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Abstract

Rigid structure-from-motion (RSfM) and non-rigid
structure-from-motion (NRSfM) have long been treated in
the literature as separate (different) problems. Inspired by a
previous work which solved directly for 3D scene structure
by factoring the relative camera poses out, we revisit the
principle of “maximizing rigidity” in structure-from-motion
literature, and develop a unified theory which is applica-
ble to both rigid and non-rigid structure reconstruction in
a rigidity-agnostic way. We formulate these problems as
a convex semi-definite program, imposing constraints that
seek to apply the principle of minimizing non-rigidity. Our
results demonstrate the efficacy of the approach, with state-
of-the-art accuracy on various 3D reconstruction problems.

1. Introduction

Structure-from-motion (SfM) is the problem of recover-
ing the 3D structure of a scene from multiple images taken
by a camera at different viewpoints. When the scene struc-
ture is rigid the problem is generally well defined and has
been much studied [25, 12, 24, 8], with rigidity at the heart
of almost all vision-based 3D reconstruction theories and
methods. When the scene structure is non-rigid (deforming
surface, articulated motion, and etc.), the problem is under-
constrained, and constraints such as low dimensionality [4]
or local rigidity [23] have been exploited to limit the set of
solutions.

Currently, non-rigid structure from motion (NRSfM)
lags far behind its rigid counterpart, and is often treated en-
tirely separately from rigid SfM. Part of the reason for this
separate treatment lies in the usual formulation of the STM
problem, which approaches the task in two stages: first the
relative camera motions w.r.t. the scene are estimated; then
the 3D structure is computed afterwards. In each stage, dif-
ferent methods and implementations have to be developed
for rigid and non-rigid scenarios separately because of the
different structure priors that are exploited. This has a fur-
ther disadvantage in that it can be difficult to determine a
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priori whether the scene is rigid or nonrigid (and if the lat-
ter, in what way).

Therefore, it is highly desirable to have a generic SfM
framework that can deal with both rigid and non-rigid mo-
tion, which leads to the main theme of this paper. In fact,
as early as in the year 1983, Ullman [26] proposed a “maxi-
mizing rigidity” principle that relies on a non-convex rigid-
ity measure to reconstruct 3D structure from both rigid
and non-rigid (rubbery) motion. This idea has resurfaced
in various work under the ARAP (“as rigid as possible™)
moniker [15, 21]. However, it has not been further devel-
oped under the modern view of 3D reconstruction, mainly
due to the difficulty in its optimization. In this paper we re-
visit Ullman’s “maximizing rigidity” principle and propose
a novel convex rigidity measure that can be incorporated
into a modern SfM framework for both rigid and non-rigid
shape reconstruction.

Our proposed formulation yields reconstructions that are
more accurate than current state-of-the-art for non-rigid
shape reconstruction, and which enforces rigidity when this
is present in the scene. This is because our framework
aims at maximizing the rigidity while still satisfying the im-
age measurements. We thus achieve a unified theory and
paradigm for 3D vision reconstruction tasks for both rigid
and non-rigid surfaces. Our method does not need to spec-
ify which case (out of the above scenarios) is the target to
be reconstructed. The method will automatically output the
optimal solution that best explains the observations.

2. Related Work

Traditionally, under a perspective camera, the pipeline
of RSfM consists of two steps, i.e., a camera motion esti-
mation step and a following structure computation step [ 12,

, 9, 8]; or the camera motion and 3D structure can also be
estimated simultaneously through measurement matrix fac-
torization [24, 22]. In RSfM literature, most related to our
work was by Li [11], who proposed an unusual approach
to handle SfM which bypasses the motion-estimation step.
This method does not require any explicit motion estimation
and was called the “structure-without-motion” method.

In contrast to RSfM, NRSfM remains an open active re-
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search topic [4, 3, 30] in computer vision. One of the com-
monly used constraints in NRSfM is the local rigidity con-
straint [23, 28], or in some literature the inextensibility con-
straint [29].

Taylor et al. [23] formulated a NRSfM framework in
terms of a set of linear length recovery equations using
local three-point triangles under an orthographic camera,
and grouped these “loosely coupled” rigid triangles into
non-rigid bodies. Varol et al. [28] estimated homogra-
phies between corresponding local planar patches in both
images. These yield approximate 3D reconstructions of
points within each patch up to a scale factor, where the rel-
ative scales are resolved by considering the consistency in
the overlapping patches. Both methods form part of a re-
cent trend of piece-wise reconstruction methods in NRSfM.
Instead of relying on a single model for the full surface,
these approaches model small patches of the surface inde-
pendently. Vicente and Agapito [29] exploited a soft inex-
tensibility prior for template-free non-rigid reconstruction.
They formulated an energy function that incorporates the
inextensibility prior and minimized it via the QPBO algo-
rithm. Very recently, Chhatkuli et al. [3] presented a global
and convex formulation for template-less 3D reconstruc-
tion of a deforming object by using perspective cameras,
where the 3D reconstruction problem is recast as a Second-
Order Cone Programming (SOCP) using the Maximum-
Depth Heuristic MDH) [17, 18, 20].

The literature of RSfM and NRSfM advance in relatively
independent directions. To the best of our knowledge, the
first attempt to unify the two fields was by Ullman [26],
who proposed to use the principle of “maximizing rigid-
ity” to recover 3D structure from both rigid and non-rigid
motion. Ullman’s original formulation maintained and up-
dated an internal rigid model of the scene across a tempo-
ral sequence. A rigid metric was defined in terms of point
distance to measure the deviation from the estimated struc-
ture to the internal model. The 3D structure was recovered
by minimizing the overall deviation from rigidity (internal
model) to a local optimum via a gradient method. Com-
pared to Ullman’s method, our method unifies rigid and
non-rigid SfM within a convex program, from which we
obtain a global optimal solution.

3. Maximizing Rigidity Revisited

In this section, we discuss Ullman’s “maximizing rigid-
ity” principle in more detail. Ullman assumed that there is
an internal model of the scene and the internal model should
be as rigid as possible [26]. Let Jz‘j be the Euclidean dis-
tance between points ¢ and j of the internal model, and d;;
the Euclidean distance between points ¢ and j of the esti-
mated structure. A measure of the difference between d;;

Figure 1. A spring model illustration for Ullman’s maximizing
rigidity principle. Each of the viewed points (three in this ex-
ample) is constrained to move along one of the rigid rods, and
its position along the rod represents its depth. The connecting
springs represent the distances between points in the current inter-
nal model. The points would slide along the rods until a minimum
energy configuration is reached. The final configuration represents

the modified internal model. Image and caption are modified from
Figure 2 of [26].

and d;; was defined as

_ (dij — di)?
@ ™
)
Under an orthographic camera model, the pairwise distance
d;; was directly parameterized as (z; — ;)% + (y; — y;)? +
(z; — zj)?, where {(x;,y;)} are the known image (coordi-
nate) measurements and {z; } are the unknown depths. Un-
fortunately, no principled way was provided to handle the
general perspective camera model. Intuitively, this measure
is the least square difference reweighted by the inter-point
distance of the internal model. The reweighting indicates
that a point is more likely to move rigidly with its nearest
neighbors [26]. However, the reweighting also makes Ull-
man’s rigidity measure non-convex in terms of d;;.

Then the problem of determining the most rigid structure
can be formulated as minimizing the overall deviation from
rigidity . j A;;. Since the internal model of the scene is
often unknown, the remedy that Ullman proposed was to
start from a flat plane (as the initial internal model) and in-
crementally estimate the internal model and 3D structure.
This internal model was shown to converge to a local opti-
mum for both rigid and non-rigid motions [26, 7]. See Fig-
ure | for a spring model illustration of Ullman’s method.

From the analysis above, we can identify three major
drawbacks of Ullman’s method: (i) it cannot handle the per-
spective camera in a principled way; (ii) the rigidity mea-
sure used is non-convex, which leads to local optimum; (iii)
it relies on building fully connected graphs (for every pair
of points), which, in practice, is often redundant and un-
necessary. In the following section, we’ll show how these
drawbacks can be circumvented by introducing a novel con-
vex rigidity measure which can be further incorporated into
an edge-based 3D reconstruction framework for perspective
projection.
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4. Our 3D Shape Reconstruction Model

In this section, we present our unified model for both
rigid and nonrigid 3D shape reconstruction. The core com-
ponent of our model lies in a novel convex rigidity measure
as introduced below. For notation, points are indexed with
a subscript ¢ € {1,--- ,n}, and image views (or frames)
are indexed with a superscript k € {1,--- ,m}. We assume
that the world frame is centered at the camera center and
aligned with camera coordinate system.

4.1. Our Rigidity Measure

Ullman’s rigidity measure requires to build a fully con-
nected graph within each time frame and penalize distant
edges (as distant point pairs are more likely to move non-
rigidly). Instead of using a fully connected graph, we build
a K-nearest-neighbor graph (K-NNG), which connects each
point i to a set of its K nearest neighbors, denoted as A/ (1),
based on the Euclidean distance on 2D images [3]. We also
use a different internal model than Ullman’s. Specifically,
we define a rigid internal model with inter-point distance
Gij = maxk{dfj}kzlv... .m. i-e., g;; is the maximal distance
between points Q; and Q; over all frames. So our internal
model can be thought of as a “maximum distance” model.
For rigid shapes, g;; corresponds to the Euclidean distance
between Q; and Q;, which is invariant over all frames; for
non-rigid inextensible shapes, g;; corresponds to the maxi-
mal Euclidean distance between Q; and Q; over all frames,
which generally equals the geodesic distance between Q;
and Q. For example, for a non-rigidly deforming paper,
its internal model corresponds to the flat paper. To enforce
rigidity, we define a measure of the total difference between
g:j and dfj for all (4,4, k) as

o ¥

1,JEN(3),k

l9i; — d?j' . 2

Compared to Ullman’s rigidity measure, our rigidity mea-
sure has three merits: (i) we significantly reduce the num-
ber of edges by using a K-NNG instead of a fully connected
graph; (ii) our measure is convex, which is crucial for opti-
mization; (iii) we use a robust L-1 norm instead of the L-2
norm in the rigidity measures. To make the reconstructed
scene as rigid as possible, we need to minimize A’. As we
will see in the following subsections, our rigidity measure
can be naturally incorporated into an edge-based 3D recon-
struction framework under perspective projection.

4.2. Edge-Based Reconstruction

Given a set of n 2D point correspondences across m im-
ages {q’'}, our target is to find their 3D coordinates Q¥
in the same global coordinate system. We denote the edge
(distance) between the camera center O and Qf, which we
call a “leg”, as £¥. Define the angle between legs /¥ and

Figure 2. Viewing triangles of a pair of 3D points Q; and Q; in
different views. We use O to denote the camera center from which
we draw viewing ray OQF intersecting with the image plane at
q¥. For example, AOQ}Q} forms a viewing triangle in the first
view for Q; and Q;.

éf as ij Clearly, we have ij = 0;“2 We assume that the
camera is intrinsically calibrated, so the angles ij can be
trivially computed. Denote the Euclidean distance between
two points QF and Q¥ in the k™ frame as dJ;. For rigid mo-
tion, dfj is constant over frames for the same pair of point
correspondences. In the case of non-rigid motions, dfj may
change over frames, but is bounded by a maximal value g;;,
ie. gi; = maxk{dfj}k:L.., m-

Motivated by [ 1], we build our model based on view-
ing triangles formed by each pair of points to compute the
3D structure. See Figure 2 for an illustration. Note that
the viewing triangles can only be formed with points of the
same frame.

Within each viewing triangle, we have a basic equation
following the cosine law

k2 | k2 k pk k _ gk 2
G+l = 20707 cos 0 = d; . 3)
We can rewrite this equation in a matrix form as
. 1 —cos OF.] [k 2
ko gk dl v = qk
L& Ej} — oS Hfj 1 } {Eﬁ dij - @

With all viewing triangles, we can construct a system of
quadratic equations of the above form in terms of the un-
knowns ¢¥, ¢¥ and dfj.

Stack all the legs ¢* into a vector £ = [ElT g
with the leg vector for the k™ frame £ = [¢F ... (F]T.
Define the cosine-matrix as C* € R™*" with the diag-
onal elements as one and off-diagonal elements as cfj =
— COoS ij Let e; be the unit basis vector (i.e., all 0 but
1 at the i'" entry), and define the diagonal matrix E;; =

diag(e; + €;). Eq. (4) can then be rewritten as
¢ ELCPE 0 = 4 (5)

Note that the matrix A¥; = E];C*Ej; is highly sparse with
only four non-zero elements.
The edge-based 3D reconstruction problem becomes

Find £,d (6a)
st 0 AR = ab? (6b)
08>0, df >0, (i, k), (6¢)
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where d is a vector containing all dfj.

However, the above formulation is not well constrained
because: (i) the scale of the solutions cannot be uniquely
determined due to the homogeneous equation in (6b); (ii)
a trivial all-zero solution always exists; (iii) for non- rigid
motions, we only have one equality constraint for each d”,
which is insufficient to get deterministic solutions'. The
scale ambiguity is intrinsic to 3D reconstruction under the
perspective camera model [8]. In practice, we can fix a
global scale of the scene by normalizing £ or d.

Maximum-Leg Heuristic (MLH). To get the desired
solutions, we apply a so-called Maximum-Leg Heuristic
(MLH). After fixing the global scale, we want to maximize
the sum of all legs ¢¥ under the non-negative constraint, or
equivalently

mln ka (7a)
st £ Afje’“ =d” (7b)
k k -
£ >0, di_j >0, V(i, 7, k) - (70)

In this way, trivial solutions are avoided. Note that, in
the NRSfM literature, there is a commonly used heuris-
tic called Maximum Depth Heuristic (MDH) [17, 18, 20],
which maximizes the sum of all depths under the condition
that each depth and distance are positive. Our MLH virtu-
ally plays the same role as MDH because under a perspec-
tive camera, we have /¥ = 2¥||@¥||2, where 2 represents
the depth of the i'" point in the &' frame (z.e., QF), and

af =K gt 17
5. Convex Program for 3D Shape Reconstruc-
tion

Incorporating our rigidity measure in (2) into (7), we get
our overall formulation for 3D shape reconstruction as fol-

lows
. k
jnin Zﬁ +AZ]€\9” (8a)
575
st. o7 A’ff’“ — a7, (8b)
< gij (8c)

Zgij =1, (8d)

e’f >0, df >0,9(i,5 € N(i), k), (8e)

1) —

where A > 0 is a trade-off parameter, and the equality con-
straint (8d) fixes the global scale of the reconstructed shape.

IFor rigid motions, dk = dij, Vk € {1,--- ,m}, and we have suf-
ficient constraints for d” But in many cases, we don’t know whether the
scene is rigid or non-rigid a priori.

However, the above formulation is still non-convex due to
the quadratic terms in the both sides of Eq. (8b) and in the
left-hand-side of Eq. (8d) To make it convex, we first define
9ij = Gij 2 and dk = dk
to the following form

£,d.g

. We then change our formulation

id, k
st 08" Ak e =db, (9b)
dfj < 95 (9¢)
dgi=1, (9d)

ij

08>0, df>0,9(i,5 € N(i), k), (9e)

where we approximate |g;; — d¥;| with |§;; — d¥;|, and drop
the absolute value operator as we have an inequality con-
straint (9¢) to make sure g;; — cifj is always non-negative.
Due to (9b), our formulation turns out to be a quadratically
constrained quadratic program (QCQP), which is unfortu-
nately still a non-convex and even NP-hard problem for in-
definite A%, [16, 19].

5.1. Semi-Definite Programming (SDP) Relaxation

We now show how our formulation can be converted
to a convex program using SDP relaxation. Note that we

have EkTAijk = tr(AijkékT). We can introduce aux-

iliary variables Y* = ZkEkT for k = 1,---,m. Then

Eq. (9b) equivalently becomes two equality constraints

T
tr(AFYF) =db |, Y* = £"0"" . We can directly relax the

. T,
last non-convex equality constraint Y* = 25¢*" into a con-
.. . . . T
vex positive semi-definiteness constraint Yk = VAT [5].
. T
Using a Schur complement, Y - £5¢*" can be reformu-

1 e

lated [1] as % > 0. Ideally, Y should be a rank-
5 YF

one matrix. But, after the relaxation, the rank constraint for
Y” may not be maintained. We can minimize tr(Y*) as the
convex surrogate of rank(Y*).?

Our formulation becomes an SDP written as:

min Z tr(Y*) — \172 — x17d (10a)
£,d,g Yk
s.t. tr(Ak YF) =db, (10b)
T
1 £k
Lk Y’“} =0, (10c)
df < gij, 1"g =1, (10d)
>0, df; >0,Y(i,5 € N(i), k),  (10e)
2For positive semi-definite Y*, tr(Y*) = ||Y¥||., and the nuclear

norm is a well-known convex surrogate for the rank.
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where A\, Ay are two positive trade-off parameters, and 1 is
an all-one column vector with appropriate dimensions. Our
model incorporates our maximizing rigidity principle with
the MLH under the constraints of viewing-triangle cosine-
law and the internal model. Note that we remove a term of
g in the objective (10a) because we have >, ;; Gij = m,
which is a constant. Our formulation consists of a lin-
ear objective subject to linear constraints and SDP con-
straints, which is known as a convex problem. This convex
SDP problem can be solved effectively by any modern SDP
solver to a global optimum.

Incomplete Data. Incomplete measurements are quite
common due to occlusions. To handle incomplete measure-
ments, we can introduce a set of visibility masks W =
{wk}, where wk 1 if the #*® point is visible in frame
k, otherwise w¥ = 0. With the visibility masks, the terms
related to £¥ become wk % and the terms related to dfj be-
come w; wkdk The problem is still convex and solvable
with any SDP solver. Here we assume that the number of
visible points in one frame is greater than the neighborhood
size; otherwise, we remove that frame.

5.2. 3D Reconstruction from Legs

Under the perspective camera model, we can relate Q¥
and g¥ with

Q =zay =a /a2 (11)
kT

where §¥ = K~1[q¥" 1]T. After we get the solutions for
all legs Ef, we can then substitute them back to the above
equation to compute the 3D coordinates for all points.

Degenerate Cases. Our system becomes degenerate if
there is only pure rotation (around the camera center) in the
scene. In fact, pure rotation over the camera center do not
change the angles between two vectors, e.g., vi and vo,

(RVl)T(RV)Q
[Rvy[[[Rva

V,{‘VQ

cos(8
©) = il ~

12)

where the equations hold because R”R. = I and rotation
on vectors does not change their length. So if there is only
pure rotation in the scene, our system will become under-
constrained. This also corresponds to the fact in epipolar
geometry that pure rotation cannot be explained by the es-
sential/fundamental matrix (but homography instead). An-
other degenerate case is when the camera model is close to
orthographic. In this case, the viewing angles are all close
to zero, which makes our formulation unsolvable.

6. Experiments

We compare our method with four baselines for rigid and
non-rigid 3D shape reconstruction. These baselines include:

the rigid “structure-without-motion” method for a perspec-
tive camera in [I1], the non-convex soft-inextensibility
based NRSfM method for an orthographic camera in [29],
the prior-free low-rank factorization based NRSfM method
for an orthographic camera in [4], and the second-order
cone programming based NRSfM method for a perspective
camera [3]. For the baselines, we use the source codes pro-
vided by the authors. We implement our method in Matlab
and use the MOSEK [14] SDP solver to solve our formula-
tion. We fix all the parameters of the baseline methods to
the optimal values. We find that our method is not sensitive
to the parameters A\; and A9, and set Ay = 1 and Ay = 20
for all our experiments, which are obtained by validating on
a separate dataset. To give a fair comparison, we always use
the same K-NNG for [3] and our method. Due the limit of
space, our qualitative reconstruction results on all synthetic

datasets are provided in the supplementary videos.

The metrics we use to evaluate the performance are the
3D Root Mean Square Error (RMSE) (in mm) and the rel-
ative 3D error (denoted as R-Err) (in %), which are respec-
tively defined as

1 1 ~
RMSE = EZ,/;ZIIQ? - QFlI3

1Q* — QF||F
- 100% ,
; Q-

where QF is the ground truth coordinates of point 7 in frame
k. We always have a scale ambiguity for all structure-from-
motion methods. For methods that use a perspective cam-
era model, we re-scale their reconstructions to best align
them with the ground truth before computing the errors. For
methods that use an orthographic camera model, we do Pro-
crustes analysis to solve for a similarity transformation that
best aligns the reconstructions with the ground truth.

6.1. Non-rigid Structure from Motion

Our method and [3] rely on constructing a K-NNG. For
both methods, we use the same K-NNG and fix the neigh-
borhood size K as 20 for this set of experiments.

The Flag (Semi-Synthetic) Dataset. This flag dataset
[31] consists of an image sequence of a fabric flag wav-
ing in the wind. The ground truth 3D points are provided in
the dataset, but neither 2D projection trajectories nor cam-
era calibrations are available. We subsample the 3D points
in each frame and generate the input data from a virtual per-
spective camera with the field-of-view angle as 81.69°. The
final sequence contains 90 points (on each frame) and 50
frames. We report the 3D RMSE and mean relative 3D er-
ror in Table 1. Note that our method achieves the lowest 3D
reconstruction error among all the competing methods.

The KINECT Paper, Hulk, and T-Shirt Datasets. The
KINECT paper dataset [27] contains an image sequence
of smoothly deforming well-textured paper captured by a

933



a6
P s Gos

atep o

@® .
@99 o v

BRGNS

Figure 3. Qualitative comparison of the 3D reconstruction results on the T-shirt dataset. The green circles plot the ground truth 3D points,
and the blue stars show the reconstructed 3D points. Top row: 2D images with feature points in red dots. Middle row: results of [3].
Bottom row: results of our method. Best viewed on screen with zoom-in.

Table 1. Mean 3D errors for the Flag Paper dataset.
[29] [4] [3] Ours
RMSE 4192 26.23  21.08 16.75
R-Err 12.76% 7.51% 6.38% 5.07%

KINECT camera. The camera calibration and ground truth
3D are provided. We use the trajectories provided by [3],
which was obtained by tracking interest points in this se-
quence using a flow-based method of [0]. The trajectories
are complete, semi-dense and outlier-free. Due to the large
number of points and frames, we subsample the points and
frames in this dataset and get a sequence with 151 points
(on each frame) and 23 frames.

The Hulk dataset [2] consists of 21 images taken at dif-
ferent unrelated smooth deformations. The deforming scene
is a well-textured paper cover of a comics. The intrinsic
camera calibration matrix, 3D ground truth shape and 2D
feature trajectories are provided in this dataset. This dataset
contains 122 trajectories in 21 views.

The T-Shirt dataset [2] consists of 10 images taken for a
deforming T-shirt. As in the Hulk dataset, the intrinsic cam-
era calibration matrix, 3D ground truth shape and 2D fea-
ture trajectories are all provided in this dataset. This dataset
contains 85 point trajectories in 10 frames.

We show the mean 3D errors of our method and the base-
lines in Figure 4. We can see that our method achieves the
lowest 3D reconstruction error on all the three datasets. We
also give a qualitative comparison with the best-performing
baseline [3] in Figure 3.

The Jumping Trousers Dataset with missing data. This
dataset [31] contains 3D ground truth points for jumping
trousers obtained from cloth motion capture. The complete
2D trajectories are generated by projecting the 3D points
through a virtual perspective camera. However, due to self-
occlusions, the 2D trajectories would have a considerable
amount of missing entries, and the visibility masks are pro-
vided in the original data. We subsample the points and

MEours [N[3] [@[4] [I27]
20

v

—
v
w

=
o

R-Err (in %)
N

RMSE (in mm)
w

| | :
o L WL 1 .

KPaper Hulk T-shirt KPaper Hulk T-shirt

Figure 4. Mean 3D reconstruction errors for the KINECT Paper
(denoted as “KPaper” in the figure), Hulk, and T-shirt Datasets.
Our method (plotted in blue) achieves the lowest 3D reconstruc-
tion errors on all three datasets.

frames, and get a sequence of 97 points and 29 frames.
Since the first two baselines [29, 4] cannot handle incom-
plete data, we input complete trajectories for them. We use
the incomplete trajectories for [3] and our method as the
two methods can handle incomplete data. * The results are
reported in Table 2. Our method, with incomplete data as
input, outperforms all the other baselines.

Table 2. Mean 3D errors for the Jumping Trousers dataset.

[29] [4] [3] Ours
RMSE 190.17 49.97 44.05 37.70
R-Err 55.10% 12.67% 13.57% 11.65%

From this set of experiments, we have shown that our
method consistently outperforms all the baselines. We note
that on those datasets there is always a significant perfor-
mance gap between those orthographic camera model based
methods ([29, 4]) and those perspective camera model
based methods ([3] and ours). In the following experiments,
we will only compare with the perspective camera model
based methods ([1 1, 3]).

Robustness to various numbers of points/views, dif-
ferent levels of missing data and noise. In Figure 5,

3Note, for incomplete data, we only compute average 3D reconstruc-
tion error for the visible points. And also note that this comparison is unfair
for [3] and our method as the other two use complete data.
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we show the performance of our method and the best-
performing baseline [3] on the KINECT paper dataset
with increasing number of points/views, increasing ratios
of missing data, and increasing levels of synthetic zero-
mean Gaussian noise (with various standard deviations o).
The default experimental setting is with 100 points and 30
views, and the parameters are fixed as A\; = 1, A, = 20, and
K = 20. We can see that our method consistently outper-
forms the baseline method in all scenarios, which verifies
the robustness of our method. We believe that our superior
performance comes from the novel maximizing rigidity reg-
ularization, which better explains the image observations.

6.2. Rigid Structure from Motion

In this set of experiments, we test our method for rigid
structure reconstruction. Since our method does not utilize
the rigidity prior of the scene, we can well expect that our
method performs worse than the specifically designed rigid
method. The main goal of this set of experiments is thus to
show that our method can achieve comparable rigid struc-
ture reconstruction to the rigid method. We compare our
method with the best-performing baseline [3] for non-rigid
structure from motion, and another method [ ! 1] specifically
designed for rigid structure from motion. The neighborhood
size is set as 20 for all methods.

Rigid Synthetic Dataset. We verify our method for rigid
structure computation on a synthetic dataset. To gener-
ate the data, we subsample the ground truth 3D points of
one frame of the KINECT paper dataset [27], and apply a
transformation (rotation and translation) to these points over
time. After a perspective projection, we get a sequence for
rigid motion with 61 points and 20 frames. The mean 3D re-
construction errors for all competing methods are reported
in Figure 6. We also plot the RMSE (in mm) for each frame
of the sequence in Figure 6 and compare our method with
the state-of-the-art non-rigid SfM method [3] and the rigid

30 ~rigid method

non-rigid method

IS
o

=25 E ~-our method
E 20 E30
£
=30 w 20
i g
=10 10|
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|oooooooeoosoos, |
0
0 - 5 10 15 20

Ours [11] [3] Frame index

Figure 6. Left: mean 3D errors for the synthetic rigid dataset.
Right: the RMSE (in mm) for each frame of the synthetic se-
quence by the rigid method [11] (in black dots), the non-rigid

method [3] (in cyan dots), and our method (in red dots).

SfM method [11]. It’s no surprising that [ 1] achieves the
lowest reconstruction errors in this rigid dataset as it utilizes
the prior knowledge that the scene is rigid. Our method,
without inputting any prior knowledge of the scene rigidity,
gets close results to [ 1] and significantly outperforms the
NRSfM method [3].

The Model House Dataset. We use the VGG model
house dataset “as the real-world dataset for rigid SfM. The
camera projection matrices, 2D feature coordinates and 3D
ground truth points are provided in this dataset, and the 2D
measurements contain moderate amount of noise. The cam-
era intrinsic matrices are computed from camera projection
matrices using R-Q decomposition [8]. We generate a se-
quence with complete feature point trajectories of 95 points
and 7 frames. We report the 3D reconstruction errors of all
methods in Table 3. Again, our method obtains compara-
ble results to [11] and lower reconstruction error than the
NRSfM method [3].

Table 3. Mean 3D errors for the Model House dataset.

[11] [3] Ours
RMSE 0.158 0.200 0.162
R-Err 295% 373% 3.02%

6.3. Articulated Motion Reconstruction

In this set of experiments, we evaluate our method for
the 3D reconstruction of articulated motions, and compare
our method with the best-performing baseline [3].

Synthetic Articulated Dataset. We first test our method
on two synthetic sequences where the objects undergo ar-
ticulated motions. To generate the synthetic data, we take
a subset of the ground truth 3D points in the first image of
the KINECT paper dataset [27] and divide them into two
groups. We synthesize two kinds of articulated motions: (i)
the point-articulated motion (denoted as “point-articulated”
in Table 4), i.e., the two groups of points rotate around a
common point in the dataset and meanwhile undertake the
same translations through time; (ii) the axis-articulated mo-
tion (denoted as ““axis-articulated” in Table 4), i.e., the two

4http://www.robots.ox.ac.uk/~-vgg/data/
data-mview.html
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Figure 7. Left: mean 3D reconstruction errors on six sampled se-
quences (86_04, 86_05, 8607, 86_08, 86_10, and 86_14) of CMU
Mocap Database. Right: mean 3D reconstruction errors on Dance,
Drink, Pickup, Yoga, and Stretch sequences.

groups of points rotate around a common axis in the dataset
and also undertake the same translations. The 2D feature
points are generated by projecting these 3D points with a
virtual perspective camera. We finally get two synthetic se-
quences with 61 points and 19 frames. We report the RMSE
(in millimeter) and the mean relative 3D error in Table 4.
Our method achieves much lower 3D reconstruction error
than the baseline method [3].

Table 4. RMSE (in mm) and mean relative 3D error (shown in
brackets) in percentage (%) for the synthetic articulated data.
sequence [3] Ours
point-articulated  17.48 (2.45%) 7.70 (1.11%)
axis-articulated 9.13 (1.36%)  3.07 (0.45%)

Human Motion Capture Database. We sample six se-
quences in the CMU Mocap Database ° and five sequences
(Dance, Drink, Pickup, Yoga, and Stretch sequences) used
in [4] to form the human motion capture database. For
the latter five sequences, the data are centered to fit the
factorization-based methods, so we further add random
translations to each frame. Each sequence of this database
consists of 28 (for CMU Mocap), 41 (for Drink, Pickup,
Yoga, Stretch) or 75 (for Dance) points with 3D ground
truth coordinates. The input data are generated from a vir-
tual camera with perspective projection. We uniformly sub-
sample the frames of each sequence with a sample rate 10
(i.e., 1 : 10 : end) for CMU Mocap and a sample rate 5
for other sequences, producing sequences with 52 to 335
frames. For CMU Mocap, we set the neighborhood size K
as 28 for all competing methods, which lets us to use all
available points to build the edges; for other sequences, we
set K as 20. We show the quantitative results of our method
and the baseline method in Figure 7, and also give a qual-
itative comparison of the 3D reconstruction on this dataset
in Figure 8. We can see that our method consistently out-
performs the baseline [3]. However, we notice our recon-
struction is still far from perfect. We conjecture that this is
because the distance based measure cannot resolve the two-
fold ambiguity of human poses along the viewing rays®.

Shttp://mocap.cs.cmu.edu/
6We thank one of the anonymous reviewers for pointing this out.
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Figure 8. Qualitative comparison of the 3D reconstruction results
on the CMU Mocap Database. The green circles plot the ground
truth 3D points, and the blue stars show the reconstructed 3D
points. Top row: results of [3]. Bottom row: results of our
method.

7. Concluding Remarks

In this paper, we have revisited Ullman’s principle of
maximizing rigidity and proposed a novel convex rigidity
measure that can be incorporated into a modern structure
reconstruction framework to unify both rigid and non-rigid
SfM from multiple perspective images. Our reconstruction
method relies on directly building viewing triangles, thus
not requiring to estimate camera poses. Importantly, our
formulation (after SDP relaxations) is convex such that a
global optimal solution is guaranteed. We have verified the
efficacy of our method by extensive experiments on multi-
ple rigid, non-rigid and articulated datasets.

Limitation and Future Work. The computational bot-
tleneck of our method lies in solving the SDPs. For a se-
quence of m views and n points (for each view), we need
to solve m SDPs of size (n + 1) x (n + 1). Using an
interior-point method, one SDP has a worst-case complex-
ity of O(n*5log(1/e)) given a solution accuracy € > 0[13],
which remains the limiting factor preventing us from test-
ing on modern large-scale datasets. In the future, we aim to
explore the possibility of applying modern large-scale SDP
solver, such as [33, 32], to solve our problem more effi-
ciently. Furthermore, we also plan to investigate how to
address the degenerate cases as discussed in Sec. 5.2.
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