

operate on engineered or pre-trained image features. Ow-

ing to the success of CNNs for image analysis at large, most

recent variants use off-the-shelf or specific CNN features as

input representation, e.g., [3, 27, 34, 44]. However, contrary

to binary hashing methods discussed below, VQ-based in-

dexing has not yet been approached from a supervised an-

gle where available semantic knowledge would help opti-

mize the indexed codes and possibly the input features. In

the present work, we take a supervised encoding approach

that bears a strong connection to supervised binary hashing,

while exploiting an important aspect of these powerful un-

supervised VQ techniques, namely the structure of the code.

The binary codes produced by our approach are in a discrete

product space of size KM while allowing O(M logK) stor-

age and O(M) search complexity.

Deep, supervised hashing. Binary hashing is a long-

standing alternative to the above-mentioned VQ methods,

and the deep learning revolution has pushed the state-of-

the-art of these approaches. Deep supervised hashing meth-

ods – CNNH+ [45], DRSCH [46], DSRH [48], DNNH

[31], DLBHC [32], DSH [33] and BDNN [17] – share the

following high-level principles. An off-the-shelf or home-

brewed convolutional network f1 is used to extract a high-

dimensional distributed representation x ∈ R
d from an in-

put image I. A subsequent fully connected encoding layer

f2 turns this feature vector into a compact binary code
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Table 1: Comparison of proposed approach to recent supervised binary hashing techniques.

Method supervision binarization (train – test) code-based loss on base CNN training cross-domain

CNNH+ [45] pair-wise sigmoid–threshold dist. to target code yes no

DRSCH [46] triplet-wise sigmoid–threshold none yes no

DSRH [48] triplet-wise sigmoid–threshold training average yes no

DNNH [31] triplet-wise sigmoid–threshold none yes no

DLBHC [32] point-wise sigmoid–threshold none fine-tuning no

DSH [33] pair-wise sigmoid–threshold distance to binary yes no

BDNN [17] pair-wise built-in feature reconst. error no no

SUBIC (ours) point-wise block softmax–argmax block-based entropies yes yes

h ∈ {0, 1}B of B bits through final entry-wise thresholding

(or sign function for centered codes), B typically ranging

from 12 to 64 bits. At training time, this binarization is usu-

ally relaxed using a sigmoid (or tanh for centered codes)

– with the exception of BDNN [17] –, which results in an

encoding layer that outputs vectors in ∈ [0, 1]B . Using se-

mantic supervision, f2 is trained while f1 is fixed to pre-

trained values, fine-tuned or trained from scratch. Supervi-

sion coming from class labels is used either directly (classi-

fication training) [32] or using tuples (pairs [17, 33, 45] or

triplets [31, 46, 48]) as in metric learning. Table 1 summa-

rizes the specifics of each of these methods.

DLBHC [32] is a simple instance employing a sigmoid-

activated encoding layer grafted to the pre-trained AlexNet

architecture [29] and trained using a standard classifica-

tion objective. Other methods employ additional training

loss(es) at the code level to induce desirable properties.

BDNN [17] uses the code-to-feature reconstruction error,

making the approach applicable in an unsupervised regime.

DSH [33] employs a W-shaped loss with minima at the de-

sired code values, while DSRH [48] penalizes the average

of each bit over the training set such that its distribution is

approximately centred (final code is in {−1,+1}B). CNN+

[45] proposes the direct supervision of hash functions with

target binary codes learned in a preliminary phase via low-

rank factorization of a full pairwise similarity matrix. Note

also that DRSCH [46] learns bit-wise weights along with

the binary encoder, which results in richer codes but more

costly distances to compute at search time.

As described in detail next, our approach follows the

same high-level principles discussed above, but with impor-

tant differences. The first, key difference lies in the struc-

ture of the codes. We define them as the concatenation of M
one-hot vectors (binary vectors with all entries but one be-

ing zero) of size K. This gives access to KM distinct codes,

hence corresponding to an effective bit-size of M log2 K
bits, as in VQ methods that combine M codewords, each

taken from a codebook of size K. Binarization and its re-

laxed training version thus operate at the block level. This

specific code structure is combined with novel loss terms

that enforce respectively the one-sparsity of each block and

the effective use of the entire block support. Also, contrary

to most supervised binary hashing approaches, with the ex-

ception of [32], we resort only to point-wise supervision.

To our knowledge, only one other approach has incor-

porated product-wise structuring within a deep learning

pipeline [7]. Yet that method does not learn the structur-

ing as part of a deep architecture, relying rather on a stan-

dard product quantizer that is updated once per epoch in an

unsupervised manner.

3. Approach

We describe in this section the design of our SUBIC

architecture, its supervised training and its use for visual

search.

3.1. Architecture

Following the approach discussed above, we consider

the following classification feed-forward network (Fig. 1):

s , FC1 ◦ f2 ◦ f1(I), (1)

where I is an input image, f1 a deep CNN with L convolu-

tional layers (inc. pooling and normalization, if any) and Q
fully-connected layers, f2 a binary encoding layer, FC1 a

C-class classification layer, and s the C-dimensional vector

of class-probability estimates.

We aim for the binary encoding layer f2 to produce

structured binary vectors b consisting of the concatenation

of M one-hot encoded vectors bm,m = 1, . . . ,M, of di-

mension K, i.e., b = [b1; . . . ;bM ].1 Formally, the blocks

bm should satisfy

bm ∈ KK , {d ∈ {0, 1}K s.t. ‖d‖1 = 1}. (2)

Accordingly, our codes b should come from the discrete

product set KM
K .

In practice, f2 employs a fully-connected layer FC0

with ReLU non-linearity producing real-valued vectors z ∈
R

KM
+ likewise consisting of M K-dimensional blocks zm.

1Using vector stacking notation [a;b] = [a⊤
,b

⊤]⊤, where a and b

are column-vectors.
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Figure 1: Proposed architecture and notations. A feature is extracted from image I by a base CNN f1 and binarized using

a block-structured encoding layer f2 consisting of a fully-connected layer followed by a block softmax during training, or a

block 1-hot encoder during testing.

A second non-linearity operates on each zm to produce the

corresponding binarized block. We use a different binariza-

tion strategy at training time (top branch in Fig. 1) and at

test time (bottom branch), as discussed next.

Training architecture. Similarly to supervised binary

hashing approaches discussed in Section 2, we enable back-

propagation during our learning process by relaxing the

structured binarization constraint (2), producing instead

structured real-valued codes
∼

b ∈ ∆M
K , where

∆K , {d ∈ [0, 1]K s.t. ‖d‖1 = 1} (3)

is the convex hull of KK (see Fig. 1 bottom-left, for the

examples ∆2
3 and K

2
3). We achieve this by introducing the

block-softmax non-linearity
∼

b= bSoftMaxM (z) (c.f . Fig.

1) which computes the blocks
∼

bm from the corresponding

blocks zm as follows (exp(·) denotes element-wise expo-

nentiation):

∼

bm =
1

‖ exp(zm)‖1
exp(zm). (4)

Test time architecture. At test time, the block softmax

is replaced (cf. Fig. 1, bottom branch) by a block one-hot

encoder b = bBinEncM (z), which uses z to efficiently

compute the projection of each block
∼

bm ∈ ∆K onto KK

using

bm[k] =

{

1 if k = argmaxr zm[r],

0 otherwise,
(5)

where d[k] denotes the k-th entry of a vector d. Note, par-

ticularly, that bBinEncM (z) = bBinEncM (
∼

b).

3.2. Supervised loss and training

In order to bring real-valued code vectors
∼

b as close as

possible to block-wise one-hot vectors, while making the

best use of coding budget, we introduce two entropy-based

losses that will be part of our learning objective. Our ap-

proach assumes a standard learning method wherein train-

ing examples (I(i), y(i)) consisting of an image I(i) and its

class label y(i) ∈ {1, . . . , C} are divided into mini-batches

{(I(i), y(i))}i∈T of size |T| = T .

Our losses will be based on entropy, which is computed

for a vector p ∈ ∆K as follows:2

E(p) , −

K
∑

k=1

p[k] log2 p[k]. (6)

Entropy is smooth and convex and further has the inter-

esting property that it is the theoretical minimum average

number of bits per symbol required to encode an infinite se-

quence of symbols with distribution p [14]. Accordingly, it

is exactly zero, its minimum, if p specifies a deterministic

distribution (i.e., p ∈ KK) and log2 K, its maximum, if it

specifies a uniform distribution (i.e., p = 1
K1).

Toward block-wise one-hot encoding. Given the mer-

its of structured binary codes discussed previously, we aim

to produce feature vectors
∼

b = [
∼

b1; . . . ;
∼

bM ] consisting of

blocks
∼

bm that approximate one-hot encoded vectors, thus

that have a small projection error

min
d∈KK

‖d−
∼

bm‖2. (7)

In the ideal case where
∼

bm ∈ KK , it has minimum en-

tropy of 0. The convexity/smoothness of E(·) means that

blocks with low entropy will have small projection error

(7), thus suggesting penalizing our learning objective for a

given training image using
∑

m E(
∼

bm). We overload our

definition of E(·) in (6) and let E(
∼

b) ,
∑

m E(
∼

bm) ∈

2With the usual convention 0 log
2
(0) = 0.
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[0,M log2 K]. Accordingly, we refer to the average of these

losses over a training batch T as the mean entropy, given by

1

TM

∑

i∈T

M
∑

m=1

E(
∼

b
(i)

m ) =
1

TM

∑

i∈T

E(
∼

b
(i)
). (8)

In practice, introducing this loss will result in vectors
∼

b that

are only approximately binary, and hence, at test time, we

project each block
∼

bm onto KK using (5).

Uniform block support. Besides having blocks
∼

bm that

resemble one-hot vectors, we would like for the supports of

the binarized version bm of
∼

bm to be as close to uniformly

distributed as possible. This property allows the system to

better exploit the support of our
∼

b in encoding semantic in-

formation. It further contributes to the regularization of the

model and encourages a better use of the available bit-rate.

We note first that one can estimate the distribution of the

support of the bm from a batch T using 1
T

∑

i∈T
b
(i)
m . Re-

laxing bm to
∼

bm for training purposes, we want the entropy

of this quantity to be high. This leads us to the definition of

the negative batch entropy loss:

−
1

M

M
∑

m=1

E
( 1

T

∑

i∈T

∼

b
(i)

m

)

= −
1

M
E
(

b
)

, (9)

where we let b , 1
T

∑

i∈T

∼

b
(i)

.

Our learning objective (computed over a mini-batch) will

hence be a standard classification objective further penal-

ized by the mean and batch entropies in (8) and (9):

Loss
(

{(I(i),y(i))}i∈T

)

,
1

T

∑

i∈T

[

ℓ(s(i), y(i))+

γ

M log2 K
E(

∼

b
(i)
)−

µ

M log2 K
E(b)

]

,

(10)

with network output s defined as in (1), C the number of

classes, and γ > 0 and µ > 0 two hyper-parameters.

In our work, we use the following scaled version of the

commonly used cross-entropy loss for classification:

ℓ(s, y) , −
1

log2 C
log2 s[y]. (11)

The scaling by log2 C reduces the dependence of the hyper-

parameters µ and γ on the number of classes C.

The training loss (10) is minimized with mini-batch

stochastic gradient descent. The whole architecture can be

learned this way, including the CNN feature extractor, the

encoding layer and the classification layer (Fig. 1). Alter-

natively, (some of) the weights of the base CNN f1 can be

fixed to pre-trained values. In Section 4, we will consider

the following variants, depending on set-ups: Training of

FC0/FC1 only (“2-layer” training), the base CNN staying

fixed; Training of FC−1/FC0/FC1 (“3-layer training”);

Training of all layers, C1 · · ·CL and FC−Q · · ·FC1 (“full

training”).

3.3. Image search

As we will establish in Section 4, SUBIC yields impor-

tant advantages in three image search applications, which

we now describe along with a search complexity analysis.

Category and instance retrieval. These two tasks con-

sist of ranking database images according to their similarity

to a given query image, where similarity is defined by mem-

bership in a given semantic category (category retrieval)

or by the presence of a specific object or scene (instance

retrieval). For these two tasks, we wish to use our struc-

tured binary representations to efficiently compute similar-

ity scores for all database of images {I(j)}j given a query

image I∗. We propose using an asymmetric approach [24]

that limits query-side coding approximation: The database

images are represented using their structured binary rep-

resentation b(j) = [b
(j)
1 ; · · · ;b

(j)
M ] ∈ K

M
K , whereas the

query image I∗ is represented using the real-valued vector

z∗ = [z∗1; · · · ; z
∗
M ] ∈ R

KM
+ . Accordingly, the database im-

ages are ranked using the similarity score (z∗)⊤b(j). This

expression also reads

M
∑

m=1

z∗m
[

argmax
r

b(j)
m [r]

]

, (12)

which shows that M additions are needed to compute

SUBIC similarities.

Image classification. A second important application is

that of image classification in the case where the classes of

interest are not known beforehand or change across time,

as is the case of on-the-fly image classification from text

queries [11, 10]. Having feature representations that are

compact yet discriminative is important in this scenario, and

a common approach to achieve this is to compress the fea-

ture vectors using PQ [8, 10]. The approach we propose is

to instead use our supervised features to compactly repre-

sent the database images directly. New classes are assumed

to be provided in the form of annotated sets {(I(q), y(q))}q
containing examples of the C ′ previously-unknown query

classes,3 and we learn classifiers from the structured codes
∼

b of these examples. At test time, classifying a test feature

b(j) ∈ K
M
K from the original dataset will require computing

products (W ∗)⊤b(j) (with W
∗ ∈ R

KM×C′

for a softmax

3Obtained from an external image search engine in on-the-fly scenarios.
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classifier or W ∗ ∈ R
KM for a one-vs-rest classifier). Sim-

ilarly to (12), this operation will likewise require only M
additions per column of W ∗.

Search complexity relative to deep hashing. The ex-

pression (12) is reminiscent of the efficient distance com-

putation mechanisms based on look-up-tables commonly

used in product quantization search methods [24]. In par-

ticular, the expression in (12) establishes that computing

the similarity between z∗m and bm incurs a complexity of

M additions. This can be compared to the complexity

incurred when computing the Hamming distance between

two deep hash codes (cf. Section 2) h1 and h2 of length

B = M log2 K (i.e., of storage footprint B equal to that of

SUBIC): 1 XOR operation followed by as many additions

as there are different bits in h1 and h2, a value that can be

estimated from the expectation (J·K is the Iverson bracket)

Eh1,h2

(

B
∑

k=1

q
h1[k] 6= h2[k]

y
)

=
B

2
=

M

2
log2 K,

(13)

if assuming i.i.d. and uniform hj [k].
We note that O(1) look-up-table (LUT) based implemen-

tations of the Hamming distance are indeed possible, but

only for small B (the required LUT size is 2B). Alterna-

tively, a smaller LUT of size 2B/M ′

can be used by split-

ting the code into M ′ blocks (with M ′ comparable to M ),

resulting in a complexity O(M ′) comparable to the O(M)
complexity of SUBIC.

4. Experiments

We assess the merits of the proposed supervised struc-

tured binary encoding for instance and semantic image re-

trieval by example and for database image classification, the

three tasks described in Section 3.3.

Single-domain category retrieval. Single-domain cate-

gory retrieval is the main experimental benchmark in the

supervised binary hashing literature. Following the experi-

mental protocol of [33], we report mean average precision

(mAP) performance on the Cifar-10 database [13] which

has 10 categories and 60k images of size 32 × 32 for each.

The training is done on the 50k image training set. The test

set is split into 9k database images and 1k query images,

100 per class. For fairness of comparison, we also use as

base CNN the same as introduced in [33]. It is composed

of L = 3 convolutional layers with 32, 32 and 64 filters

of size 5 × 5 respectively, followed by a fully connected

layer FC−1 with d = 500 nodes. As proposed, we ap-

pend to it a randomly initialized encoder layer FC0 along

with the classification layer FC1. We fixed K = 64 and

Method 12-bit 24-bit 36-bit 48-bit

CNNH+ [45] 0.5425 0.5604 0.5640 0.5574

DLBHC [32] 0.5503 0.5803 0.5778 0.5885

DNNH [31] 0.5708 0.5875 0.5899 0.5904

DSH [33] 0.6157 0.6512 0.6607 0.6755

KSH-CNN [35] - 0.4298 - 0.4577

DSRH [48] - 0.6108 - 0.6177

DRSCH [46] - 0.6219 - 0.6305

BDNN [17] - 0.6521 - 0.6653

SUBIC (ours) 0.6349 0.6719 0.6823 0.6863

Table 2: Single-domain category retrieval. Comparison

against published mAP values on Cifar-10 for various su-

pervised deep hashing methods. See the ImageNet column

of Table 3 for single-domain results on ImageNet.

Method VOC2007 Caltech-101 ImageNet

PQ [24] 0.4965 0.3089 0.1650

CKM [38] 0.4995 0.3179 0.1737

LSQ [37] 0.4993 0.3372 0.1882

DSH-64 [33] 0.4914 0.2852 0.1665

SUBIC 2-layer 0.5600 0.3923 0.2543

SUBIC 3-layer 0.5588 0.4033 0.2810

Table 3: Cross-domain category retrieval. Performance

(mAP) using 64-bit encoders across three different datasets

using VGG-128 as base feature extractor. For complete-

ness, results on ImageNet validation set (i.e. single-domain

retrieval) are provided in the third column.

varied M = {2, 4, 6, 8} so that B = M log2(K) is equal

to the desired bit-rate. Full training of the network is con-

ducted, and hyper-parameters γ and µ are cross-validated as

discussed later. We compare in Table 2 with various meth-

ods based on the same base CNN (top four rows, DSH [33],

DNNH [31], DLBHC [32] and CNNH+ [45]), as well as

other published values. For reference, we include a method

(KSH-CNN [35]) not based on neural hash functions but us-

ing activations of a deep CNN as input features. Note that,

at all bit-rates, from 12 to 48 bits, SUBIC outperforms these

state-of-the-art supervised hashing techniques.

Cross-domain category retrieval. Using VGG-D with

128-D bottleneck (VGG-128) [9] as base CNN (L = 5,

Q = 3 and d = 128), setting µ and γ to 1.0, we per-

formed 2-layer and 3-layer learning of our network (see

Section 3.2) on ILSVRC-ImageNet [22] training set. Two-

layer training is conducted on 5k batches of T = 200 im-

ages. Three-layer training is initialized by previous one and

run for another 5k batches. To evaluate cross-domain per-

formance, we used our trained network to do category re-

trieval on Pascal VOC2007[43], Caltech-101 [6] and Im-

ageNet validation sets. For each experiment, we used

1000 (2000 for ImageNet) random query images, the rest
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Method Oxford5K Paris6K

PQ [24] 0.2374 0.3597

LSQ [37] 0.2512 0.3764

DSH-64 [33] 0.2108 0.3287

SUBIC 0.2626 0.4116

Table 4: Instance retrieval. Performance (mAP) compari-

son using 64-bit codes for all methods.

serving as database. The performance of the two trained

SUBIC networks is reported in Table 3 at 64-bit rate (M =
8, K = 256). They are compared to three unsupervised

quantization baselines, PQ [24], Cartesian k-means (CKM)

[38] and LSQ [37], operating at 64-bit rate on VGG-128

image features. Further, to compare with supervised deep

hashing approaches we implemented DSH [33] with VGG-

128 as the base CNN, using their proposed loss and pair-

wise training.

The impact of the proposed semantic supervision across

domain is clearly demonstrated. Comparing unsupervised

methods with our “2-layer” trained variant (no tuning of

FC1 is particularly enlightening since they all share ex-

actly the same 128-dimensional input features). Training

this representation as well in the “3-layer” version did not

prove useful except on the ImageNet validation set. Note

that the performance on this set could have been further im-

proved through longer training, but at the expense on re-

duced transferability.

Instance retrieval. Unsupervised structured quantizers

produce compact codes that enjoy state-of-the-art perfor-

mance in instance retrieval at low memory footprint. Hence,

in Table 4 we compare SUBIC to various such quantizers

as well as DSH, using 64-bit representations for all meth-

ods. We used the clean train subset [21] of the Landmarks

dataset [4] to train both DSH and a 2-layer SUBIC (the

same as in Table 3, but with 60K batches). We report mAP

on the Oxford 5K [39] and Paris 6K [40] datasets using

their provided query/database split. SUBIC outperforms

all methods while DSH performance is weaker to even un-

supervised quantizers.

Image classification. In Table 5, we show how the 64-

bit SUBIC encoding of VGG-128 features from Table 3

(2-layer variant) outperforms two baseline encoders with

the same bit-rate for classification of compressed represen-

tations. As done in [10] for on-the-fly classification, the

first baseline employs PQ [24] to represent the features

compactly, and the second substitutes PQ by the better-

performing CKM encoder [38]. Both unsupervised en-

coders are learned on VGG-128 features from the Ima-

geNet training set. For the test on ImageNet, the two base-

lines employ the off-the-shelf VGG-128 classification layer

ImageNet VOC2007

Top-1 acc. Top-5 acc. mAP

VGG-128∗ 53.80 77.32 73.79

PQ 64-bit 39.88 67.22 65.94

CKM 64-bit 41.15 69.66 67.25

SUBIC soft∗ 50.07 74.11 70.20

SUBIC 64-bit 47.77 72.16 67.86

Table 5: Classification performance with different com-

pact codes. The rows marked (*) are non-binary codes. See

the text for details.
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Figure 2: Effect of the entropy-based losses on the be-

havior of structured encoding. (left) One-hot encoding

closeness of
∼

b1. (right) Distribution of block support of b1.

The black dashed curves correspond to the ideal, desired

behavior. (top) ImageNet validation. (bottom) VOC2007.

as a classifier, reconstructing the PQ and CKM encoded ver-

sions beforehand (for reference, first row is for this classifier

using original, un-coded features). Our results (bottom two

rows) employ trained FC1 layer applied to either
∼

b code

(“SUBIC soft”) or b binary code (“SUBIC 64-bit”). In case

of VOC2007 we trained one-vs-rest SVM classifiers on the

off-the-shelf VGG-128 features (top three rows) or on the
∼

b

features for SUBIC (bottom two rows).

Note that our compact SUBIC 64-bit features outper-

form both PQ and CKM features for the same bit-rate.

Also notice that, although the classifiers for VOC2007 are

trained on block-softmax encoded features, when we use

SUBIC 64-bit features the accuracy drops only marginally.

Structuring effectiveness of entropy-based losses. In

Fig. 2 we evaluate our proposed entropy losses using the

same SUBIC setup as in Table 5. We report statistics

on the ImageNet validation set (top graphs) and on all of

VOC2007 (bottom graphs), using the γ/µ ratio in the leg-
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Figure 3: Effect of γ and µ on category retrieval perfor-

mance.

ends for ease of comparison.

To explore how well our γ-weighted mean-entropy loss

favors codes resembling one-hot vectors, we extract the first

256-dimensional block
∼

b1 from each image of the set (the

seven other blocks exhibit similar behavior), re-order the

entries of each such
∼

b1 in decreasing order and average

the resulting collection of vectors. The entries of this av-

erage vector are visualized for various values of γ/µ in

the plots on the left. Ideal one-hot behavior corresponds

to [1; 0 · · · ; 0]⊤. On both datasets, increasing the mean en-

tropy penalization weight γ relative to µ (i.e., increasing

γ/µ) results in code blocks that more closely resemble one-

hot vectors.

To evaluate how well our µ-weighted negative batch-

entropy term promotes uniformity of the support of the bi-

narized blocks in b, we plot, in the right side of Fig. 2, the

sorted histograms of the support of the first block b1 over

the considered image set. Note that increasing the weight µ
of the batch entropy term relative to γ (decreasing γ/µ) re-

sults in distributions that are closer to uniform. As expected,

the effect is more pronounced on the ImageNet dataset (top

row) used as a training set, but extrapolates well to an inde-

pendent dataset (bottom row).

We note further that it is possible (green curves, γ/µ =
5) to have blocks that closely resemble one-hot vectors (left

plot) but make poor use of the available support (0-valued

histogram after the 47-th bin, on the right). It is likewise

possible (blue curve, γ/µ = 0.1) to enjoy good support

usage with blocks that do not resemble one-hot vectors, es-

tablishing that our two losses work together to achieve the

desired design goals.

Cross-validation of hyper parameters. Using the same

setup and γ/µ values as in Fig. 2, in Fig. 3 we plot mAP as

a function of γ/µ on three datasets. Note that the optimal

performance (at γ/µ = 1) for this architecture is obtained

for an operating point that makes better use (closer to uni-

form) of the support of the blocks, as exemplified by the

corresponding curves (pink) on the right in Fig. 2. This

Figure 4: Category retrieval examples. Top ten ranked im-

ages retrieved from Cifar-10 for the query on the left when

using 12-bit (top) and 48-bit (bottom) SUBIC. Note that

higher bit-rates make the representation more sensitive to

the query’s orientation.

supports one of our original motivations that fostering uni-

formity of the support would encourage the system to use

the support to encode semantic information.

Category retrieval search examples. In Fig. 4 we

present a search example when using the 12-bit and 48-bit

SUBIC from Table 2. Note that increasing the bit rate re-

sults in retrieved images that are of the same pose as the

query, suggesting that our method has potential for weakly-

supervised (automatic) category refinement.

5. Conclusion

In this work we introduced SUBIC, a supervised, struc-

tured binary code produced by a simple encoding layer

compatible with recent deep pipelines. Unlike previ-

ous deep binary hash codes, SUBIC features are block-

structured, with each block containing a single active bit.

We learn our proposed features in a supervised manner by

means of a block-wise softmax non-linearity along with two

entropy-based penalties. These penalties promote the one-

hot quality of the blocks, while encouraging the active bits

to employ the available support uniformly. While enjoy-

ing comparable complexity at fixed bit-rate, SUBIC out-

performs the state-of-the art deep hashing methods in the

single-domain category retrieval task, as well as state-of-

the art structured vector quantizers in the instance retrieval

task. SUBIC also outperforms structured vector quantiz-

ers in cross-domain category retrieval. Our method further

showed promise for weakly-supervised semantic learning,

a possible future direction.
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