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Abstract

Rigid structure-from-motion (RSfM) and non-rigid

structure-from-motion (NRSfM) have long been treated in

the literature as separate (different) problems. Inspired by a

previous work which solved directly for 3D scene structure

by factoring the relative camera poses out, we revisit the

principle of “maximizing rigidity” in structure-from-motion

literature, and develop a unified theory which is applica-

ble to both rigid and non-rigid structure reconstruction in

a rigidity-agnostic way. We formulate these problems as

a convex semi-definite program, imposing constraints that

seek to apply the principle of minimizing non-rigidity. Our

results demonstrate the efficacy of the approach, with state-

of-the-art accuracy on various 3D reconstruction problems.

1. Introduction

Structure-from-motion (SfM) is the problem of recover-

ing the 3D structure of a scene from multiple images taken

by a camera at different viewpoints. When the scene struc-

ture is rigid the problem is generally well defined and has

been much studied [25, 12, 24, 8], with rigidity at the heart

of almost all vision-based 3D reconstruction theories and

methods. When the scene structure is non-rigid (deforming

surface, articulated motion, and etc.), the problem is under-

constrained, and constraints such as low dimensionality [4]

or local rigidity [23] have been exploited to limit the set of

solutions.

Currently, non-rigid structure from motion (NRSfM)

lags far behind its rigid counterpart, and is often treated en-

tirely separately from rigid SfM. Part of the reason for this

separate treatment lies in the usual formulation of the SfM

problem, which approaches the task in two stages: first the

relative camera motions w.r.t. the scene are estimated; then

the 3D structure is computed afterwards. In each stage, dif-

ferent methods and implementations have to be developed

for rigid and non-rigid scenarios separately because of the

different structure priors that are exploited. This has a fur-

ther disadvantage in that it can be difficult to determine a

priori whether the scene is rigid or nonrigid (and if the lat-

ter, in what way).

Therefore, it is highly desirable to have a generic SfM

framework that can deal with both rigid and non-rigid mo-

tion, which leads to the main theme of this paper. In fact,

as early as in the year 1983, Ullman [26] proposed a “maxi-

mizing rigidity” principle that relies on a non-convex rigid-

ity measure to reconstruct 3D structure from both rigid

and non-rigid (rubbery) motion. This idea has resurfaced

in various work under the ARAP (“as rigid as possible”)

moniker [15, 21]. However, it has not been further devel-

oped under the modern view of 3D reconstruction, mainly

due to the difficulty in its optimization. In this paper we re-

visit Ullman’s “maximizing rigidity” principle and propose

a novel convex rigidity measure that can be incorporated

into a modern SfM framework for both rigid and non-rigid

shape reconstruction.

Our proposed formulation yields reconstructions that are

more accurate than current state-of-the-art for non-rigid

shape reconstruction, and which enforces rigidity when this

is present in the scene. This is because our framework

aims at maximizing the rigidity while still satisfying the im-

age measurements. We thus achieve a unified theory and

paradigm for 3D vision reconstruction tasks for both rigid

and non-rigid surfaces. Our method does not need to spec-

ify which case (out of the above scenarios) is the target to

be reconstructed. The method will automatically output the

optimal solution that best explains the observations.

2. Related Work

Traditionally, under a perspective camera, the pipeline

of RSfM consists of two steps, i.e., a camera motion esti-

mation step and a following structure computation step [12,

10, 9, 8]; or the camera motion and 3D structure can also be

estimated simultaneously through measurement matrix fac-

torization [24, 22]. In RSfM literature, most related to our

work was by Li [11], who proposed an unusual approach

to handle SfM which bypasses the motion-estimation step.

This method does not require any explicit motion estimation

and was called the “structure-without-motion” method.

In contrast to RSfM, NRSfM remains an open active re-
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search topic [4, 3, 30] in computer vision. One of the com-

monly used constraints in NRSfM is the local rigidity con-

straint [23, 28], or in some literature the inextensibility con-

straint [29].

Taylor et al. [23] formulated a NRSfM framework in

terms of a set of linear length recovery equations using

local three-point triangles under an orthographic camera,

and grouped these “loosely coupled” rigid triangles into

non-rigid bodies. Varol et al. [28] estimated homogra-

phies between corresponding local planar patches in both

images. These yield approximate 3D reconstructions of

points within each patch up to a scale factor, where the rel-

ative scales are resolved by considering the consistency in

the overlapping patches. Both methods form part of a re-

cent trend of piece-wise reconstruction methods in NRSfM.

Instead of relying on a single model for the full surface,

these approaches model small patches of the surface inde-

pendently. Vicente and Agapito [29] exploited a soft inex-

tensibility prior for template-free non-rigid reconstruction.

They formulated an energy function that incorporates the

inextensibility prior and minimized it via the QPBO algo-

rithm. Very recently, Chhatkuli et al. [3] presented a global

and convex formulation for template-less 3D reconstruc-

tion of a deforming object by using perspective cameras,

where the 3D reconstruction problem is recast as a Second-

Order Cone Programming (SOCP) using the Maximum-

Depth Heuristic (MDH) [17, 18, 20].

The literature of RSfM and NRSfM advance in relatively

independent directions. To the best of our knowledge, the

first attempt to unify the two fields was by Ullman [26],

who proposed to use the principle of “maximizing rigid-

ity” to recover 3D structure from both rigid and non-rigid

motion. Ullman’s original formulation maintained and up-

dated an internal rigid model of the scene across a tempo-

ral sequence. A rigid metric was defined in terms of point

distance to measure the deviation from the estimated struc-

ture to the internal model. The 3D structure was recovered

by minimizing the overall deviation from rigidity (internal

model) to a local optimum via a gradient method. Com-

pared to Ullman’s method, our method unifies rigid and

non-rigid SfM within a convex program, from which we

obtain a global optimal solution.

3. Maximizing Rigidity Revisited

In this section, we discuss Ullman’s “maximizing rigid-

ity” principle in more detail. Ullman assumed that there is

an internal model of the scene and the internal model should

be as rigid as possible [26]. Let d̄ij be the Euclidean dis-

tance between points i and j of the internal model, and dij
the Euclidean distance between points i and j of the esti-

mated structure. A measure of the difference between d̄ij

Figure 1. A spring model illustration for Ullman’s maximizing

rigidity principle. Each of the viewed points (three in this ex-

ample) is constrained to move along one of the rigid rods, and

its position along the rod represents its depth. The connecting

springs represent the distances between points in the current inter-

nal model. The points would slide along the rods until a minimum

energy configuration is reached. The final configuration represents

the modified internal model. Image and caption are modified from

Figure 2 of [26].

and dij was defined as

∆ij =
(d̄ij − dij)

2

d̄3ij
. (1)

Under an orthographic camera model, the pairwise distance

dij was directly parameterized as (xi−xj)
2+(yi− yj)

2+
(zi − zj)

2, where {(xi, yi)} are the known image (coordi-

nate) measurements and {zi} are the unknown depths. Un-

fortunately, no principled way was provided to handle the

general perspective camera model. Intuitively, this measure

is the least square difference reweighted by the inter-point

distance of the internal model. The reweighting indicates

that a point is more likely to move rigidly with its nearest

neighbors [26]. However, the reweighting also makes Ull-

man’s rigidity measure non-convex in terms of d̄ij .

Then the problem of determining the most rigid structure

can be formulated as minimizing the overall deviation from

rigidity
∑

ij ∆ij . Since the internal model of the scene is

often unknown, the remedy that Ullman proposed was to

start from a flat plane (as the initial internal model) and in-

crementally estimate the internal model and 3D structure.

This internal model was shown to converge to a local opti-

mum for both rigid and non-rigid motions [26, 7]. See Fig-

ure 1 for a spring model illustration of Ullman’s method.

From the analysis above, we can identify three major

drawbacks of Ullman’s method: (i) it cannot handle the per-

spective camera in a principled way; (ii) the rigidity mea-

sure used is non-convex, which leads to local optimum; (iii)

it relies on building fully connected graphs (for every pair

of points), which, in practice, is often redundant and un-

necessary. In the following section, we’ll show how these

drawbacks can be circumvented by introducing a novel con-

vex rigidity measure which can be further incorporated into

an edge-based 3D reconstruction framework for perspective

projection.
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4. Our 3D Shape Reconstruction Model

In this section, we present our unified model for both

rigid and nonrigid 3D shape reconstruction. The core com-

ponent of our model lies in a novel convex rigidity measure

as introduced below. For notation, points are indexed with

a subscript i ∈ {1, · · · , n}, and image views (or frames)

are indexed with a superscript k ∈ {1, · · · ,m}. We assume

that the world frame is centered at the camera center and

aligned with camera coordinate system.

4.1. Our Rigidity Measure

Ullman’s rigidity measure requires to build a fully con-

nected graph within each time frame and penalize distant

edges (as distant point pairs are more likely to move non-

rigidly). Instead of using a fully connected graph, we build

a K-nearest-neighbor graph (K-NNG), which connects each

point i to a set of its K nearest neighbors, denoted as N (i),
based on the Euclidean distance on 2D images [3]. We also

use a different internal model than Ullman’s. Specifically,

we define a rigid internal model with inter-point distance

gij = maxk{d
k
ij}k=1,··· ,m, i.e., gij is the maximal distance

between points Qi and Qj over all frames. So our internal

model can be thought of as a “maximum distance” model.

For rigid shapes, gij corresponds to the Euclidean distance

between Qi and Qj , which is invariant over all frames; for

non-rigid inextensible shapes, gij corresponds to the maxi-

mal Euclidean distance between Qi and Qj over all frames,

which generally equals the geodesic distance between Qi

and Qj . For example, for a non-rigidly deforming paper,

its internal model corresponds to the flat paper. To enforce

rigidity, we define a measure of the total difference between

gij and dkij for all (i, j, k) as

∆′ =
∑

i,j∈N (i),k

|gij − dkij | . (2)

Compared to Ullman’s rigidity measure, our rigidity mea-

sure has three merits: (i) we significantly reduce the num-

ber of edges by using a K-NNG instead of a fully connected

graph; (ii) our measure is convex, which is crucial for opti-

mization; (iii) we use a robust L-1 norm instead of the L-2

norm in the rigidity measures. To make the reconstructed

scene as rigid as possible, we need to minimize ∆′. As we

will see in the following subsections, our rigidity measure

can be naturally incorporated into an edge-based 3D recon-

struction framework under perspective projection.

4.2. Edge­Based Reconstruction

Given a set of n 2D point correspondences across m im-

ages {qk
i }, our target is to find their 3D coordinates Qk

i

in the same global coordinate system. We denote the edge

(distance) between the camera center O and Qk
i , which we

call a “leg”, as ℓki . Define the angle between legs ℓki and

Figure 2. Viewing triangles of a pair of 3D points Qi and Qj in

different views. We use O to denote the camera center from which

we draw viewing ray OQk
i intersecting with the image plane at

qk
i . For example, △OQ1

iQ
1

j forms a viewing triangle in the first

view for Qi and Qj .

ℓkj as θkij . Clearly, we have θkij = θkji. We assume that the

camera is intrinsically calibrated, so the angles θkij can be

trivially computed. Denote the Euclidean distance between

two points Qk
i and Qk

j in the kth frame as dkij . For rigid mo-

tion, dkij is constant over frames for the same pair of point

correspondences. In the case of non-rigid motions, dkij may

change over frames, but is bounded by a maximal value gij ,

i.e., gij = maxk{d
k
ij}k=1,··· ,m.

Motivated by [11], we build our model based on view-

ing triangles formed by each pair of points to compute the

3D structure. See Figure 2 for an illustration. Note that

the viewing triangles can only be formed with points of the

same frame.

Within each viewing triangle, we have a basic equation

following the cosine law

ℓki
2
+ ℓkj

2
− 2ℓki ℓ

k
j cos θ

k
ij = dkij

2
. (3)

We can rewrite this equation in a matrix form as

[

ℓki ℓkj
]

[

1 − cos θkij
− cos θkij 1

] [

ℓki
ℓkj

]

= dkij
2
. (4)

With all viewing triangles, we can construct a system of

quadratic equations of the above form in terms of the un-

knowns ℓki , ℓki and dkij .

Stack all the legs ℓki into a vector ℓ = [ℓ1
T

· · · ℓ
mT

]T ,

with the leg vector for the kth frame ℓ
k = [ℓk1 · · · ℓkn]

T .

Define the cosine-matrix as Ck ∈ R
n×n with the diag-

onal elements as one and off-diagonal elements as ckij =

− cos θkij . Let ei be the unit basis vector (i.e., all 0 but

1 at the ith entry), and define the diagonal matrix Eij =
diag(ei + ej). Eq. (4) can then be rewritten as

ℓ
kTET

ijC
kEijℓ

k = dkij
2
. (5)

Note that the matrix Ak
ij

.
= ET

ijC
kEij is highly sparse with

only four non-zero elements.

The edge-based 3D reconstruction problem becomes

Find ℓ,d (6a)

s.t. ℓ
kTAk

ijℓ
k = dkij

2
, (6b)

ℓki ≥ 0, dkij ≥ 0, ∀(i, j, k) , (6c)
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where d is a vector containing all dkij .

However, the above formulation is not well constrained

because: (i) the scale of the solutions cannot be uniquely

determined due to the homogeneous equation in (6b); (ii)

a trivial all-zero solution always exists; (iii) for non-rigid

motions, we only have one equality constraint for each dkij ,

which is insufficient to get deterministic solutions1. The

scale ambiguity is intrinsic to 3D reconstruction under the

perspective camera model [8]. In practice, we can fix a

global scale of the scene by normalizing ℓ or d.

Maximum-Leg Heuristic (MLH). To get the desired

solutions, we apply a so-called Maximum-Leg Heuristic

(MLH). After fixing the global scale, we want to maximize

the sum of all legs ℓki under the non-negative constraint, or

equivalently

min
ℓ,d

−
∑

i,k

ℓki (7a)

s.t. ℓ
kTAk

ijℓ
k = dkij

2
, (7b)

ℓki ≥ 0, dkij ≥ 0, ∀(i, j, k) . (7c)

In this way, trivial solutions are avoided. Note that, in

the NRSfM literature, there is a commonly used heuris-

tic called Maximum Depth Heuristic (MDH) [17, 18, 20],

which maximizes the sum of all depths under the condition

that each depth and distance are positive. Our MLH virtu-

ally plays the same role as MDH because under a perspec-

tive camera, we have ℓki = zki ‖q̂
k
i ‖2, where zki represents

the depth of the ith point in the kth frame (i.e., Qk
i ), and

q̂k
i = K−1[qk

i

T
1]T .

5. Convex Program for 3D Shape Reconstruc-

tion

Incorporating our rigidity measure in (2) into (7), we get

our overall formulation for 3D shape reconstruction as fol-

lows

min
ℓ,d,g

−
∑

i,k

ℓki + λ
∑

i,j,k

|gij − dkij | (8a)

s.t. ℓ
kTAk

ijℓ
k = dkij

2
, (8b)

dkij ≤ gij , (8c)
∑

ij

g2ij = 1 , (8d)

ℓki ≥ 0, dkij ≥ 0 , ∀
(

i, j ∈ N (i), k
)

, (8e)

where λ > 0 is a trade-off parameter, and the equality con-

straint (8d) fixes the global scale of the reconstructed shape.

1For rigid motions, dkij = dij , ∀k ∈ {1, · · · ,m}, and we have suf-

ficient constraints for dij . But in many cases, we don’t know whether the

scene is rigid or non-rigid a priori.

However, the above formulation is still non-convex due to

the quadratic terms in the both sides of Eq. (8b) and in the

left-hand-side of Eq. (8d). To make it convex, we first define

ĝij = gij
2 and d̂kij = dkij

2
. We then change our formulation

to the following form

min
ℓ,d̂,ĝ

−
∑

i,k

ℓki + λ
∑

i,j,k

(ĝij − d̂kij) (9a)

s.t. ℓ
kTAk

ijℓ
k = d̂kij , (9b)

d̂kij ≤ ĝij , (9c)
∑

ij

ĝij = 1 , (9d)

ℓki ≥ 0, d̂kij ≥ 0 , ∀
(

i, j ∈ N (i), k
)

, (9e)

where we approximate |gij − dkij | with |ĝij − d̂kij |, and drop

the absolute value operator as we have an inequality con-

straint (9c) to make sure ĝij − d̂kij is always non-negative.

Due to (9b), our formulation turns out to be a quadratically

constrained quadratic program (QCQP), which is unfortu-

nately still a non-convex and even NP-hard problem for in-

definite Ak
ij [16, 19].

5.1. Semi­Definite Programming (SDP) Relaxation

We now show how our formulation can be converted

to a convex program using SDP relaxation. Note that we

have ℓ
kTAk

ijℓ
k = tr(Ak

ijℓ
k
ℓ
kT ). We can introduce aux-

iliary variables Yk = ℓ
k
ℓ
kT for k = 1, · · · ,m. Then

Eq. (9b) equivalently becomes two equality constraints

tr(Ak
ijY

k) = d̂kij , Y
k = ℓ

k
ℓ
kT . We can directly relax the

last non-convex equality constraint Yk = ℓ
k
ℓ
kT into a con-

vex positive semi-definiteness constraint Yk � ℓ
k
ℓ
kT [5].

Using a Schur complement, Yk � ℓ
k
ℓ
kT can be reformu-

lated [1] as

[

1 ℓ
kT

ℓ
k Yk

]

� 0. Ideally, Yk should be a rank-

one matrix. But, after the relaxation, the rank constraint for

Yk may not be maintained. We can minimize tr(Yk) as the

convex surrogate of rank(Yk).2

Our formulation becomes an SDP written as:

min
ℓ,d̂,ĝ,Yk

∑

k

tr(Yk)− λ11
T
ℓ− λ21

T d̂ (10a)

s.t. tr(Ak
ijY

k) = d̂kij , (10b)
[

1 ℓ
kT

ℓ
k Yk

]

� 0 , (10c)

d̂kij ≤ ĝij , 1
T ĝ = 1 , (10d)

ℓki ≥ 0, d̂kij ≥ 0 , ∀
(

i, j ∈ N (i), k
)

, (10e)

2For positive semi-definite Yk , tr(Yk) = ‖Yk‖∗, and the nuclear

norm is a well-known convex surrogate for the rank.
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where λ1, λ2 are two positive trade-off parameters, and 1 is

an all-one column vector with appropriate dimensions. Our

model incorporates our maximizing rigidity principle with

the MLH under the constraints of viewing-triangle cosine-

law and the internal model. Note that we remove a term of

ĝ in the objective (10a) because we have
∑

i,j,k ĝij = m,

which is a constant. Our formulation consists of a lin-

ear objective subject to linear constraints and SDP con-

straints, which is known as a convex problem. This convex

SDP problem can be solved effectively by any modern SDP

solver to a global optimum.

Incomplete Data. Incomplete measurements are quite

common due to occlusions. To handle incomplete measure-

ments, we can introduce a set of visibility masks W
.
=

{wk
i }, where wk

i = 1 if the ith point is visible in frame

k, otherwise wk
i = 0. With the visibility masks, the terms

related to ℓki become wk
i ℓ

k
i and the terms related to dkij be-

come wk
i w

k
j d

k
ij . The problem is still convex and solvable

with any SDP solver. Here we assume that the number of

visible points in one frame is greater than the neighborhood

size; otherwise, we remove that frame.

5.2. 3D Reconstruction from Legs

Under the perspective camera model, we can relate Qk
i

and qk
i with

Qk
i = zki q̂

k
i = lki q̂

k
i /‖q̂

k
i ‖2 , (11)

where q̂k
i = K−1[qk

i

T
1]T . After we get the solutions for

all legs ℓki , we can then substitute them back to the above

equation to compute the 3D coordinates for all points.

Degenerate Cases. Our system becomes degenerate if

there is only pure rotation (around the camera center) in the

scene. In fact, pure rotation over the camera center do not

change the angles between two vectors, e.g., v1 and v2,

cos(θ) =
vT
1 v2

‖v1‖‖v2‖
=

(Rv1)
T (Rv)2

‖Rv1‖‖Rv2‖
, (12)

where the equations hold because RTR = I and rotation

on vectors does not change their length. So if there is only

pure rotation in the scene, our system will become under-

constrained. This also corresponds to the fact in epipolar

geometry that pure rotation cannot be explained by the es-

sential/fundamental matrix (but homography instead). An-

other degenerate case is when the camera model is close to

orthographic. In this case, the viewing angles are all close

to zero, which makes our formulation unsolvable.

6. Experiments

We compare our method with four baselines for rigid and

non-rigid 3D shape reconstruction. These baselines include:

the rigid “structure-without-motion” method for a perspec-

tive camera in [11], the non-convex soft-inextensibility

based NRSfM method for an orthographic camera in [29],

the prior-free low-rank factorization based NRSfM method

for an orthographic camera in [4], and the second-order

cone programming based NRSfM method for a perspective

camera [3]. For the baselines, we use the source codes pro-

vided by the authors. We implement our method in Matlab

and use the MOSEK [14] SDP solver to solve our formula-

tion. We fix all the parameters of the baseline methods to

the optimal values. We find that our method is not sensitive

to the parameters λ1 and λ2, and set λ1 = 1 and λ2 = 20
for all our experiments, which are obtained by validating on

a separate dataset. To give a fair comparison, we always use

the same K-NNG for [3] and our method. Due the limit of

space, our qualitative reconstruction results on all synthetic

datasets are provided in the supplementary videos.
The metrics we use to evaluate the performance are the

3D Root Mean Square Error (RMSE) (in mm) and the rel-
ative 3D error (denoted as R-Err) (in %), which are respec-
tively defined as

RMSE =
1

m

∑

k

√

1

n

∑

i

‖Q̄k
i −Qk

i ‖
2

2
,

R-Err =
1

m

∑

k

‖Q̄k −Qk‖F

‖Q̄k‖F
× 100% ,

where Q̄k
i is the ground truth coordinates of point i in frame

k. We always have a scale ambiguity for all structure-from-

motion methods. For methods that use a perspective cam-

era model, we re-scale their reconstructions to best align

them with the ground truth before computing the errors. For

methods that use an orthographic camera model, we do Pro-

crustes analysis to solve for a similarity transformation that

best aligns the reconstructions with the ground truth.

6.1. Non­rigid Structure from Motion

Our method and [3] rely on constructing a K-NNG. For

both methods, we use the same K-NNG and fix the neigh-

borhood size K as 20 for this set of experiments.

The Flag (Semi-Synthetic) Dataset. This flag dataset

[31] consists of an image sequence of a fabric flag wav-

ing in the wind. The ground truth 3D points are provided in

the dataset, but neither 2D projection trajectories nor cam-

era calibrations are available. We subsample the 3D points

in each frame and generate the input data from a virtual per-

spective camera with the field-of-view angle as 81.69◦. The

final sequence contains 90 points (on each frame) and 50

frames. We report the 3D RMSE and mean relative 3D er-

ror in Table 1. Note that our method achieves the lowest 3D

reconstruction error among all the competing methods.

The KINECT Paper, Hulk, and T-Shirt Datasets. The

KINECT paper dataset [27] contains an image sequence

of smoothly deforming well-textured paper captured by a

933



Figure 3. Qualitative comparison of the 3D reconstruction results on the T-shirt dataset. The green circles plot the ground truth 3D points,

and the blue stars show the reconstructed 3D points. Top row: 2D images with feature points in red dots. Middle row: results of [3].

Bottom row: results of our method. Best viewed on screen with zoom-in.

Table 1. Mean 3D errors for the Flag Paper dataset.

[29] [4] [3] Ours

RMSE 41.92 26.23 21.08 16.75

R-Err 12.76% 7.51% 6.38% 5.07%

KINECT camera. The camera calibration and ground truth

3D are provided. We use the trajectories provided by [3],

which was obtained by tracking interest points in this se-

quence using a flow-based method of [6]. The trajectories

are complete, semi-dense and outlier-free. Due to the large

number of points and frames, we subsample the points and

frames in this dataset and get a sequence with 151 points

(on each frame) and 23 frames.

The Hulk dataset [2] consists of 21 images taken at dif-

ferent unrelated smooth deformations. The deforming scene

is a well-textured paper cover of a comics. The intrinsic

camera calibration matrix, 3D ground truth shape and 2D

feature trajectories are provided in this dataset. This dataset

contains 122 trajectories in 21 views.

The T-Shirt dataset [2] consists of 10 images taken for a

deforming T-shirt. As in the Hulk dataset, the intrinsic cam-

era calibration matrix, 3D ground truth shape and 2D fea-

ture trajectories are all provided in this dataset. This dataset

contains 85 point trajectories in 10 frames.

We show the mean 3D errors of our method and the base-

lines in Figure 4. We can see that our method achieves the

lowest 3D reconstruction error on all the three datasets. We

also give a qualitative comparison with the best-performing

baseline [3] in Figure 3.

The Jumping Trousers Dataset with missing data. This

dataset [31] contains 3D ground truth points for jumping

trousers obtained from cloth motion capture. The complete

2D trajectories are generated by projecting the 3D points

through a virtual perspective camera. However, due to self-

occlusions, the 2D trajectories would have a considerable

amount of missing entries, and the visibility masks are pro-

vided in the original data. We subsample the points and

Figure 4. Mean 3D reconstruction errors for the KINECT Paper

(denoted as “KPaper” in the figure), Hulk, and T-shirt Datasets.

Our method (plotted in blue) achieves the lowest 3D reconstruc-

tion errors on all three datasets.

frames, and get a sequence of 97 points and 29 frames.

Since the first two baselines [29, 4] cannot handle incom-

plete data, we input complete trajectories for them. We use

the incomplete trajectories for [3] and our method as the

two methods can handle incomplete data. 3 The results are

reported in Table 2. Our method, with incomplete data as

input, outperforms all the other baselines.

Table 2. Mean 3D errors for the Jumping Trousers dataset.

[29] [4] [3] Ours

RMSE 190.17 49.97 44.05 37.70

R-Err 55.10% 12.67% 13.57% 11.65%

From this set of experiments, we have shown that our

method consistently outperforms all the baselines. We note

that on those datasets there is always a significant perfor-

mance gap between those orthographic camera model based

methods ([29, 4]) and those perspective camera model

based methods ([3] and ours). In the following experiments,

we will only compare with the perspective camera model

based methods ([11, 3]).

Robustness to various numbers of points/views, dif-

ferent levels of missing data and noise. In Figure 5,

3Note, for incomplete data, we only compute average 3D reconstruc-

tion error for the visible points. And also note that this comparison is unfair

for [3] and our method as the other two use complete data.
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Figure 5. Performance evaluation on the KINECT Paper dataset

with increasing number of points/views, increasing ratios of miss-

ing data, and increasing levels of synthetic Gaussian noise.

we show the performance of our method and the best-

performing baseline [3] on the KINECT paper dataset

with increasing number of points/views, increasing ratios

of missing data, and increasing levels of synthetic zero-

mean Gaussian noise (with various standard deviations σ).

The default experimental setting is with 100 points and 30

views, and the parameters are fixed as λ1 = 1, λ2 = 20, and

K = 20. We can see that our method consistently outper-

forms the baseline method in all scenarios, which verifies

the robustness of our method. We believe that our superior

performance comes from the novel maximizing rigidity reg-

ularization, which better explains the image observations.

6.2. Rigid Structure from Motion

In this set of experiments, we test our method for rigid

structure reconstruction. Since our method does not utilize

the rigidity prior of the scene, we can well expect that our

method performs worse than the specifically designed rigid

method. The main goal of this set of experiments is thus to

show that our method can achieve comparable rigid struc-

ture reconstruction to the rigid method. We compare our

method with the best-performing baseline [3] for non-rigid

structure from motion, and another method [11] specifically

designed for rigid structure from motion. The neighborhood

size is set as 20 for all methods.

Rigid Synthetic Dataset. We verify our method for rigid

structure computation on a synthetic dataset. To gener-

ate the data, we subsample the ground truth 3D points of

one frame of the KINECT paper dataset [27], and apply a

transformation (rotation and translation) to these points over

time. After a perspective projection, we get a sequence for

rigid motion with 61 points and 20 frames. The mean 3D re-

construction errors for all competing methods are reported

in Figure 6. We also plot the RMSE (in mm) for each frame

of the sequence in Figure 6 and compare our method with

the state-of-the-art non-rigid SfM method [3] and the rigid

Figure 6. Left: mean 3D errors for the synthetic rigid dataset.

Right: the RMSE (in mm) for each frame of the synthetic se-

quence by the rigid method [11] (in black dots), the non-rigid

method [3] (in cyan dots), and our method (in red dots).

SfM method [11]. It’s no surprising that [11] achieves the

lowest reconstruction errors in this rigid dataset as it utilizes

the prior knowledge that the scene is rigid. Our method,

without inputting any prior knowledge of the scene rigidity,

gets close results to [11] and significantly outperforms the

NRSfM method [3].

The Model House Dataset. We use the VGG model

house dataset 4as the real-world dataset for rigid SfM. The

camera projection matrices, 2D feature coordinates and 3D

ground truth points are provided in this dataset, and the 2D

measurements contain moderate amount of noise. The cam-

era intrinsic matrices are computed from camera projection

matrices using R-Q decomposition [8]. We generate a se-

quence with complete feature point trajectories of 95 points

and 7 frames. We report the 3D reconstruction errors of all

methods in Table 3. Again, our method obtains compara-

ble results to [11] and lower reconstruction error than the

NRSfM method [3].

Table 3. Mean 3D errors for the Model House dataset.
[11] [3] Ours

RMSE 0.158 0.200 0.162

R-Err 2.95% 3.73% 3.02%

6.3. Articulated Motion Reconstruction

In this set of experiments, we evaluate our method for

the 3D reconstruction of articulated motions, and compare

our method with the best-performing baseline [3].

Synthetic Articulated Dataset. We first test our method

on two synthetic sequences where the objects undergo ar-

ticulated motions. To generate the synthetic data, we take

a subset of the ground truth 3D points in the first image of

the KINECT paper dataset [27] and divide them into two

groups. We synthesize two kinds of articulated motions: (i)

the point-articulated motion (denoted as “point-articulated”

in Table 4), i.e., the two groups of points rotate around a

common point in the dataset and meanwhile undertake the

same translations through time; (ii) the axis-articulated mo-

tion (denoted as “axis-articulated” in Table 4), i.e., the two

4http://www.robots.ox.ac.uk/˜vgg/data/

data-mview.html
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Figure 7. Left: mean 3D reconstruction errors on six sampled se-

quences (86 04, 86 05, 86 07, 86 08, 86 10, and 86 14) of CMU

Mocap Database. Right: mean 3D reconstruction errors on Dance,

Drink, Pickup, Yoga, and Stretch sequences.

groups of points rotate around a common axis in the dataset

and also undertake the same translations. The 2D feature

points are generated by projecting these 3D points with a

virtual perspective camera. We finally get two synthetic se-

quences with 61 points and 19 frames. We report the RMSE

(in millimeter) and the mean relative 3D error in Table 4.

Our method achieves much lower 3D reconstruction error

than the baseline method [3].

Table 4. RMSE (in mm) and mean relative 3D error (shown in

brackets) in percentage (%) for the synthetic articulated data.

sequence [3] Ours

point-articulated 17.48 (2.45%) 7.70 (1.11%)

axis-articulated 9.13 (1.36%) 3.07 (0.45%)

Human Motion Capture Database. We sample six se-

quences in the CMU Mocap Database 5 and five sequences

(Dance, Drink, Pickup, Yoga, and Stretch sequences) used

in [4] to form the human motion capture database. For

the latter five sequences, the data are centered to fit the

factorization-based methods, so we further add random

translations to each frame. Each sequence of this database

consists of 28 (for CMU Mocap), 41 (for Drink, Pickup,

Yoga, Stretch) or 75 (for Dance) points with 3D ground

truth coordinates. The input data are generated from a vir-

tual camera with perspective projection. We uniformly sub-

sample the frames of each sequence with a sample rate 10

(i.e., 1 : 10 : end) for CMU Mocap and a sample rate 5

for other sequences, producing sequences with 52 to 335

frames. For CMU Mocap, we set the neighborhood size K
as 28 for all competing methods, which lets us to use all

available points to build the edges; for other sequences, we

set K as 20. We show the quantitative results of our method

and the baseline method in Figure 7, and also give a qual-

itative comparison of the 3D reconstruction on this dataset

in Figure 8. We can see that our method consistently out-

performs the baseline [3]. However, we notice our recon-

struction is still far from perfect. We conjecture that this is

because the distance based measure cannot resolve the two-

fold ambiguity of human poses along the viewing rays6.

5http://mocap.cs.cmu.edu/
6We thank one of the anonymous reviewers for pointing this out.

Figure 8. Qualitative comparison of the 3D reconstruction results

on the CMU Mocap Database. The green circles plot the ground

truth 3D points, and the blue stars show the reconstructed 3D

points. Top row: results of [3]. Bottom row: results of our

method.

7. Concluding Remarks

In this paper, we have revisited Ullman’s principle of

maximizing rigidity and proposed a novel convex rigidity

measure that can be incorporated into a modern structure

reconstruction framework to unify both rigid and non-rigid

SfM from multiple perspective images. Our reconstruction

method relies on directly building viewing triangles, thus

not requiring to estimate camera poses. Importantly, our

formulation (after SDP relaxations) is convex such that a

global optimal solution is guaranteed. We have verified the

efficacy of our method by extensive experiments on multi-

ple rigid, non-rigid and articulated datasets.

Limitation and Future Work. The computational bot-

tleneck of our method lies in solving the SDPs. For a se-

quence of m views and n points (for each view), we need

to solve m SDPs of size (n + 1) × (n + 1). Using an

interior-point method, one SDP has a worst-case complex-

ity of O(n4.5log(1/ǫ)) given a solution accuracy ǫ > 0 [13],

which remains the limiting factor preventing us from test-

ing on modern large-scale datasets. In the future, we aim to

explore the possibility of applying modern large-scale SDP

solver, such as [33, 32], to solve our problem more effi-

ciently. Furthermore, we also plan to investigate how to

address the degenerate cases as discussed in Sec. 5.2.
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